安徽省2021版高二上学期数学期中考试试卷A卷 (2)
2021-2022学年广东省深圳市南山外国语学校高二(上)期中数学试卷(学生版+解析版)

2021-2022学年广东省深圳市南山外国语学校高二(上)期中数学试卷一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的):1.(5分)下列说法正确的是( )A .任一空间向量与它的相反向量都不相等B .将空间向量所有的单位向量平移到同一起点,则它们的终点构成一个圆C .模长为3的空间向量大于模长为1的空间向量D .不相等的两个空间向量的模可能相等2.(5分)直线l 的倾斜角等于直线√3x −y =0倾斜角的2倍,则直线l 的斜率是( )A .2√33B .√3C .2√3D .−√33.(5分)已知点A (2,3,﹣2),B (﹣1,k ,5),O 为坐标原点,若向量OA →⊥AB →,则实数k =( )A .4B .143C .293D .﹣44.(5分)过直线2x ﹣y +4=0与x +y +5=0的交点,且垂直于直线x ﹣2y =0的直线方程是( )A .2x +y ﹣8=0B .2x ﹣y ﹣8=0C .2x +y +8=0D .2x ﹣y +8=05.(5分)两平行直线l 1:x +2y ﹣2=0和l 2:ax +4y +1=0之间的距离为( )A .3√55B .√52C .3√510D .√56.(5分)已知圆C 的圆心与点P (﹣2,1)关于直线y =x ﹣1对称,直线3x +4y +16=0与圆C 相交于A 、B 两点,且|AB |=6,则圆C 的方程为( )A .(x ﹣2)2+(y +3)2=13B .(x +2)2+(y ﹣3)2=18C .(x +2)2+(y ﹣3)2=13D .(x ﹣2)2+(y +3)2=187.(5分)点M 为圆C :(x +2)2+(y +1)2=4上任意一点直线(3λ+1)x +(2λ+1)y =5λ+2过定点P ,则|MP |的最大值为( )A .√13B .√13+2C .2√3D .2√3+28.(5分)如图,一个结晶体的形状为平行六面体ABCD ﹣A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A .AC 1=6B .BD ⊥平面ACC 1C .向量CB 1→与AA 1→的夹角是120°D .BD 1与AC 1所成角的余弦值为√66 二、多项选择题(本题共4小题,每小题5分,共20分。
安徽省蚌埠市第二中学2021-2022学年高二上学期期中考试数学(理)试题 Word版含答案

蚌埠二中2021—2022学年度高二第一学期期中考试 数学(理科)试题(试卷分值:150分 考试时间:120分钟 )留意事项:第Ⅰ卷全部选择题的答案必需用2B 铅笔涂在答题卡中相应的位置,第Ⅱ卷的答案必需用0.5毫米黑色签字笔写在答题卡的相应位置上,否则不予计分。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.推断圆1:221=+y x C 与圆9)2()2(:222=-+-y x C 的位置关系是A .相离 B.外切 C. 相交 D. 内切2.若直线l 经过点)3,2(P ,且在x 轴上的截距的取值范围是)3,1(-,则其斜率的取值范围是A . 1k 3>-<或k B. 311<<-k C. 13<<-k D. 311>-<k k 或3.以下结论正确的是A. 各个面都是三角形的几何体是三棱锥B. 以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C. 棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D. 圆锥的顶点与底面圆周上的任意一点的连线都是母线4.一条光线从点)4,2(A 射出,倾斜角为60角,遇x 轴后反射,则反射光线的直线方程为A .03243=-+-y x B.03423=---y xC. 03243=-++y xD. 03423=---+y y x5.已知n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 A .若,//,//ααn m 则n m // B. 若γβγα⊥⊥,则βα// C. 若,//,//βαm m 则βα// D. 若,,αα⊥⊥n m 则n m //6. 若圆03222=+-+by ax y x 的圆心位于第三象限,那么直线0=++b ay x 肯定不经过 A .第一象限 B.其次象限 C.第三象限 D.第四象限7. 已知点)3,1(P 与直线01:=++y x l ,则点P 关于直线l 的对称点坐标为 A.1,3(--) B.)4,2( C. )2,4(-- D. )3,5(--8. 如图,在四周体ABCD 中,截面PQMN 是正方形,则下列命题中,错误的为A .BD AC ⊥B .BD AC =C. PQMN //截面ACD. 异面直线BD 与PM 所成的角为459. 已知棱长为2的正方体1111D C B A ABCD -的一个面1111D C B A 在半球底面上,四个顶点D C B A ,,,都在半球面上,则半球体积为A.π34B.π32 C. π3 D. 33π10.如图,网格纸上小正方形的边长为1,粗实线画出的是某三棱椎的三视图,则该三棱锥的体积为A .32 B. 34C. 38D. 411. 在正方体1111D C B A ABCD -中,F E ,分别为棱11,CC AA 的中点,则在空间中与三条直线CDEF D A ,,11第10题图都相交的直线有A .很多条B . 3条 C.1条 D. 0条12.设点)1,(a P ,若在圆1:22=+y x O 上存在点Q ,使得60=∠OPQ ,则a 的取值范围是A .⎥⎦⎤⎢⎣⎡-33,33 B. ⎥⎦⎤⎢⎣⎡-23,23 C. ⎥⎦⎤⎢⎣⎡-21,21 D. ⎥⎦⎤⎢⎣⎡-31,31 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.)13.母线长为1的圆锥体,其侧面开放图是一个半圆,则该圆锥的体积为______________ 14.一个平面图形用斜二测画法作的直观图是一个边长为cm 1的正方形,则原图形的周长为________________cm15.已知P 点是圆0364x C 22=--++y x y :上的一点,直线05-4y -3x :l =。
2023-2024学年安徽省高二下册开学考试数学试题(A卷)(含解析)

2023-2024学年安徽省高二下册开学考试数学试题(A 卷)一、单选题1.已知a ,b 为空间向量,且π,4a b = ,则2,3a b -= ()A .π4B .π2C .3π4D .π【正确答案】C【分析】求出cos ,a b 的表达式及值,即可求出cos 2,3a b -的值,进而得到2,3a b - 的值.【详解】由题意,cos ,2a b a b a b⋅==,∴()23cos 2,323ba b a b a ba b a ⋅--==-⋅-=∴向量夹角3π2,34a b -= ,故选:C.2.已知点(),7A a ,()1,B b -在直线l :31y x =-+上,则直线10ax by ++=的斜率为()A .12B .12-C .2D .2-【正确答案】A【分析】将,A B 两点坐标代入直线方程解出,a b 即可求解.【详解】因为点(),7A a ,()1,B b -在直线l :31y x =-+上,所以将(),7A a ,()1,B b -带入l :31y x =-+,得()()731311a b =-+⎧⎨=-⨯-+⎩,解得24a b =-⎧⎨=⎩,所以直线2410x y -++=,即1124y x =-的斜率为12,故选:A3.已知两圆2210x y +=和()()221320x y -+-=相交于A ,B 两点,则AB =()A .B .CD .【正确答案】D【分析】先求出两圆的公共弦方程,再利用公共弦过圆心可求解弦长.【详解】因为两圆的方程为2210x y +=和()()221320x y -+-=,所以两圆的公共弦方程为30x y +=,又因为该弦过圆2210x y +=的圆心,故AB =故选:D.4.已知椭圆()2222:10x y C a b a b+=>>的长轴长、短轴长、焦距成等比数列,则C 的离心率等于()ABCD【正确答案】B【分析】根据椭圆的几何性质即等比数列概念即可得出,,a b c 的关系式,解方程即可得离心率.【详解】由题意可得,长轴长2a 、短轴长2b 、焦距2c 成等比数列,所以()2222b a c =⨯,即222b ac a c ==-得210e e +-=,解得e =或e =故选:B5.已知等比数列{}n a 的公比1q >-,且1a 与3a 的等差中项为5,24a =-,则2023a =()A .201912⎛⎫ ⎪⎝⎭B .201912⎛⎫- ⎪⎝⎭C .20232D .20232-【正确答案】A【分析】根据等差中项的概念和等比数列通项公式即可求得2023a 【详解】由题知3125a a +=⨯,即21110a q a +=,又214a a q ==-,解得1812a q =⎧⎪⎨=-⎪⎩或122a q =⎧⎨=-⎩,因为1q >-,所以1182n n a -⎛⎫=- ⎪⎝⎭,202312019202311822a -⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭.故选:A6.