高考数学专题复习 数列的综合应用教案 文
2025届高考数学一轮复习教案:数列-数列的综合应用

第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。
高三数学数列教案5篇最新

高三数学数列教案5篇最新每个好的教师都需要一个好的教案,今天小编在这里整理了一些高三数学数列教案5篇最新,我们一起来看看吧!高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点:1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,… 首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得:(n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2…的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,……的'第4项与第10项.(2)求等差数列10,8,6,……的第20项. (3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。
通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。
1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。
通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。
第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。
通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。
2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。
通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。
第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。
通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。
3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。
通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。
第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。
通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。
4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。
通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。
第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。
通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。
5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。
通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。
第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。
数列综合题和应用性问题教案

数列综合题和应用性问题教案章节一:数列的概念和性质教学目标:1. 理解数列的定义及其基本性质。
2. 能够识别和表示不同类型的数列。
3. 掌握数列的通项公式和求和公式。
教学内容:1. 数列的定义及表示方法。
2. 数列的性质,如单调性、周期性等。
3. 数列的通项公式和求和公式。
教学活动:1. 通过实例介绍数列的定义和表示方法。
2. 引导学生探索数列的性质,如单调性、周期性等。
3. 讲解数列的通项公式和求和公式,并通过例题进行解释。
章节二:等差数列和等比数列教学目标:1. 理解等差数列和等比数列的定义及其性质。
2. 能够识别和表示等差数列和等比数列。
3. 掌握等差数列和等比数列的通项公式和求和公式。
教学内容:1. 等差数列和等比数列的定义及表示方法。
2. 等差数列和等比数列的性质,如单调性、周期性等。
3. 等差数列和等比数列的通项公式和求和公式。
教学活动:1. 通过实例介绍等差数列和等比数列的定义和表示方法。
2. 引导学生探索等差数列和等比数列的性质,如单调性、周期性等。
3. 讲解等差数列和等比数列的通项公式和求和公式,并通过例题进行解释。
章节三:数列的极限教学目标:1. 理解数列极限的概念及其性质。
2. 能够求解数列极限的问题。
3. 掌握数列极限的运算规则。
教学内容:1. 数列极限的定义及其性质。
2. 数列极限的求解方法。
3. 数列极限的运算规则。
教学活动:1. 通过实例介绍数列极限的定义和性质。
2. 引导学生学习数列极限的求解方法,如直接求解、夹逼定理等。
3. 讲解数列极限的运算规则,并通过例题进行解释。
章节四:数列的综合题型教学目标:1. 理解数列综合题型的概念及其解题方法。
2. 能够解决数列综合题型的问题。
3. 掌握数列综合题型的解题策略。
教学内容:1. 数列综合题型的概念及其解题方法。
2. 数列综合题型的常见类型和解题技巧。
3. 数列综合题型的解题策略。
教学活动:1. 通过实例介绍数列综合题型的概念和解题方法。
高考数学一轮复习 第六章 数列 第5讲 数列的综合应用教案 文

第5讲 数列的综合应用等差数列与等比数列的综合问题(师生共研)(2018·高考北京卷)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2.(1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n.【解】 (1)设{a n }的公差为d . 因为a 2+a 3=5ln 2, 所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. (2)因为e a1=eln 2=2,e anea n -1=ea n -a n -1=eln 2=2,所以{e a n}是首项为2,公比为2的等比数列.所以e a 1+e a 2+…+e a n=2×1-2n1-2=2(2n -1)=2n +1-2.等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,确定最终解决问题需要首先求解的中间问题,如求和需要先求出通项、求出通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.[提醒] 在不能使用同一公式进行计算的情况下要注意分类讨论,分类解决问题后要注意结论的整合.(2020·吉林第一次调研测试)设S n 为数列{a n }的前n 项和,已知a 2=3,a n +1=2a n +1.(1)证明:{a n +1}为等比数列;(2)求{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?说明理由.解:(1)证明:因为a 2=3,a 2=2a 1+1,所以a 1=1, 因为a n +1=2a n +1,所以a n +1+1=2(a n +1), 所以{a n +1}是首项为2,公比为2的等比数列. (2)由(1)知,a n +1=2n,所以a n =2n-1, 所以S n =2-2n +11-2-n =2n +1-n -2,所以n +S n -2a n =n +2n +1-n -2-2(2n-1)=0,所以n +S n =2a n ,即n ,a n ,S n 成等差数列. 数列的实际应用与数学文化(师生共研)(2020·重庆八中4月模拟)某地区2018年人口总数为45万.实施“二孩”政策后,专家估计人口总数将发生如下变化:从2019年开始到2028年,每年人口总数比上一年增加0.5万人,从2029年开始到2038年,每年人口总数为上一年的99%.(1)求实施“二孩”政策后第n 年的人口总数a n (单位:万人)的表达式(注:2019年为第一年);(2)若“二孩”政策实施后的2019年到2038年人口平均值超过49万,则需调整政策,否则继续实施,问到2038年结束后是否需要调整政策?(参考数据:0.9910≈0.9)【解】 (1)由题意知,当1≤n ≤10时,数列{a n }是首项为45.5,公差为0.5的等差数列,可得a n =45.5+0.5×(n -1)=0.5n +45,则a 10=50;当11≤n ≤20时,数列{a n }是公比为0.99的等比数列,则a n=50×0.99n -10.