如图,已知等腰直角三角形ABC 的斜边BC 的中点为O ,且4BC =,点P 为平面ABC 外一点,且PB PC ==2PA =,则异面直线PO 与AB 所成的角的余弦值为()A .8B .4C D .4【正确答案】D【分析】取AC 中点D ,连接OD ,PD ,则POD ∠即为所求角,再利用余弦定理求解即可.【详解】如图取AC 中点D ,连接OD ,PD ,因为O 是BC 中点,所有OD BC ∥,则POD ∠即为所求角,因为4BC =,PB PC ==,所以2PO =,又因为ABC 是等腰直角三角形,所以AB AC ==OD =在PAC △中由余弦定理可得222cos 24AP AC PC PAC AP AC +-∠==⋅,所以在PAD 中由余弦定理可得2PD ==,所以222cos 24PO DO PD POD PO DO +-∠==⋅,故选:D7.抛物线()2:20C y px p =>的准线交x 轴于点D ,焦点为F ,直线l 过点D 且与抛物线C 交于A ,B 两点,若2BF AF =,则直线AB 的斜率为()A .3±B .3C .4±D .4±【正确答案】A【分析】设出直线AB 的方程,并将直线方程与抛物线方程联立,利用韦达定理得出两根之积和两根之和,由几何关系可知A 为BD 的中点,即可求解出直线的斜率.【详解】设直线AB 方程为2p x my =-,将222p x my y px⎧=-⎪⎨⎪=⎩联立得2220y pmy p -+=,设()11,A x y ,()22,B x y ,即122122y y pm y y p+=⎧⎨=⎩过点,A B 分别向准线作垂线,垂足为,M N ,又因为2BF AF =,所以2NB MA =,即2BD AD =,所以A 为BD 的中点,即122y y =,所以得122343y pm y pm ⎧=⎪⎪⎨⎪=⎪⎩,则2819m =,解得m =,所以直线AB的斜率为13m =±,故选:A.8.某高科技企业为一科技项目注入启动资金1000万元作为项目资金,已知每年可获利20%,但由于竞争激烈,每年年底需要从利润中取出100万元资金进行科研、技术改造与广告投入,方能保持原有的利润增长率,设经过n 年后,该项目资金达到或超过翻一番(即为原来的2倍)的目标,则n 的最小值为lg 20.3≈lg 30.5≈()A .4B .5C .6D .7【正确答案】B【分析】由已知分析出递推关系,结合等比数列的定义即可得出165006005n n a -⎛⎫-= ⎪⎝⎭,然后解指数不等式,结合对数运算性质即可求解.【详解】由题意设经过n 年后,该项目资金为n a 万元,则()11000120%1001100a =+-=,且()16120%1001005n n n a a a +=+-=-,得()165005005n n a a +-=-,得()1116650050060055n n n a a --⎛⎫⎛⎫-=-⨯= ⎪⎪⎝⎭⎝⎭,所以令1650060020005n -⎛⎫+⨯ ⎪⎝⎭≥,得()655lg5lg10lg2lg22162lg2lg3lg10lg2l log g 5n ---==+--≥12lg 242lg 2lg 31-=≈+-,所以至少要经过5年,项目资金才可以达到或超过翻一番的目标.故选:B二、多选题9.已知曲线22:194x y C m m+=--(9m >或4m <),则()A .曲线C 可表示椭圆B .曲线C 为双曲线C .0m =,则曲线C的焦点坐标为()D .0m =,则曲线C 的渐近线方程为23y x=±【正确答案】BD【分析】利用椭圆和双曲线的标准方程和性质求解即可.【详解】若C 表示椭圆,则904094m m m m ->⎧⎪->⎨⎪-≠-⎩,此时m 无解,选项A 错误;因为9m >或4m <,则()()940m m --<,所以曲线C 为双曲线,选项B 正确;当0m =时,曲线22:149y x C -=表示焦点在y轴的双曲线,所以焦点坐标为(0,,渐近线方程为23y x =±,选项C 错误D 正确;故选:BD10.已知等差数列{}n a 的前n 项和为n S ,公差为d ,10100S =,20400S =,则下列说法正确的是()A .2d =B .21n a n =-C .32n n n S S S =+D .12111111n S S S n +++>-+ 【正确答案】ABD【分析】先将等差数列的前n 项和公式代入10100S =,20400S =中,求出公差、首项,进而求得,n n a S ,从而判断选项A,B,C 的正误;根据()21111111n S n n n n n =>=-++进行放缩,利用裂项相消即可判断选项D 的正误.【详解】解:因为{}n a 为等差数列,且10100S =,20400S =,所以1012011091010022019204002S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-,故选项A,B 正确;因为()122n n n a a S n +==,所以222223459n n n S S n n n n S +=+=≠=,故选项C 错误;因为2n S n =,所以()21111111n S n n n n n =>=-++,所以2221211111112n S S S n+++=+++ ()11112231n n >+++⨯⨯⨯+ 1111111122311n n n =-+-++-=-++ ,故选项D 正确.故选:ABD11.已知正四棱柱1111ABCD A B C D -的底面边长为2,14AA =,点E 在棱11B C 上,点F 在棱1AA 上,则以下说法正确的是()A .若F 为1AA 中点,存在点E ,CF BE ⊥B .若E 为11BC 中点,存在点F ,1C F ∥平面ACEC .若E ,F 分别为11B C ,1AA 的中点,则EF 与平面11CCD D 所成的角的余弦值为3D .若E ,F 分别为11B C ,1AA 的中点,则EF 到平面1ABC 【正确答案】BCD【分析】利用空间向量进行判断,垂直转化为数量积问题,线面平行结合判定定理来验证,线面角通过法向量来求解,线面距转化为点面距求解.【详解】如图,以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,则()()()()()112,0,0,2,0,4,2,2,0,0,2,0,0,2,4A A B C C .对于A ,F 为1AA 中点,()2,0,2F ,设(),2,4E a ,02a ≤≤,则()()2,2,2,2,0,4CF BE a =-=- ,若CF BE ⊥,则0CF BE ⋅= ,解得2a =-(舍),所以A 不正确.对于B ,E 为11B C 中点,由正四棱柱的性质可得11//A C AC ,AC ⊂平面ACE ,11A C ⊄平面ACE ,所以11//AC 平面ACE ,即当F 在1A 处时,满足题意,所以B 正确.对于C ,E ,F 分别为11B C ,1AA 的中点,()1,2,4,E ()2,0,2F ,()1,2,2EF =--,易知平面11CC D D 的一个法向量为()1,0,0n =r,设EF 与平面11CC D D 所成的角为θ,所以1sin 3n EF n EF θ⋅==,所以cos 3θ=,所以C 正确.对于D ,由上面可知()1,2,2EF =-- ,()()10,1,0,2,2,4AB AC ==- ,()1,0,4BE =-;设平面1ABC 的一个法向量为(),,m x y z =,则100m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩ ,02240y x y z =⎧⎨-++=⎩,令1z =,可得()2,0,1m = ;因为0EF m ⋅=,EF ⊄平面1ABC ,所以EF P 平面1ABC ,所以EF 到平面1ABC 的距离即为点E 到平面1ABC 的距离,点E 到平面1ABC的距离5BE m d m⋅==,所以D 正确.故选:BCD.12.已知数列{}n a ,{}n b ,满足()1*122N nn i i a n +==-∈∑,()221log n n b a +=,则以下结论正确的是()A .数列{}n b a 为等比数列B .数列{}n a b 为等差数列C .用n x 集合{}*1,n n m b m a m N +≤≤∈中元素个数,则122n n x n+=-D .把数列{}n a ,{}n b 中的所有项由小到大排列组成一个新数列,这个新数列的第2023项为4025【正确答案】ACD【分析】确定2n n a =,21n b n =+,则212n n b a +=,14n nc c +=,A 正确;121nn a b +=+,B 错误;122n n x n +=-,C 正确;根据1112240252<<确定新数列的第2023项为20124025b =,D 正确,得到答案.【详解】-111122222nn n n n n i i i i a a a +===-=--+=∑∑,2n ≥,当21222a =-=,满足通项公式,故2n n a =,从而得()212212log l 1g 2o 2n n n b n a ++===+,对选项A :令212n n n b c a +==,得14n nc c +=,正确;对选项B :令122121n n n n ad b +==⨯+=+,2111222n n n n n d d ++++-=-=,数列{}n a b 不为等差数列,错误;对选项C :11221122n n n x n n ++=--+=-,正确;对选项D :1112240252<<,组成的新数列含有数列{}n a 的项为2,22,32,…,102,112共11项,所以新数列含有数列{}n b 的项为1b ,2b ,…2012b ,故所求新数列的第2023项为20124025b =,正确.故选:ACD三、填空题13.已知,a b均为空间单位向量,且它们的夹角为60︒,则2a b +=r r ______.【分析】根据条件可求出a b ⋅,然后根据2a b + 进行数量积的运算即可求解.【详解】因为1a b == ,,60a b =︒,所以1cos ,2a b a b a b ⋅== ,2a b +四、双空题14.已知点A ,B 在曲线22y x x =+图像上,且A ,B 两点连线的斜率为2,请写出满足条件的一组点A ______,B ______.【正确答案】()1,1--()1,3【分析】根据A ,B 在曲线上,设出点A ,B 的坐标,由A ,B 两点连线的斜率得出A ,B 的坐标关系,即可得到满足条件的一组点.【详解】由题意,在22y x x =+中,点A ,B 在曲线上,设()2111,2A x x x +,()2222,2B x x x +,A ,B 两点连线的斜率为2,∴()22221121212222AB x x x x k x x x x +-+==++=-,解得:210x x +=,∴当11x =-时,()1,1A --,()1,3B .故()1,1A --,()1,3B .五、填空题15.已知矩形ABCD 在平面α的同一侧,顶点A 在平面上,4AB =,BC =且AB ,BC 与平面α所成的角的大小分别为30°,45°,则矩形ABCD 与平面α所成角的正切值为______.【分析】如图,过B ,D 分别做平面α的垂线,垂足分别为E ,F ,连接AE ,AF ,通过几何关系可得到2BE DF AF ===,AE =EF BD ==过A 作l 满足//l EF ,过E 做EP 垂直l 于点P ,连接BP ,则BPE ∠即为所求,通过等面积法计算出PE =即可求解【详解】如图,过B ,D 分别做平面α的垂线,垂足分别为E ,F ,连接AE ,AF ,由,,DF BE αα⊥⊥,AE AF α⊂,所以,DF AF BE AE ⊥⊥,因为AB ,BC 与平面α所成的角的大小分别为30°,45°,且//BC AD ,=BC AD ,所以30BAE ∠=︒,45DAF ∠=︒,得2BE DF AF ===,AE =因为,,DF BE αα⊥⊥所以//DF BE ,又2BE DF ==,所以四边形DFEB 是平行四边形,所以//BD EF ,因为,BD EF αα⊄⊂,所以BD α∥,所以EF BD ==过A 作l 满足//l EF ,则l 即为矩形ABCD 与平面α的交线,过E 做EP 垂直l 于点P ,连接BP ,则BPE ∠即为所求,在AEF △中,cos 3FAE ∠=-,由22cos sin 1,0πFAE FAE FAE ∠+∠=<∠<可得sin 3FAE ∠=,所以11222AEFSFAE EP =⨯⨯∠=⨯,解得3PE =,所以矩形ABCD 与平面α所成角的正切值为tan BEBPE PE∠==..故答案为16.已知函数()2f x x x =+,数列{}n a 的首项118a =,点()1,n n a a +在函数()y f x =图象上,若20231111i im m a =<<++∑,则整数m =_____________.【正确答案】7【分析】将点代入函数得到21n nn a a a +=+,变换得到11111n n n a a a +=-+,2023120241181i i a a ==-+∑,根据2024101a <<得到答案.【详解】因为点()1,n n a a +在函数()y f x =图像上,所有21n n n a a a +=+,得2111111n n n n n a a a a a +==-++,所以11111n n n a a a +=-+,20231122320232024120242024111111111181i ia aa a a a a a a a ==-+-++-=-=-+∑ ,118a =,21n nn a a a +=+,故0n a >恒成立;21164n n n a a a +-=>,故1164n n a a +>+,200411+20031864a >⨯>,2024101a <<,所以20241788a <-<,所以7m =.故7六、解答题17.已知正项等比数列{}n a 中,1336a a =,2460a a +=.(1)求n a ;(2)若13log 2n n a b +=,数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证.1n S <【正确答案】(1)123n n a -=⨯(2)证明见解析【分析】(1)设{}n a 的公比为q ,由2111136360a a q a q a q ⎧=⎨+++=⎩求解;由(1)得13log 2n n a b n +==,再利用裂项相消法求解.【详解】(1)解:设{}n a 的公比为q ,则有2111136360a a q a q a q ⎧=⎨+++=⎩,解得12a =,3q =,所以123n n a -=⨯;(2)由(1)得13log 2n n a b n +==,所以()11112231n S n n =++⨯⨯⨯+ 11n 1=-+,因为101n >+,所以1111n -<+,所以1n S <.18.已知直线l 过点()1,2P -,且l 与,x y 轴分别交于点,A B ,OAB 为等腰直角三角形.(1)求l 的方程;(2)设O 为坐标原点,点A 在x 轴负半轴,求过O ,A ,P 三点的圆的一般方程.【正确答案】(1)30x y -+=或10x y +-=(2)2230x y x y ++-=【分析】(1)设直线方程为()21y k x -=+,分别解出,A B 两点坐标(),0x 和()0,y ,利用x y =解出k 的值即可;(2)设圆的一般方程为220x y Dx Ey F ++++=()2240DE F +->,将点代入解方法组即可.【详解】(1)因为直线l 过点()1,2P -,所以设直线为()21y k x -=+,0k ≠,令0y =,得21x k =--,所以21,0A k ⎛⎫-- ⎪⎝⎭令0x =,得2y k =+,所以()0,2B k +,又因为OAB 为等腰直角三角形,所以OA OB =,得212k k--=+,解1k =±或2k =-,当2k =-时直线过原点,不满足题意,故直线l 的方程为()21y x -=+或()21y x -=-+,即30x y -+=或10x y +-=.(2)由题意可知直线l 的方程为30x y -+=,即()30A -,,设圆的方程为220x y Dx Ey F ++++=()2240D E F +->,将()0,0O ,()30A -,,()1,2P -代入得09301420F D F D E F =⎧⎪-+=⎨⎪+-++=⎩,解得310D E F =⎧⎪=-⎨⎪=⎩,所以所求圆的方程为2230x y x y ++-=.19.已知A ,B 是椭圆C :()222210x y a b a b+=>>的右顶点和上顶点,点(P 在椭圆C上,且直线OP 经过线段AB 的中点.(1)求椭圆C 的标准方程;(2)若直线l 经过C 的右焦点F 与C 交于M ,N 两点,且π2MBN ∠=,求直线l 的方程.【正确答案】(1)221164x y +=(2)0x -=或30x --=【分析】(1)由直线过中点得12b a =,再将点(P 代入椭圆方程得到方程组,解出即可;(2)首先排除斜率为0的情况,从而设l:x my =+,联立椭圆得到韦达定理式,根据0BM BN ⋅=得到关于12,y y 的等式,代入韦达定理式,解出m 即可.【详解】(1)因为(),0A a ,()0,B b ,所以AB 的中点为,22a b ⎛⎫⎪⎝⎭,直线经OP 过线段AB的中点,所以12b a =,又因为点(P 在椭圆C 上,故22821a b +=,故可得216a =,24b =,所以221164x y +=(2)若直线l 的斜率为0时,可得()4,0M -,()4,0N ,易得0NB MB ⋅≠,故不满足题意;若直线l 的斜率不为0时,设l:x my =+,联立221164x my x y ⎧=+⎪⎨+=⎪⎩,消去x 得()22440m y ++-=,()11,M x y ,()22,N x y ,则1224m y y m -+=+,12244y y m -=+,因为π2MBN ∠=,所以0BM BN ⋅=,即()()1122,2,20x y x y -⋅-=,得()()1212220x x y y +--=,即(()()1212220my my y y +++--=得()()()2121212160m y y y y ++-++=,得23150m --=,所以m =m所以直线l :0x -=或30x --=.方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.20.如图,在三棱柱ABC A B C '''-中,ABC 是边长为2的等边三角形,1AA '=,AB '=,平面ABB A ''⊥平面ABC ,E 为线段AB '的中点.(1)求证:CE AB '⊥;(2)求CE 与平面AA C C ''所成的角的正弦值.【正确答案】(1)证明见解析(2)65【分析】(1)作B M AB '⊥于M ,连接CM ,由平面ABB A ''⊥平面ABC ,得到B M '⊥平面ABC ,进而得到B M CM '⊥,然后求得CB 2'=,根据2AC =且E 为AB '中点,利用三线合一证明;(2)以M 为坐标原点,MA ,MB '分别为x 轴,z 轴建立空间直角坐标系,求得(),,n x y z =是平面AA C C ''的一个法向量,设CE 与平面AA C C ''所成的角为θ,由sin cos ,CE n θ=求解.