故实施“二孩”政策后第n 年的人口总数a n (单位:万人)的表达式为a n =⎩⎪⎨⎪⎧0.5n +45,1≤n ≤10,50×0.99n -10,11≤n ≤20. (2)设S n 为数列{a n }的前n 项和.从2019年到2038年共20年,由等差数列及等比数列的求和公式得S 20=S 10+(a 11+a 12+…+a 20)=477.5+4 950×(1-0.9910)≈972.5.所以“二孩”政策实施后的2019年到2038年人口平均值为S 2020≈48.63,则S 2020<49,故到2038年结束后不需要调整政策.数列实际应用中的常见模型(1)等差模型:如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数,则该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n 项a n 与第n +1项a n +1的递推关系还是前n 项和S n 与前n +1项和S n +1之间的递推关系.1.(2020·广东潮州二模)我国古代名著《九章算术》中有这样一段话:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金箠,长5尺,头部1尺,重4斤,尾部1尺,重2斤.若该金箠从头到尾,每一尺的质量构成等差数列,则该金箠共重为( )A .6斤B .7斤C .9斤D .15斤解析:选D.设从头到尾每一尺的质量构成等差数列{a n }, 则有a 1=4,a 5=2, 所以a 1+a 5=6,数列{a n }的前5项和为S 5=5×a 1+a 52=5×3=15,即该金箠共重15斤.故选D.2.1979年,李政道博士给中国科技大学少年班出过一道智趣题:5只猴子分一堆桃子,怎么也不能分成5等份,只好先去睡觉,准备第二天再分,夜里1只猴子偷偷爬起来,先吃掉一个桃子,然后将其分成5等份,藏起自己的一份就去睡觉了;第2只猴子又爬起来,将剩余的桃子吃掉一个后,也将桃子分成5等份;藏起自己的一份睡觉去了;以后的3只猴子都先后照此办理,问:最初至少有多少个桃子?最后至少剩下多少个桃子?解:假如我们设最初有a 1个桃子,猴子每次分剩下的桃子依次为a 2,a 3,a 4,a 5,a 6,得到一个数列{a n },依题意,可知数列的递推公式:a n +1=a n -15(a n -1)-1,即a n +1=45(a n -1),整理变形,得a n +1+4=45(a n +4).故{a n +4}是以45为公比的等比数列,所以a 6+4=(a 1+4)⎝ ⎛⎭⎪⎫455,欲使(a 6+4)∈N *,应有a 1+4=55m (m ∈N *),故最初至少有桃子a 1=55-4=3 121个,从而最后至少剩下a 6=45-4=1 020个.数列与函数、不等式的综合问题(师生共研)设函数f (x )=12+1x ,正项数列{a n }满足a 1=1,a n =f ⎝ ⎛⎭⎪⎫1a n -1,n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,求证:1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1<2.【解】(1)由a n =f ⎝⎛⎭⎪⎫1a n -1, 所以a n =12+a n -1,n ∈N *,且n ≥2,所以数列{a n }是以1为首项,以12为公差的等差数列,所以a n =a 1+(n -1)d =1+12(n -1)=n +12.(2)证明:由(1)可知1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎪⎫1n +1-1n +2, S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=4[⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15…+(1n +1-1n +2)]=4⎝ ⎛⎭⎪⎫12-1n +2 =2-4n +2<2,得证.数列与其他知识交汇问题的常见类型及解题策略(1)数列与函数的交汇问题①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;②已知数列条件,解决函数问题,解题时要注意数列与函数的内在联系,掌握递推数列的常见解法.(2)数列与不等式的交汇问题①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到;③比较方法:作差或者作商比较.1.(2020·湖南岳阳一模)曲线y =n 2x +ln x (n ∈N *)在x =2n处的切线斜率为a n ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项的和为 .解析:对y =n 2x +ln x (n ∈N *)求导,可得y ′=n 2+1x ,由曲线y =n 2x +ln x (n ∈N *)在x =2n 处的切线斜率为a n ,可得a n =n 2+n 2=n .所以1a n a n +1=1n (n +1)=1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项的和为1-12+12-13+…+1n -1n +1=n n +1. 答案:nn +12.(2020·浙江杭州4月模拟)已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则a 5= ,b 10= .解析:因为a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,所以a n ,a n +1是方程x 2-b n x +2n=0的两个根,根据根与系数的关系,可得a n ·a n +1=2n,a n +a n +1=b n ,由a n ·a n +1=2n ,可得a n +1·a n +2=2n +1,两式相除可得a n +2a n=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列,又由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32,所以b 10=a 10+a 11=32+32=64. 答案:4 64[基础题组练]1.(2020·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A .-1B .1C .-2D .2解析:选C.法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q+4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q +2)2=0,所以q =-2,故选C.2.(2020·宁夏银川一中一模)已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,其前n 项和为S n ,且b 7=a 7,则S 13=( )A .26B .52C .78D .104解析:选B.设等比数列{a n }的公比为q ,因为a 3a 11=4a 7,所以a 27=4a 7≠0,解得a 7=4,因为数列{b n }是等差数列,且b 7=a 7,所以S 13=13×(b 1+b 13)2=13b 7=13a 7=52.故选B.3.(2020·吉林长春5月联考)已知等差数列{a n }的前n 项和为S n ,公差d >0,a 6和a 8是函数f (x )=154ln x +12x 2-8x 的极值点,则S 8=( )A .-38B .38C .-17D .17解析:选A.因为f (x )=154ln x +12x 2-8x ,所以f ′(x )=154x +x -8=x 2-8x +154x =⎝ ⎛⎭⎪⎫x -12⎝ ⎛⎭⎪⎫x -152x,令f ′(x )=0,解得x =12或x =152.又a 6和a 8是函数f (x )的极值点,且公差d >0,所以a 6=12,a 8=152,所以⎩⎪⎨⎪⎧a 1+5d =12,a 1+7d =152,解得⎩⎪⎨⎪⎧a 1=-17,d =72.所以S 8=8a 1+8×(8-1)2×d =-38,故选A.4.设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A.n(2n+3) B.n(n+4)C.2n(2n+3) D.2n(n+4)解析:选A.由题意可设f(x)=kx+1(k≠0),则(4k+1)2=(k +1)×(13k+1),解得k=2,f(2)+f(4)+…+f(2n)=(2×2+1)+(2×4+1)+…+(2×2n+1)=n(2n+3).5.(2020·山东临沂三模)意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n},则数列{a n}的前2 019项的和为( ) A.672 B.673C.1 346 D.2 019解析:选C.由于{a n}是数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数,故{a n}为1,1,0,1,1,0,1,1,0,1,…,所以{a n}是周期为3的周期数列,且一个周期中的三项之和为1+1+0=2.