【详解】(1)如图所示:作B M AB '⊥于M ,连接CM ,由平面ABB A ''⊥平面ABC ,且平面ABB A ''⋂平面ABC AB =,B M '⊂平面ABB A '',得B M '⊥平面ABC ,CM ⊂ 平面ABC ,所以B M CM '⊥,因为1B B '=,2AB =,AB '=,由勾股定理得222AB BB AB ''+=,所以90AB B '∠=︒,所以2B M '=,12BM =,在CBM 中,由余弦定理得:222132cos 604CM CB BM CB BM =+-⋅⋅=,所以2CM =,在直角三角形CB M '中,由勾股定理可得2CB =',又2AC =且E 为AB '中点,所以CE AB '⊥(2)如图,以M 为坐标原点,MA ,MB '分别为x 轴,z轴建立如图所示的空间直角坐标系,则()0,0,0M ,1,0,02B ⎛⎫- ⎪⎝⎭,3,0,02A ⎛⎫⎪⎝⎭,12C ⎛⎫ ⎪⎝⎭,A ⎛ ⎝⎭',B ⎛ ⎝⎭',344E ⎛⎫⎪ ⎪⎝⎭,所以1,44CE ⎛= ⎝⎭,()AC =-,122AA ⎛= ⎝⎭' ,设(),,n x y z = 是平面AA C C ''的一个法向量,则0,10,2n AC x y n AA x z '⎧⋅=-=⎪⎨⋅==⎪⎩,取1y =,得)1n =- 设CE 与平面AA C C ''所成的角为θ,所以sin cos ,65CE n θ==.所以CE 与平面AA C C ''所成的角的正弦值为65.21.设n S 为数列{}n a 的前n 项和,且n a ,n S ,22n 成等差数列.(1)求数列{}n a 的通项公式;(2)设12nn n a b +=,设数列{}n b 的前n 项和为n T ,若21log 20232nm T >--对*n ∈N 恒成立,求n T 和正整数m 的最大值.【正确答案】(1)答案见解析(2)2025【分析】(1)根据n a ,n S ,22n 成等差数列得到222n n a n S +=,再利用通项和前n 项和的关系,得到142n n a a n -+=-,进而得到24n n a a +-=,再分n 为奇数偶数求解;(2)由122n n n na nb +==,利用错位相减法得到n T ,然后由21log 20232n m T >--对*n ∈N 恒成立求解.【详解】(1)解:由题意222n n a n S +=,令1n =,有12a =,当2n =时,得24a =,所以2n ≥,n N ∈时有()211212n n a n S --+-=,两式相减得()221122122n n n n a a n n S S ---+--=-,得142n n a a n -+=-,即当1n ≥时,142n n a a n ++=+,2146n n a a n +++=+,所以24n n a a +-=,当n 为奇数时,111422n n a a n +⎛⎫=+-⨯= ⎪⎝⎭,当n 为偶数时,21422n n a a n ⎛⎫=+-⨯= ⎪⎝⎭,所以2n a n =;(2)因为122n n n na nb +==,所以231232222n n nT =++++ ,2341123122222n n n T +=++++ ,两式相减得2341111111111222222222n n n n n n nT ++=+++++-=-- ,所以222n nnT +=-.()221log log 22nn n T =-+-,令()2log 2n c n n =-+,得()()1221log 3log 2n n c c n n n n +-=+-+-++22232621log log log 1222n n n n n ++⎛⎫⎛⎫⎛⎫=-==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭10n n c c +->,即1n n c c +<,要使得21log 20232nm T >--对*n ∈N 恒成立,只需1220231log 3m c -<=-,即22024log 3m <+,故正整数m 的最大值为2025.22.已知双曲线C :()222210,0x y a b a b-=>>的左,右焦点分别为()1,0F c -,()2,0F c ,离心率为3,点()3,8M 在C 上.(1)求C 的标准方程;(2)已知直线l 过C 的右焦点且与C 的左,右两支分别交于A ,B 两点,点P 是1AF B ∠的平分线上一动点,且10F P AB ⋅=,求MAB △的面积.【正确答案】(1)2218y x -=【分析】(1)根据已知条件、双曲线的性质建立方程组求解即可.(2)利用直线与双曲线方程联立、韦达定理、弦长公式、三角形的性质和面积公式、向量的性质进行求解.【详解】(1)由题意知222223,9641,,ca a bc a b ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,所以21a =,28b =,29c =,所以双曲线方程为.2218y x -=(2)因为双曲线方程为:2218y x -=,所以()23,0F ,由题知,直线l 的斜率一定存在,所以设l :()3y k x =-,因为直线l 与C 的左,右两支分别交于A ,B 两点,所以bk a<,得k -<①当0k ≠时:设()()111,1A x y x <-,()()222,1B x y x >,因为10F P AB ⋅= ,所以1F P AB ⊥,又1F P 为1AF B ∠的角平分线,所以11AF BF =,由()22318y k x y x ⎧=-⎪⎨-=⎪⎩得:()222286980k x k x k -+--=,所以212268k x x k +=-,2122988k x x k +=-,因为11(31)AF x ====-+,1231BF x ====+,所以123131x x +=--,即()21221832208k x x k ++=+=-,解得245k =,当k =l:)3y x=-,即260x -=,所以点M 到直线l的距离为d =||4AB ==,所以求MAB △的面积为142MAB S =⨯△当k =l :)35y x =--,即260x -=,所以点M 到直线l 的距离为3d =,||4AB ==,所以求MAB △的面积为14233MAB S =⨯⨯=△,②当0k =时:直线l 的方程为0y =,()1,0A -,()10B ,,显然不满足;故MAB △.。
安徽省合肥市2021-2022学年七年级下学期期中(统考)数学试卷(解析版)

2021-2022学年七下期中(统考)数学试卷(解析版)温馨提示:本试卷沪科版6.1~8.4、共4页八大题、23小题,满分150分,时间120分钟(抄袭可耻)一、选择题(本大题共10小题,每小题4分,满分40分)1、下列四个实数中,无理数是()A.1.010010001 B 1310【答案】D【解析】∵1.010010001、13、3.1410故选D2、下列运算正确的是()A (-a5)2=a10B 2a•3a2=6a2C -2a+a=-3aD -6a6÷2a2=-3a3【答案】A【解析】∵B 2a•3a2=6a3,C -2a+a=-a,D -6a6÷2a2=-3a4,∴B、 C、 D错误; A (-a5)2=a10,正确;故选A3、若一个数的立方根等于它本身,则这个数是()A.0B.1C.-1D.0、±1【答案】D【解析】若一个数的立方根等于它本身,则这个数是0、 1、 -1;故选D4、某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0. 000000001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A. 1.5×10-9秒B. 15×10-9秒C. 1.5×10-8秒D. 15×10-8秒【答案】C【解析】∵0.000000001秒×15==0.000000015秒=1.5×10-8秒,故选C517)A.3B.4C.5D.6【答案】B【解析】,∵42=16,52=2517最接近的是4故选B6、下列说法不一定成立的是()A.若a>b、则a+c>b+cB.若a+c>b+c、则a>bC.若a>b、则ac2>bc2D.若ac2>bc2、则a>b【答案】C【解析】根据不等式性质可知:A、 C、 D正确;C、若c=0,ac2=bc2,∴若a>b、则ac2>bc2不一定成立。
故选C710404x=10.2中的x等于()A.1040.4B.10.404C.104.04D. 1.0404【答案】C【解析】10404,∴1022=10404,∴10.22=104.04,∴x=104.04,故选C8、将(mx+3)(2-3x)展开后,结果不含x的次项,则m的值为()A 0 B92 C -92D32【答案】B【解析】∵(mx+3)(2-3x)=2mx-3mx2+6-9x=-3mx2+(2m-9)x+6,结果不含x的次项,则2m-9=0,即m=92故选B9、如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A. a >0B. a <0C. a >-1D. a <-1【答案】D【解析】∵不等式(a+1)x >a+1的解集为x <1,那么a+1<0,即a <-1故选D10、对任意两个实数a 、b 定义两种运算:a ▲b=(()a a b b a b ≥⎧⎨<⎩若)若,a ▼b=(()b a b a a b ≥⎧⎨<⎩若)若并且定义运算顺序仍然是先做括号内的,例如(-2)▲3=3、(-2)▼3=-2、((-2)▲3))▼2=252327 ) 55【答案】A【解析】5232755故选A二、填空题(本大题共4小题,每小题5分,满分20分)11、 9的平方根是【答案】±3【解析】9的平方根是±3故答案:±312、 如果a m =5、a n =2,则a 2m+n 的值为【答案】50【解析】a 2m+n =(a m )2×a n =52×2=50故答案:5013、 请写出一个比2小的无理数:【答案】3【解析】∵3223故答案:314、若记[x]表示任意实数的整数部分,例如:[4.2]=4、2、…,则1234…… 4950(其中“+”、“-”依次相间)的值为【答案】-3【解析】1234……4950=1-1+1-2+2-2+2-2+3-3+3-3+……+7-7=-1-2+3-4+5-6+7-7=-3故答案:-3三、(本大题共2小题,每小题8分,总计16分)15、解不等式组:3(1)511233x x x x -<+⎧⎪+⎨≥-⎪⎩ 【答案】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【解析】3(1)511233x x x x -<+⎧⎪⎨+≥-⎪⎩①②,解不等式①得:x >-2;解不等式②得:x ≤2 则不等式组的解集为-2<x ≤2;16、计算:(a+3)(a-2)-a (a-1)【答案】【分析】直接利用乘法公式以及整式的混合运算法则化简【解析】原式=a 2+a-6-a 2+a=2a-6四、(本大题共2小题,每小题8分,总计16分)17、已知(x-2)23y +,求(x+y )2022的值。
2022-2021学年上学期高二数学寒假作业 07(人教A版选修2-1第三章空间向量与立体几何)

作业范围:选修2-1第三章空间向量与立体几何姓名:_______ 学校:_______ 班级:_________时间: 100分钟分值:120分第Ⅰ卷一、选择题(本题共14小题,每小题4分,共56分,在每小题给出的四个选项中,只有一项是符合题目要求的)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案1.已知向量()1,1,0a=,()1,0,2b=-,且ka b+与2a b-相互垂直,则k的值为()A.B.15C.35D.75】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】D考点:空间向量垂直的充要条件.【题型】选择题【难度】较易2.若()()2,3,,2,6,8a mb n==且,a b为共线向量,则m n+的值为()A.7 B.52 C.6 D.】2021-2022学年广西桂林市一中高二下期中数学试卷【答案】C【解析】由,a b为共线向量得23268mn==,解得4,2m n==,则6m n+=.故选C.考点:空间向量平行的充要条件.【题型】选择题【难度】较易3.向量=(2,4,x),=(2,y,2),若||=6,且⊥,则x+y的值为()A.-3 B.1 C.-3或1 D.3或1】2021-2022学年新疆兵团农二师华山中学高二下学前考试理科数学试卷【答案】C考点:空间向量的坐标运算及垂直的性质.【题型】选择题【难度】较易4.已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则AC与AB的夹角为()A.30° B.45° C.60° D.90°】2021-2022学年福建省晋江市季延中学高二上学期期末理科数学试卷【答案】C【解析】设AC与AB的夹角为θ,()1,1,0AC=-,()0,3,3AB=,cosθ∴312232AC ABAC AB⋅==⨯,60θ∴=︒.考点:向量夹角.【题型】选择题【难度】较易5.已知()1,2,1A-,()5,6,7B,则直线AB与平面xOz交点的坐标是()A.()0,1,1B.()0,1,3-C.()1,0,3-D.()1,0,5--】2021-2022学年福建省三明市A片高二上学期期末理科数学试卷【答案】D【解析】直线AB与平面xOz交点的坐标是()0,M x z,,则()1,2,1A zM x-=-+,又AB=(4,4,8),AM与AB 共线,∴AM AB λ=,即14,24,18,x z λλλ-=⎧⎪-=⎨⎪+=⎩解得1x =-,5z =-,∴点()1,0,5M --.考点:空间中的点的坐标. 【题型】选择题 【难度】较易6.若平面α的一个法向量为()()()1,2,2,1,0,2,0,1,4,,n A B A α=-∉B α∈,则点A 到平面α的距离为()A .1B .2C .13D .23】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】C 【解析】由于()()1,0,2,0,1,4A B -,所以(1,1,2)AB =--,所以点A 到平面α的距离为22212413122AB n d n⋅--+===++,故选C .考点:空间向量的应用. 【题型】选择题 【难度】较易7.在四棱锥O ABCD -中,底面ABCD 是平行四边形,设,,OA a OB b OC c ===,则OD 可表示为() A .a c b +- B .2a b c +- C .b c a +- D .2a c b +-】【百强校】2022-2021学年黑吉两省八校高二上期中数学(理)试卷 【答案】A考点:空间向量的线性运算. 【题型】选择题 【难度】较易8.点()2,3,4关于xOz 平面的对称点为()A.()2,3,4-B.()2,3,4-C.()2,3,4-D.()2,3,4-- 】2021-2022学年陕西延川县中学高一下学期期中数学(理)试卷 【答案】C考点:空间中点的坐标. 【题型】选择题【难度】较易9.已知)1,2,2(=−→−AB ,)3,5,4(=−→−AC ,则下列向量中是平面ABC 的法向量的是()A.)6,2,1(-B.)1,1,2(-C.)2,2,1(-D.)1,2,4(-】2021-2022学年陕西延川县中学高二下学期期中数学(理)试卷 【答案】C【解析】设平面ABC 的法向量为()z y x n ,,= ,则,,n AB n AC ⎧⊥⎪⎨⊥⎪⎩那么220,4530,x y z x y z ++=⎧⎨++=⎩那么2:)2(:1::-=z y x ,满足条件的只有C ,故选C. 考点:空间向量. 【题型】选择题 【难度】较易10.已知(2,1,3)a →=-,(1,4,2)b →=--,(7,5,)c λ→=,若c b a ,,三向量共面,则实数λ等于() A .627 B .637 C .647 D .657】2021-2022学年安徽省淮南二中高二下学期期中理科数学试卷【答案】D考点:空间向量共面的性质及方程思想. 【题型】选择题 【难度】较易11.已知)2,0,4(A ,)2,6,2(-B ,点M 在轴上,且到B A ,的距离相等,则M 的坐标为() A .)0,0,6(- B .)0,6,0(- C .)6,0,0(- D .)0,0,6( 】【百强校】2021-2022学年福建省厦门一中高一6月月考数学试卷 【答案】A【解析】由于点M 在轴上,所以可设(),0,0M x ,又MA MB=,所以()()()()()()2222224000220602x x -+-+-=-+-+-,解得6x =-,所以(6,0,0)M -.考点:空间两点间距离公式.【题型】选择题 【难度】一般12.在四周体ABCD 中,E 、G 分别是CD 、BE 的中点,若AC z AD y AB x AG ++=,则x +y +z =()A .31B .21C . 1D .2】2021-2022学年山西省孝义市高二上学期期末考试理科数学试卷 【答案】C【解析】()1122AG AB BG AB BE AB AE AB AB=+=+=+-=()1122AC AD AB ⎡⎤++-⎢⎥⎣⎦,整理得AD AC AB AG 414121++=,所以21=x ,41==z y ,所以1=++z y x ,故选C.考点:空间向量的运算. 【题型】选择题 【难度】一般13.若平面α、β的法向量分别为1n =(2,3,5),2n =(-3,1,-4),则( )A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均有可能】【百强校】2021-2022学年海南省文昌中学高二上期末理科数学试卷 【答案】C考点:两平面的位置关系,用向量推断两平面的位置关系. 【题型】选择题 【难度】一般14.如图,在平行六面体1111ABCD A B C D -中,M 为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()MC1CB1D1A1ABDA.1122a b c-++B.1122a b c++C.1122a b c--+D.1122a b c-+】2021-2022学年河南三门峡市陕州中学高二上其次次对抗赛理科数学卷 【答案】A【解析】依据向量加法的运算法则,可得111=2BM BB B McBD c 111222BA BC a b c .考点:空间向量的表示. 【题型】选择题 【难度】一般 第II 卷二、填空题(本题共6个小题,每小题4分,共24分) 15.已知向量()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,且A 、B 、C 三点共线,则=k ________.】