因为2 019=673×3,所以数列{a n}的前2 019项的和为673×2=1 346.故选C.6.(2019·高考北京卷)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为.解析:设等差数列{a n }的公差为d ,因为⎩⎪⎨⎪⎧a 2=-3,S 5=-10,即⎩⎪⎨⎪⎧a 1+d =-3,5a 1+10d =-10,所以可得⎩⎪⎨⎪⎧a 1=-4,d =1,所以a 5=a 1+4d =0,因为S n =na 1+n (n -1)2d =12(n 2-9n ),所以当n =4或n =5时,S n 取得最小值,最小值为-10.答案:0 -10 7.若数列{a n }满足1a n +1-2a n=0,则称{a n }为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b 1+b 2+b 3=1,则b 6+b 7+b 8= .解析:由1a n +1-2a n =0可得a n +1=12a n ,故{a n }是公比为12的等比数列,故{1b n }是公比为12的等比数列,则{b n }是公比为2的等比数列,b 6+b 7+b 8=(b 1+b 2+b 3)25=32.答案:328.(2020·河北石家庄4月模拟)数列{a n }的前n 项和为S n ,定义{a n }的“优值”为H n =a 1+2a 2+…+2n -1a nn,现已知{a n }的“优值”H n =2n,则S n = .解析:由H n =a 1+2a 2+…+2n -1a n n=2n,得a 1+2a 2+…+2n -1a n =n ·2n , ①当n ≥2时,a 1+2a 2+…+2n -2a n -1=(n -1)2n -1, ②由①-②得2n -1a n =n ·2n -(n -1)2n -1=(n +1)2n -1,即a n =n+1(n ≥2),当n =1时,a 1=2也满足式子a n =n +1, 所以数列{a n }的通项公式为a n =n +1,所以S n =n (2+n +1)2=n (n +3)2.答案:n (n +3)29.(2020·武汉市部分学校调研)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=3.(1)若a 3+b 3=7,求{b n }的通项公式; (2)若T 3=13,求S n .解:(1)设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =qn -1.由a 2+b 2=3,得d +q =4,① 由a 3+b 3=7,得2d +q 2=8,②联立①②,解得q =2或q =0(舍去),因此{b n }的通项公式为b n =2n -1.(2)因为T 3=b 1(1+q +q 2), 所以1+q +q 2=13, 解得q =3或q =-4, 由a 2+b 2=3得d =4-q ,所以d =1或d =8.由S n =na 1+12n (n -1)d ,得S n =12n 2-32n 或S n =4n 2-5n .10.(2020·湖南省湘东六校联考)已知数列{a n }的前n 项和S n满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ;(2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n 成立的n的最小值.解:(1)由已知有S n -S n -1=1(n ≥2,n ∈N ),所以数列{S n }为等差数列,又S 1=a 1=1,所以S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,所以a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 所以T n =12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,所以n ≥5,所以n 的最小值为5.[综合题组练]1.(2020·北京市石景山区3月模拟)九连环是我国从古至今广为流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合而为一.”在某种玩法中,用a n 表示解下n (n ≤9,n ∈N *)个圆环所需的最少移动次数,数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,则解下4个环所需的最少移动次数a 4为( )A .7B .10C .12D .22解析:选 A.因为数列{a n }满足a 1=1,且a n =⎩⎪⎨⎪⎧2a n -1-1,n 为偶数,2a n -1+2,n 为奇数,所以a 2=2a 1-1=2-1=1,所以a 3=2a 2+2=2×1+2=4, 所以a 4=2a 3-1=2×4-1=7.故选A.2.已知a n =3n (n ∈N *),记数列{a n }的前n 项和为T n ,若对任意的n ∈N*,⎝⎛⎭⎪⎫T n +32k ≥3n -6恒成立,则实数k 的取值范围是 .解析:T n =3(1-3n)1-3=-32+3n +12,所以T n +32=3n +12,则原不等式可以转化为k ≥2(3n -6)3n +1=2n -43n 恒成立, 令f (n )=2n -43n ,当n =1时,f (n )=-23,当n =2时,f (n )=0,当n =3时,f (n )=227,当n =4时,f (n )=481,即f (n )是先增后减,当n =3时,取得最大值227,所以k ≥227.答案:k ≥2273.(2019·高考江苏卷节选)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M -数列”. (2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ),当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *).4.(2020·湖北襄阳二模)已知数列{a n }的前n 项和为S n ,满足:a 1=1,S n +1-1=S n +a n ,数列{b n }为等比数列,满足b 1=4b 3,b 2=14<b 1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为W n ,数列{b n }的前n 项和为T n ,试比较W n 与1T n的大小.解:(1)由S n +1-1=S n +a n , 可得a n +1=a n +1,又a 1=1,所以数列{a n }是首项和公差均为1的等差数列, 可得a n =n .因为数列{b n }为等比数列,满足b 1=4b 3,b 2=14<b 1,n ∈N *,所以设公比为q ,可得b 1=4b 1q 2,所以q =±12,当q =12时,12b 1=14,可得b 1=12>14.当q =-12时,-12b 1=14,得b 1=-12,不满足b 2<b 1,舍去,所以b n =⎝ ⎛⎭⎪⎫12n .(2)1a n a n +1=1n (n +1)=1n -1n +1,W n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1<1.T n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ∈⎣⎢⎡⎭⎪⎫12,1,则1<1T n ≤2,故W n <1T n .规范答题示范(三)数 列类型一 判断等差数列和等比数列(12分)记S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6.❶(1)求{a n }的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.❷[建桥寻突破]❶看到S 2=2,S 3=-6,想到S 2=a 1+a 2,S 3=a 1+a 2+a 3,利用等比数列的通项公式求解.❷看到判断S n +1,S n ,S n +2是否成等差数列,想到等差数列的等差中项,利用2S n =S n +1+S n +2进行证明.[规范解答](1)设{a n }的首项为a 1,公比为q , 由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,2分得分点①[评分标准]①列出关于首项为a 1,公比为q 的方程组得2分; ②能够正确求出a 1和q 得2分,只求对一个得1分,都不正确不得分;③正确写出数列的通项公式得2分; ④正确计算出数列的前n 项和得2分;解得q =-2,a 1=-2.4分得分点②故{a n }的通项公式为a n =(-2)n.6分得分点③(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13,8分得分点④ 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n ,11分得分点⑤故S n +1,S n ,S n +2成等差数列.12分得分点⑥⑤能够正确计算出S n +1+S n +2的值得2分,得出结论2S n =S n +1+S n +2再得1分; ⑥写出结论得1分. [解题点津](1)等差(或等比)数列的通项公式,前n 项和公式中有五个元素a 1、d (或q )、n 、a n 、S n ,“知三求二”是等差(等比)的基本题型,通过解方程组的方法达到解题的目的. (2)等差、等比数列的判定可采用定义法、中项法等.