【百强校】2021-2022学年山西太原五中高二上学期期末理科数学试卷【答案】32-【解析】由于()()(),12,1,4,5,1,,10,1OA k OB OC k ===-,所以(4,7,0),(2,2,0)AB k AC k =--=--,又由于A 、B 、C 三点共线,所以存在实数λ使得AB AC λ=,所以42,72,k k λλ-=-⎧⎨-=-⎩解得7,22,3k λ⎧=⎪⎪⎨⎪=-⎪⎩所以=k 32-.考点:向量的坐标运算和向量共线定理. 【题型】填空题 【难度】较易16.设点B 是A (2,-3, 5)关于平面xOy 对称的点,则线段AB 的长为 . 】2022-2021学年广东省广州六中高一上学期期末考试数学试题 【答案】10考点:空间中点的坐标和两点之间的距离. 【题型】填空题【难度】较易17.在如图所示的长方体ABCD -A 1B 1C 1D 1中,||8DA =,||6DC =,1||3DD =,则11D B 的中点M 的坐标为__________,||DM =_______.】2021-2022学年福建省八县一中高一上学期期末考试数学试卷 【答案】(4,3,3);34考点:中点坐标公式,空间中两点的距离公式. 【题型】填空题 【难度】较易18.已知空间单位向量1231223134,,,,,5⊥⊥⋅=e e e e e e e e e ,若空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,则x y z ++=________,=m ________.】【百强校】2021-2022学年浙江省金华十校高二上学期调研数学试卷 【答案】34【解析】由于1223134,,5⊥⊥⋅=e e e e e e ,空间向量123x y z =++m e e e 满足:14⋅=m e ,233,5⋅=⋅=m e m e ,所以123112321233()4,()3,()5,x y z x y z x y z ++⋅=⎧⎪++⋅=⎨⎪++⋅=⎩e e e e e e e e e e e e 即44,53,45,5x z y x z ⎧+=⎪⎪=⎨⎪⎪+=⎩解得0,3,5,x y z =⎧⎪=⎨⎪=⎩所以8x y z ++=,=m 34考点:向量的数量积的运算及向量的模的计算. 【题型】填空题【难度】一般19.若直线的方向向量()1,1,1a =,平面α的一个法向量()2,1,1n=-,则直线与平面α所成角的正弦值等于_________。
【期中卷】人教版2021-2022学年九年级数学上学期期中测试卷(三)含答案与解析

人教版2021–2022学年上学期期中测试卷(三)九年级数学(考试时间:100分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:九年级上册第二十一章~第二十四章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是()A.OP>5 B.OP=5 C.0<OP<5 D.0≤OP<53.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2 B.2 C.±2 D.04.如果关于x的方程x2+mx+1=0的两个根的差为1,那么m等于()A.±2 B.± C.± D.±5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30° B.60°C.90° D.120°6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A .12B .C .D .8.如图,在平面直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点,若AB=3,则点M 到直线l 的距离为( )A .B .C .2D .9.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根D. 无法确定10.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A. B. C. D.第Ⅱ卷二、填空题(本题共5小题,每小题3分,共15分)11.一元二次方程x2﹣2x=0的两根分别为.12.若点M(3,a﹣2),N(b,a)关于原点对称,则ab=.13.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E.F.且AB=5,AC=12,BC=13,则⊙O 的半径是.14.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是.15.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.(9分)如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.(9分)已知二次函数y=﹣x2+3x﹣(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.(9分)如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF 重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.20.(9分)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.21.(10分)某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x销量(斤)120﹣x储藏和损耗费用(元)3x2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?22.(10分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF ∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.23.(11分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.九年级数学·全解全析一、选择题(本题共10小题,每小题3分,共30分)1 2 3 4 5 6 7 8 9 10A DBCD B C B A C1.【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,不是中心对称图形.故错误.故选A.2.【解析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:由⊙O的半径长为5,若点P在⊙O内,得0≤OP<5,故选:D.3.【解析】根据形如y=ax2+bx+c (a≠0)是二次函数,可得答案.【解答】解:由y=(m﹣2)x|m|+2是y关于x的二次函数,得|m|=2且m+2≠0.解得m=2.故选:B.4.【解析】根据一元二次方程的根与系数的关系得到,两根之和与两根之积,其中两根的和可以用m表示,而(x1﹣x2)2=(x1+x2)2﹣4x1•x2=1,代入即可得到关于m的方程,进而求解.【解答】解:由根与系数的关系可知:x1+x2=﹣m,x1•x2=1,又知x1﹣x2=1,则(x1﹣x2)2=1,即(x1+x2)2﹣4x1•x2=1,则(﹣m)2﹣4=1,解得:m=±.故本题选C.5.【解析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.6.【解析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.7.【解析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.8.【解析】设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,又x2+bx+c=0时,△=0,列式求解即可.【解答】解:抛物线y=x2+bx+c与x轴只有一个交点,∴△=b2﹣4ac=0,∴b2﹣4c=0,设M到直线l的距离为m,则有x2+bx+c=m两根的差为3,可得:b2﹣4(c﹣m)=9,解得:m=.故答案选B.9.【解析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.=+的图象不经过第二象限,【详解】解:一次函数y kx bk∴>,0b≤,240∴∆=->,k b∴方程有两个不相等的实数根.故选A.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10.【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.二、填空题(本题共5小题,每小题3分,共15分。
2022-2023学年八年级数学上学期期中考前必刷卷含答案解析(人教版)(三)