如本题采用中项法得出2S n =S n +1+S n +2.[核心素养] 数列问题是高考的必考题,求数列的通项公式及判断数列是否为等差或等比数列是高考的常见题型.本类题型重点考查“逻辑推理”及“数学运算”的核心素养.类型二 求数列的前n 项和(12分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;❶(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).❷[建桥寻突破]❶看到求等差数列{a n }和等比数列{b n }的通项公式,想到利用条件,列出方程,利用等差、等比数列的通项公式求解.❷看到求数列{a 2n b 2n -1}的前n 项和,想到利用错位相减法求数列的前n 项和. [规范解答](1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由已知得b 2+b 3=12,得b 1(q +q 2)=12,[评分标准]①正确求出q 2+q -6=0得2分;②根据等比数列的通项公式求出通项b n =2n得1分,通项公式使用错误不得分;③求出a 1=1,d =3得2分;。
数列的综合应用经典教案【强烈推荐】

第5讲数列的综合应用一、考点、热点回顾1.考查数列的函数性及与方程、不等式、解析几何相结合的数列综合题。
2.考查运用数列知识解决数列综合题及实际应用题的能力。
【复习指导】1.熟练把握等差数列与等比数列的基本运算。
2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等。
3.注意总结相关的数列模型以及建立模型的方法。
基础梳理1.等比数列与等差数列比较表不同点相同点等差数列(1)强调从第二项起每一项与前项的差;(2)a1和d可以为零;(3)等差中项唯一(1)都强调从第二项起每一项与前项的关系;(2)结果都必须是同一个常数;(3)数列都可由a1,d或a1,q确定等比数列(1)强调从第二项起每一项与前项的比;(2)a1与q均不为零;(3)等比中项有两个值2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意。
(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么。
(3)求解——求出该问题的数学解。
(4)还原——将所求结果还原到原实际问题中。
3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差。
(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比。
(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n +1的递推关系,还是S n与S n+1之间的递推关系。
一条主线数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解。
两个提醒(1)对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,但有的数列并没有指明,可以通过分析,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.(2)数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.双基自测1.(人教A 版教材习题改编)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2的值为( ). A .-4 B .-6 C .-8 D .-10解析 由题意知:a 23=a 1a 4.则(a 2+2)2=(a 2-2)(a 2+4),解得:a 2=-6. 答案 B 2.(·运城模拟)等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q =2.∴S 4=1-241-2=15. 答案 C3.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 解析 记等比数列{a n }的公比为q (q >0),由数列{b n }为等差数列可知b 4+b 10=2b 7,又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6⎝⎛⎭⎫1+q 6q 3=b 7⎝⎛⎭⎫1+q 6q 3,又1+q 6q 3=1q 3+q 3≥2(当且仅当q =1时,等号成立),∴a 3+a 9≥2b 7,即a 3+a 9≥b 4+b 10. 答案 B4.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( ). A .4 B .2 C .-2 D .-4解析 由c ,a ,b 成等比数列可将公比记为q ,三个实数a ,b ,c ,待定为cq ,cq 2,c .由实数a 、b 、c 成等差数列得2b =a +c ,即2cq 2=cq +c ,又等比数列中c ≠0,所以2q 2-q -1=0,解一元二次方程得q =1(舍去,否则三个实数相等)或q =-12,又a +3b +c =a +3aq +a q =-52a =10,所以a =-4.答案 D 5.(·苏州质检)已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0, S 21=21a 11<0,∴a 10>0,a 11<0, ∴n =10时,S n 最大. 答案 10考向一 等差数列与等比数列的综合应用【例1】►在等差数列{a n }中,a 10=30,a 20=50. (1)求数列{a n }的通项a n ;(2)令b n =2a n -10,证明:数列{b n }为等比数列.[审题视点] 第(1)问列首项a 1与公差d 的方程组求a n ;第(2)问利用定义证明. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.∴a n =12+(n -1)·2=2n +10.(2)证明 由(1),得b n =2a n -10=22n+10-10=22n =4n ,∴b n +1b n =4n +14n =4.∴{b n }是首项是4,公比q =4的等比数列.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【训练1】 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n (n -1)2×2=n 2+2n .考向二 数列与函数的综合应用【例2】►等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =n +14a n(n ∈N *),求数列{b n }的前n 项和T n .[审题视点] 第(1)问将点(n ,S n )代入函数解析式,利用a n =S n -S n -1(n ≥2),得到a n ,再利用a 1=S 1可求r . 第(2)问错位相减求和.解 (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1·(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1,所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=34-12n +1-n +12n +2, ∴T n =32-12n -n +12n +1=32-n +32n +1.此类问题常常以函数的解析式为载体,转化为数列问题,常用的数学思想方法有“函数与方程”“等价转化”等.【训练2】 (·福建)已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.解 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1. 又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6. 考向三 数列与不等式的综合应用【例3】►(·惠州模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.[审题视点] 第(1)问由等比数列的性质转化为a 3+a 5与a 3a 5的关系求a 3与a 5;进而求a n ;第(2)问先判断数列{b n },再由求和公式求S n ;第(3)问由S n n 确定正负项,进而求S 11+S 22+…+S nn的最大值,从而确定k 的最小值.