2022-2023学年八年级上学期期中考前必刷卷03数学(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2022·浙江丽水·八年级期末)在以下中国银行、建设银行、工商银行、农业银行图标中,不是轴对称图形的是( )A .B .C .D .2.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是( )A .7cm 、5cm 、12cm B .6cm 、7cm 、14cm C .9cm 、5cm 、11cmD .4cm 、10cm 、6cm3.(2022·河南·漯河市第二实验中学八年级期末)如图所示,图中的两个三角形全等,则∠α等于( )A .50︒B .55︒C .60︒D .65︒4.(2022·江苏·宜兴市和桥镇第二中学七年级期中)如图,在ABC V 中,A m ∠=,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠和1ACD ∠的平分线交于点2A ,得22015A A BC ∠ ∠和2015A CD ∠的平分线交于点2016A ,则2016A ∠为多少度?( )A .20132m B .20142m C .20152m D .20162m 5.(2021·重庆·华东师范大学附属中旭科创学校八年级期中)如图,A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=( )A .180︒B .360︒C .540︒D .720︒6.(2022·山东威海·七年级期末)已知点P 是直线l 外一点,要求过点P 作直线l 的垂线PQ .下列尺规作图错误的是( )A .B .C .D .7.(2022·山东聊城·八年级期末)已知如图,在△ABC 中,∠ACB 是钝角,依下列步骤进行尺规作图:(1)以C 为圆心,CA 为半径画弧;(2)以B 为圆心,BA 为半径画弧,交前弧于点D ;(3)连接BD ,交AC 延长线于点E明明同学依据作图,写出了下面四个结论,其中正确的是( )A .∠ABC =∠CBEB .BE =DEC .AC ⊥BDD .S △ABC =12AC •BE8.(2020·天津市红桥区教师发展中心八年级期中)如图,△ABC 中,点D 是BC 边上一点,DE ⊥AB 于点E ,DF ⊥BC ,且BD =FC ,BE =DC ,∠AFD =155°,则∠EDF 的度数是( )A .50°B .55°C .60°D .65°9.(2022·河南郑州·七年级期末)乐乐所在的七年级某班学生到野外活动,为测量一池塘两端A ,B 的距离,乐乐、明明、聪聪三位同学分别设计出如下几种方案:乐乐:如图①,先在平地取一个可直接到达A ,B 的点C ,再连接AC ,BC ,并分别延长AC 至D ,BC 至E ,使DC AC =,EC BC =,最后测出DE 的长即为A ,B 的距离.明明:如图②,先过点B 作AB 的垂线BF ,再在BF 上取C ,D 两点,使BC CD =,接着过点D 作BD 的垂线DE ,交AC 的延长线于点E ,则测出DE 的长即为A ,B 的距离.聪聪:如图③,过点B 作BD AB ⊥,再由点D 观测,在AB 的延长线上取一点C ,使∠=∠BDC BDA ,这时只要测出BC 的长即为A ,B 的距离.以上三位同学所设计的方案中可行的是( )A .乐乐和明明B .乐乐和聪聪C .明明和聪聪D .三人的方案都可行10.(2022·山东烟台·七年级期末)如图,在ABC V 中,CAB ∠和CBA ∠的角平分线相交于点P ,连接PA ,PB ,PC ,若PAB △,PAC △,PBC V 的面积分别为1S ,2S ,3S ,则有( )A .123S S S <+B .123S S S =+C .123S S S >+D .1232S S S =+11.(2022·重庆沙坪坝·七年级期末)如图,在Rt △ABC 中,90ABC ∠= ,45C ∠= ,点E 在边BC 上,将△ABE 沿AE 翻折,点B 落在AC 边上的点D 处,连结DE 、BD ,若5BD =.下列结论:①AE 垂直平分BD ;②112.5CEA ∠=︒;③点E 是BC 的中点;④△CDB 的周长比△CDE 的周长大5.其中正确的个数是( )A .1B .2C .3D .412.(2022·云南红河·八年级期末)如图,在等边ABC V 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .813.(2021·福建省泉州实验中学八年级期中)如图,在等边三角形ABC 中,点D ,E 分别是BC ,AB 上的点,且BE =CD ,AD 与CE 相交于点F ,连接BF ,延长FE 至G ,使FG =FA ,若△ABF 的面积为m ,AF :EF =5:3,则△AEG 的面积是( )A .25mB .13mC .38mD .35m14.(2022·重庆·四川外国语大学附属外国语学校七年级期末)如图,Rt ABC V 中,90BAC ∠=︒,AD BC ⊥于点D .过点A 作AF //BC 且AF AD =,点E 是AC 上一点且AE AB =,连接EF ,DE ,连接FD 交BE 于点G .下列结论中正确的有()个.①FAE DAB ∠=∠;②BD EF =;③FD 平分AFE ∠;④ABDE ADEF S S =四边形四边形;⑤BD GE =A .2B .3C .4D .5第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2022·河南平顶山·七年级期末)如图,已知∠1=∠2,AC =AE ,不添加任何辅助线,再添加一个合适的条件:______,使△ABC ≌△ADE .(只写出一种即可)16.(2022·湖南·澧县教育局张公庙镇中学八年级期末)如图,在Rt ABC ∆中,90C ∠=︒,BE 平分ABC ∠,ED 垂直平分AB 于D .若9AC =,则AE 的值是______.17.(2022·湖北·云梦县实验外国语学校八年级期中)如图,12l l ∥,点D 是BC 的中点,若△ABC 的面积是10cm 2,则△BDE 的面积是_______cm 2.18.(2020·浙江·乐清市知临寄宿学校八年级期中)如图所示,∠B 0C = 10°,点A 在OB 上,且OA = 1,按下列要求画图:以点A 为圆心、1为半径向右画弧交OC 于点1A 得到第1条线段1AA ;再以点1A 为圆心、1为半径向右画弧交OB 于点2A ,得到第2条线段12A A ;再以点2A 为圆心、1为半径向右画弧交OC 于点3A ,得到第3条线段23A A …这样画下去,直到得到第n 条线段,之后就不能再画出符合要求的线段了,则n = _________ .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·河南·安阳市第五中学八年级期中)如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =72°,求∠AEC 和∠DAE 的度数.20.(2022·四川眉山·七年级期末)点C 为BD 上一点,△ABC ≌△CDE ,AB =1,DE =2,∠B =110°.(1)求BD 的长;(2)求∠ACE 的度数.21.(2022·上海市曹杨第二中学附属学校七年级期末)如图,ABC V 中,AB AC =,且D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =,DEF B ∠=∠,点G 是DF 的中点,猜想EG 和DF 的位置关系,并说明理由.22.(2021·贵州毕节·八年级期末)如图所示,在ABC V 中,8AB =,4AC =,点G 为BC 的中点,DG BC⊥交BAC ∠的平分线AD 于点D ,DE AB ⊥于点E ,DF AC ⊥交AC 的延长线于点F .(1)求证:BE CF =;(2)求AE 的长.23.(2020·福建龙岩·八年级期末)如图,射线OK 的端点O 是线段AB 的中点,请根据下列要求作答:(1)尺规作图:在射线OK 上作点C D ,,连接AC BD ,,使=AC BD >12AB ;(2)利用(1)中你所作的图,求证:ACO BDO ∠=∠.24.(2020·浙江·乐清市知临寄宿学校八年级期中)如图1,△ABC 是边长为6cm 的等边三角形,点P ,Q 分别从顶点A ,B 同时出发,沿线段AB ,BC 运动,且它们的速度都为1厘米/秒.当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (秒).(1)当运动时间为t 秒时,BQ 的长为 厘米,BP 的长为 厘米.(用含t 的式子表示)(2)当t 为何值时,△PBQ 是直角三角形;(3)如图2,连接AQ 、CP ,相交于点M ,则点P ,Q 在运动的过程中,△CMQ 会变化吗?若变化,则说明理由;若不变,请直接写出它的度数.25.(2022·江苏·扬州市江都区第三中学七年级期中)如图1的图形我们把它称为“8字形”,显然有A B C D ∠+∠=∠+∠;阅读下面的内容,并解决后面的问题:(1)如图2,AP 、CP 分别平分BAD ∠、BCD ∠,若36ABC ∠=︒,16ADC ∠=︒,求P ∠的度数;(2)①在图3中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B Ð、D ∠的关系,并说明理由.②在图4中,直线AP 平分BAD ∠的外角FAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B Ð、D ∠的关系,直接写出结论,无需说明理由.③在图5中,AP 平分BAD ∠,CP 平分BCD ∠的外角BCE ∠,猜想P ∠与B Ð、D ∠的关系,直接写出结论,无需说明理由.(3)在(2)的条件下,若40GHC S =V ,CE =15,请直接写出BF 的长.26.(2022·陕西·西安铁一中分校七年级期末)如图①,在Rt ABC △中,90ACB ∠=︒,AC=BC ,l 是过点C 的任意一条直线,过A 作AD ⊥l 于D ,过B 作BE ⊥l 于E .