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16,∴a n =16×⎝⎛⎭⎫12n -1=25-n. (2)∵b n =log 2a n =5-n , ∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n2.当n ≤8时,S n n >0;当n =9时,S nn =0;当n >9时,S nn<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn =18最大.故存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,k 的最小值为19.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理. 【训练3】 (·岳阳模拟)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.(1)解 设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28, 可得a 3=8,∴a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32. 又∵数列{a n }单调递增,所以q =2,a 1=2, ∴数列{a n }的通项公式为a n =2n .(2)因为b n =2n log 122n =-n ·2n ,所以S n =-(1×2+2×22+…+n ·2n ),2S n =-[1×22+2×23+…+(n -1)·2n +n ·2n +1], 两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1.要使S n +n ·2n +1>50,即2n +1-2>50,即2n +1≥52.易知:当n ≤4时,2n +1≤25=32<50;当n ≥5时,2n +1≥26=64>50.故使S n +n ·2n +1>50成立的正整数n 的最小值为5.难点突破14——数列与解析几何、三角的交汇问题从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决. 一、数列与解析几何交汇 【示例】► (·陕西)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.二、数列与三角交汇【示例】►(·安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lg T n,n≥1.(1)求数列{a n}的通项公式;(2)设b n=tan a n·tan a n+1,求数列{b n}的前n项和S n.。
《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学思维水平。
3. 通过对数列综合应用的学习,培养学生分析问题、解决问题的能力,提高学生的综合素质。
二、教学内容1. 等差数列的应用:等差数列的求和公式、等差数列的通项公式等。
2. 等比数列的应用:等比数列的求和公式、等比数列的通项公式等。
3. 数列的极限:数列极限的定义、数列极限的性质等。
4. 数列的收敛性:收敛数列的定义、收敛数列的性质等。
5. 数列的应用举例:如数列在实际问题中的应用,如人口增长、放射性衰变等。
三、教学方法1. 采用讲授法,讲解数列的基本概念、性质和应用。
2. 运用案例分析法,分析数列在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的团队协作能力。
4. 设置课后习题,巩固所学知识,提高学生的实际应用能力。
四、教学步骤1. 引入数列的基本概念,讲解等差数列和等比数列的定义和性质。
2. 引导学生运用数列知识解决实际问题,如人口增长、放射性衰变等。
3. 讲解数列的极限和收敛性,分析数列在实际中的应用。
4. 组织学生进行小组讨论,分享数列在实际问题中的应用案例。
5. 通过课后习题,检查学生对数列知识的掌握程度。
五、教学评价1. 课后习题的完成情况,检验学生对数列知识的掌握。
2. 课堂讨论的参与度,评估学生的团队协作能力和思维水平。
3. 学生对数列应用案例的分析,评估学生的实际应用能力。
4. 定期进行教学质量调查,了解学生的学习需求,调整教学方法。
六、教学资源1. 教学PPT:制作数列综合应用的教学PPT,包含数列的基本概念、性质、应用案例等内容。
2. 案例素材:收集数列在实际问题中的应用案例,如人口增长、放射性衰变等。
3. 课后习题:编写具有代表性的课后习题,检验学生对数列知识的掌握。
4. 教学视频:寻找相关的教学视频,如数列的极限、收敛性的讲解等,辅助学生理解难点内容。
高考数学一轮复习 专题32 数列及其综合应用教学案 文-人教版高三全册数学教学案

专题32 数列及其综合应用1. 掌握数列的求和方法:(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n-1)<n2<n(n+1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.高频考点一等差、等比数列求和公式及利用例1 已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1) 求数列{a n}和{b n}的通项公式;(2) 求数列{b n}的前n项和.从而b n=3n+2n-1(n=1,2,…).(2) 由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n 项和为32n(n +1),数列{2n -1}的前n 项和为1×1-2n1-2=2n-1,所以,数列{b n }的前n 项和为32n(n +1)+2n-1.【变式探究】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N +),求数列{T n }的最大项的值与最小项的值.(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N +,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.高频考点二 可转化为等差、等比数列求和 例2、已知数列{a n }的前n 项和S n =n 2+n 2,n∈N *.(1) 求数列{a n }的通项公式;(2) 设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和.则A =2(1-22n)1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n]=n. 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.高频考点三 根据数列特征,用适当的方法求和例3 已知数列{a n }的前n 项和S n =-12n 2+kn(k∈N *),且S n 的最大值为8.(1) 确定常数k ,求a n ;(2) 求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .【解析】(1) 当n =k∈N *时,S n =-12n 2+kn 取最大值,即8=-12k 2+k 2=12k 2,故k =4,从而a n =S n -S n -1=92-n(n≥2).又a 1=S 1=72,所以a n =92-n.(2) 因为b n =9-2a n 2n =n 2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n=2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.【变式探究】已知数列{a n }和{b n }满足a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n.【解析】(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q, ∴ a n +2=a n q 2(n∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q2n -2,a 2n =a 2n -2q 2=…=a 2q2n -2,∴ c n =a 2n-1+2a 2n =a 1q2n -2+2a 2q2n -2=(a 1+2a 2)q2n -2=5q2n -2,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n ,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2+1a 2(1+1q 2+1q 4+…+1q 2n -2)=32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2.由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32n ;当q≠1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n1-q -2=32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2(q 2-1).故1a 1+1a 2+…+1a 2n =⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2(q 2-1),q≠1.面同解法1).高频考点四 数列求和的综合应用例4 将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1 a 2 a 3 a 4 a 5 a 6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{b n},b1=a1=1,S n为数列{b n}的前n项和,且满足2b nb nS n-S2n=1(n≥2).【解析】(1) 证明:数列⎩⎨⎧⎭⎬⎫1S n成等差数列,并求数列{b n}的通项公式;所以q=2.记表中第k(k≥3)行所有项的和为S,则S=b k(1-q k)1-q=-2k(k+1)·(1-2k)1-2=2k(k+1)(1-2k)(k≥3).1.【2016高考天津理数】已知{}n a是各项均为正数的等差数列,公差为d,对任意的,b nn N∈*是na和1na+的等差中项.(Ⅰ)设22*1,n n nc b b n N+=-∈,求证:{}n c是等差数列;(Ⅱ)设()22*11,1,nnn nka d Tb n N===-∈∑,求证:2111.2nk kT d=<∑【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】(Ⅰ)证明:由题意得21n n n b a a+=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(Ⅱ)证明:()()()2222221234212n n n T b b b b b b -=-++-+++-+()()()24222222221,n n d a a a n a a d d n n =++++=⋅=+所以()222211111111111112121212nn n k k k kT d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 2.【2016高考新课标3理数】已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-.解得1λ=-.3.【2016高考浙江理数】设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a-≥-,n *∈N ;(II)若32n na⎛⎫≤ ⎪⎝⎭,n*∈N,证明:2na≤,n*∈N.【答案】(I)证明见解析;(II)证明见解析.【解析】(I)由112nnaa+-≤得1112n na a+-≤,故111222n nn n na a++-≤,n*∈N,否则,存在n*∈N,有2na>,取正整数00342log2nnam->且00m n>,则0304002log23322244nnamm nna-⎛⎫⎛⎫⋅<⋅=-⎪ ⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n*∈N,均有2na≤.4.【2016年高考北京理数】(本小题13分)设数列A:1a,2a,…Na (N≥).如果对小于n(2n N≤≤)的每个正整数k都有ka<na,则称n是数列A的一个“G时刻”.记“)(AG是数列A的所有“G时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和;(2)详见解析;(3)详见解析. 【解析】(Ⅰ))(A G 的元素为和.(Ⅱ)因为存在n a 使得1a a n >,所以{}12,i i i N a a *∈≤≤>≠∅N . 记{}1min 2,i m i i N a a *=∈≤≤>N ,则2≥m ,且对任意正整数m k a a a m k <≤<1,. 因此)(A G m ∈,从而∅≠)(A G . (Ⅲ)当1a a N ≤时,结论成立.又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意p n k N ≤≤,p n k a a ≤,特别地,p n N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a aa a a a i ip n pi n n N ≤-=-≤--∑=)(1111.因此)(A G 的元素个数p 不小于1N a a -. 5.【2016年高考四川理数】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ . (Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221ny x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q ;(Ⅱ)详见解析.(Ⅱ)由(Ⅰ)可知,1n n a q .所以双曲线2221n y xa 的离心率 22(1)11nnn e a q .由2513q q 解得43q . 因为2(1)2(1)1+k kq q 2(1)1*1+k k q q kN ().于是11211+1n n nq e e e q qq , 故1231433n nn e e e . 6.【2016高考上海理数】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P . (1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析.(3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”.7.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】8.【2016高考山东理数】(本小题满分12分)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T . 【解析】(Ⅰ)由题意知当2≥n 时,561+=-=-n S S a n n n , 当1=n 时,1111==S a ,得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯224(21)3[4(1)2]2132n n n n n ++-=⨯+-+⨯-=-⋅ 所以223+⋅=n n n T9.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<;(3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 【解析】(1)由已知得1*13,n n a a n -=⋅∈N .②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令UE CD =,UF DC =则E ≠∅,F ≠∅,EF =∅.于是C E C D S S S =+,D F C D S S S =+,进而由C D S S ≥,得E F S S ≥.设是E 中的最大数,为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤,故21EF S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2aaaa依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得k n k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由. 【答案】(1)详见解析(2)不存在(3)不存在 【解析】(1)证明:因为112222n n n n a a a d a ++-==(1n =,2,)是同一个常数,所以12a ,22a ,32a ,42a 依次构成等比数列.(3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k na a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a+,并令1d t a=(13t >-,0t ≠), 则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦.再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**).令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,则()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++.故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ). 【答案】(1)详见解析;(2)详见解析.【解析】(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得, 211[1,2]1n n n n n na a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++.【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+. (I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T .【答案】(I )13,1,3,1,n n n a n -=⎧=⎨>⎩; (II )13631243n n n T +=+⨯.所以1113T b ==当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-所以()()01231132313n n T n --=+⨯+⨯++-两式相减,得()()012122333133n nn T n ---=+++--⋅ ()11121313313n n n ----=+--⋅- 1363623nn +=-⨯ 所以13631243n n n T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n nn T +=+⨯ 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(Ⅰ)1n n x n =+;(Ⅱ)14n T n≥.【解析】当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n x n n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯=. 综上可得对任意的*n N ∈,均有14n T n≥.1.(2014·湖南卷) 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p =12,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.由③④可知,a n +1-a n =(-1)n +12n.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-122+…+(-1)n2n -1=1+12·1-⎝ ⎛⎭⎪⎫-12n -11+12=43+13·(-1)n2n -1. 故数列{a n }的通项公式为a n =43+13·(-1)n2n -1. 2.(2014·安徽卷) 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p>1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p.【解析】证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k>1+kx 成立. 当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p>1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p.①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p,则x p ≥c , 所以f ′(x )=p -1p +c p (1-p )x -p=p -1p ⎝ ⎛⎭⎪⎫1-c x p >0. 由此可得,f (x )在[c 1p,+∞)上单调递增,因而,当x >c 1p时,f (x )>f (c 1p)=c 1p. ①当n =1时,由a 1>c 1p>0,即a p1>c 可知a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎢⎡⎦⎥⎤1+1p ⎝⎛⎭⎪⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.3.(2014·湖北卷) 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.4.(2014·江西卷) 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .【解析】(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a nb n=2,即c n +1-c n =2, 所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1. (2)由b n =3n -1,知a n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -1+(2n -1)×3n,将两式相减得-2S n =1+2×(31+32+…+3n -1)-(2n -1)×3n=-2-(2n -2)×3n,所以S n =(n -1)3n+1.5.(2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.所以1a 1+1a 2+…+1a n <32.6.(2014·四川卷) 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .【解析】(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2, 所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2. 由题意有a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1. 从而a n =n ,b n =2n,所以数列{a n b n }的通项公式为a n b n =n2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 7.(2014·浙江卷) 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n .(2)设c n =1a n -1b n(n ∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .(ii)因为c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5×(5+1)25<1,所以,当n ≥5时,c n <0.综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.8.(2013年高考辽宁卷)下面是关于公差d >0的等差数列{a n }的四个命题:P 1:数列{a n }是递增数列; P 2:数列{na n }是递增数列; P 3:数列{a nn }是递增数列;P 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4【答案】D9.(2013年高考重庆卷)已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________.【解析】因为{a n }为等差数列,且a 1,a 2,a 5成等比数列,所以a 1(a 1+4d )=(a 1+d )2,解得d =2a 1=2,所以S 8=64. 【答案】6410. (2013年高考广东卷)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.【解析】(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.1.在数列{a n }中,a 1=1,数列{a n +1-3a n }是首项为9,公比为3的等比数列. (1)求a 2,a 3;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n .解:(1)∵数列{a n +1-3a n }是首项为9,公比为3的等比数列, ∴a n +1-3a n =9×3n -1=3n +1,∴a 2-3a 1=9,a 3-3a 2=27,∴a 2=12,a 3=63. (2)∵a n +1-3a n =3n +1,∴a n +13n +1-a n3n =1,∴数列⎩⎨⎧⎭⎬⎫a n 3n 是首项为13,公差为1的等差数列,∴数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和S n =n 3+nn -12=3n 2-n6.2.已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式; (2)若数列{a n }满足1a n +1=f ′⎝ ⎛⎭⎪⎫1an ,且a 1=4,求数列{a n }的通项公式. (1)a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =42n -12(n ∈N *).3.已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴3a 1+3d =6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n , ①b 1·b 2·b 3·…·b n -1=2S n -1n ≥2, ②①÷②得b n =2S n -S n -1=2a n =2n(n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n. (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n2n ,当n ≥2时,c n <1,数列{c n }单调递减, ∴(c n )max =12,故λ>12.所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.4.数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式; (2)设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.∴T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=∵n ∈N *,∴T n =12⎝ ⎛⎭⎪⎫1-12n +1<12,12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=12n +12n -1>0,∴数列{T n }是一个递增数列,∴T n ≥T 1=13.综上所述,13≤T n <12.5.对于数列{x n },若对任意n ∈N *,都有x n +x n +22<x n +1成立,则称数列{x n }为“减差数列”.设数列{a n }是各项都为正数的等比数列,其前n 项和为S n ,且a 1=1,S 3=74.(1)求数列{a n }的通项公式,并判断数列{S n }是否为“减差数列”;(2)设b n =(2-na n )t +a n ,若数列b 3,b 4,b 5,…是“减差数列”,求实数t 的取值范围. 解:(1)设数列{a n }的公比为q , 因为a 1=1,S 3=74,所以1+q +q 2=74,即4q 2+4q -3=0, 所以(2q -1)(2q +3)=0.因为q >0,所以q =12,所以a n =12n -1,S n =1-12n1-12=2-12n -1,所以S n +S n +22=2-12n -12n +2<2-12n =S n +1,所以t >⎝⎛⎭⎪⎫1n -2max=1.故t 的取值范围是(1,+∞).6.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m的取值范围.解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8. ∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·l og 122n =-n ·2n, ∴-S n =1×2+2×22+3×23+…+n ×2n,① ∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②,得S n =2+22+23+…+2n -n ×2n +1.专业. =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2. 由S n +(n +m )a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1, ∴m ≤-1,即m 的取值范围是(-∞,-1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b=r+r n+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列.若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项.题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*). (1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n 2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m . 题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于 4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?(参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明.规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2), ∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =,12n -2n 2n[6分](2)证明 ∵S 2n =14n 2<14nn -=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -,也可以看成一个新构造:b n =14nn -.(3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n-n -6|<1125的最小正整数n 是( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +(n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t36总成立?若存在,求出t ;若不存在,请说明理由.答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n=log 2q 为常数, ∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n-n2≤0, ∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列. (2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0. ∴a n =n -n 2+1.(2)∵a n +1a n =n +-n +2+1n -n 2+1=n +n 2+1n +1+n +2+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14 =3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3, ∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=nn +.∴4aS n -b n =an n +4-n +2n +3=a -n 2+a -n -8n +n +.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立. 变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n n -2×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米.(2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n ,有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1 (2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0. 由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n,③则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n -n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x, ∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *).(2)b n =1n a n +=12nn +=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n n +.假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +1n +-n n +=1n +n +>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。