(1)求证:△ADC ≌△CEB ;(2)如图②延长BE 至F ,连接CF ,以CF 为直角边作等腰Rt FCG V ,90FCG ∠=︒,连接AG 交l 于H .试探究BF 与CH的数量关系.并说明理由;2022-2023学年八年级上学期期中考前必刷卷03(人教版2022)数学·全解全析1234567891011121314 B C B D B B A D D A C B A D1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A、C、D均能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.选项B不能找到这样的一条直线折,使一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.3.B【分析】由全等三角形的对应角相等,结合三角形内角和定理即可得到答案.【详解】解:根据题意,如图:︒-︒-︒=︒,根据三角形内角和定理,第一个三角形中边长为b的对角为:180606555∵图中的两个三角形是全等三角形,∴第一个三角形中边长为b 的对角等于第二个三角形中的∠α,∴∠α=55︒.故选B .【点睛】本题考查了全等三角形的性质以及三角形内角和定理,解题的关键是掌握全等三角形的对应角相等.4.D【分析】先根据角平分线的定义以及三角形外角的性质证明112A A ∠=∠,同理211124A A A ==∠∠,321128A A A ==∠∠,4311216A A A ==∠∠∠,由此得出规律11122n n n A A A -==∠∠,从而得到答案.【详解】解:∵ABC ∠和ACD ∠的平分线交于点1A ,∴1122ACD ACD ABC A BC ==∠∠,∠∠,∵111A ABC ACD A A BC ACD +=+=∠∠∠,∠∠∠,∴1122A A BC ACD +=∠∠∠,111222A A BC ACD ∠+∠=∠,∴112A A ∠=∠,同理211124A A A ==∠∠,321128A A A ==∠∠,4311216A A A ==∠,L ,∴11122n n n A A A -==∠∠,∴201620162016122m A A ==∠,故选D .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,图形类的规律探索,熟知三角形外角的性质是解题的关键.5.B【分析】先根据三角形的外角性质可得1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345∠+∠+∠+∠+∠正好是五边形的外角和为360︒.【详解】解:如图:∵1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=,12345360∠+∠+∠+∠+∠=︒,∴360A B C D E F G H I J ∠+∠+∠+∠+∠+∠+∠+∠+∠+∠=︒.故选:B .【点睛】本题考查了三角形的外角性质以及多边形的外角和,解题的关键是得出1A B ∠∠∠+=,5C D ∠∠∠+=,4E F ∠∠∠+=,3G H ∠∠∠+=,2I J ∠∠∠+=.6.B【分析】根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.【详解】A 、如图,连接AP 、AQ 、BP 、BQ ,∵AP =BP ,AQ =BQ ,∴点P 在线段AB 的垂直平分线上,点Q 在线段AB 的垂直平分线上,∴ 直线PQ 垂直平分线线段AB ,即直线l 垂直平分线线段PQ ,本选项不符合题意;B 、B 选项无法判定直线PQ 垂直直线l ,本选项符合题意;C 、如图,连接AP 、AQ 、BP 、BQ ,∵AP = AQ ,BP =BQ ,∴点A 在线段PQ 的垂直平分线上,点B 在线段PQ 的垂直平分线上,∴ 直线AB 垂直平分线线段PQ ,即直线l 垂直平分线线段PQ ,本选项不符合题意;D、如图,连接AC、BC、DP、PQ,∵AC=BC,AD=BD,∴点C在线段AB的垂直平分线上,点D在线段AB的垂直平分线上,∴直线CD垂直平分线线段AB,∴390∠=︒由作图痕迹可知:12∠=∠,P,∴CD PQ∴4390∠=∠=︒∴PQ⊥AB,本选项不符合题意;故选:B.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键.7.A【分析】根据作图得到AC=CD,AB=BD,证明△ABC≌△DBC,从而得到结论.【详解】解:由作图可知:AC=CD,AB=BD,∵BC=BC,∴△ABC≌△DBC(SSS),∴∠ABC=∠CBE,无法证明其余三个选项的结论,故选A.【点睛】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.D【分析】证明Rt △FDC ≌Rt △DEB (HL ),由全等三角形的性质得出∠DFC =∠EDB =25°,即可得出答案.【详解】解:∵∠AFD =155°,∴∠DFC =25°,∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠DEB =90°,在Rt △FDC 和Rt △DEB 中,CF BD CD BE =⎧⎨=⎩,∴Rt △FDC ≌Rt △DEB (HL ),∴∠DFC =∠EDB =25°,∴∠EDF =180°−∠BDE −∠FDC =180°−25°−90°=65°.故选:D .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】在三个图中分别证明三角形全等,再根据全等三角形的性质即可得证.【详解】解:在△ABC 和△DEC 中,DC AC DCE ACB EC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (SAS ),∴AB =DE ,故乐乐的方案可行;∵AB ⊥BF ,∴∠ABC =90°,∵DE ⊥BF ,∴∠EDC =90°,在△ABC 和△EDC 中,ABC EDC BC CDACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△EDC (ASA ),∴AB =ED ,故明明的方案可行;∵BD ⊥AB ,∴∠ABD =∠CBD ,在△ABD 和△CBD 中,ABD CBD BD BDBDC BDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△CBD (ASA ),∴AB =BC ,故聪聪的方案可行,综上可知,三人方案都可行,故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.10.A【分析】过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,先根据角平分线的性质得到PD PE PF ==,再利用三角形面积公式得到123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅,,,然后根据三角形三边的关系对各选项进行判断.【详解】解:过P 点作PD AB ⊥于D PE BC ⊥,于E PF AC ⊥,于F ,如图,CAB ∠ 和CBA ∠的角平分线相交于点P ,PD PF PD PE ∴==,,PD PE PF ∴==,123111222S AB PD S AC PF S BC PE =⋅=⋅=⋅ ,,,AB AC BC <+ ,123S S S ∴<+.故选:A.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.11.C【分析】根据翻折后图形大小不变,三角形的外角和,三角形周长,即可判断出正确.【详解】∵ADE V 是ABE △翻折而得的∴AB AD =,BAE DAE∠=∠∴AE 垂直平分BD故①正确;∵Rt ABC V 中,90ABC ∠=︒,45C ∠=︒∴45BAC ∠=︒∴122.52CAE BAE BAC ∠=∠=∠=︒∴BAE ABC CEA∠+∠=∠∴22.590112.5CEA ∠=︒+︒=︒故②正确;∵ADE V 是ABE △翻折而得的∴BE DE =,90ADE ∠=︒∴90EDC ∠=︒∵45C ∠=︒∴45CED ∠=︒∴DE DC=∴DC DE BE ==,但BE CE≠∴E 不是BC 的中点故③错误;∵55CDB C DC BC BD DC BE EC DC DE EC =++=+++=+++V CDE C DC DE EC=++V ∴5CDB CDE C C -=V V 故④正确.故正确的结论的是:①②④.故选:C .【点睛】本题考查翻折的性质和三角形的知识,解题的关键是掌握翻折的性质,三角形外角和定理,三角形周长等.12.B【分析】先连接CE ,再根据EB =EC ,将FE +EB 转化为FE +CE ,最后根据两点之间线段最短,求得CF 的长,即为FE +EB 的最小值.【详解】解:如图,连接CE ,∵等边△ABC 中,AD 是BC 边上的中线,∴AD 是BC 边上的高线,即AD 垂直平分BC ,∴EB =EC ,∴BE +EF =CE +EF ,∴当C 、F 、E 三点共线时,EF +EC =EF +BE =CF ,∵等边△ABC 中,F 是AB 边的中点,∴AD =CF =6,即EF +BE 的最小值为6.故选:B【点睛】本题主要考查了等边三角形的性质,轴对称性质等知识,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.13.A【分析】先根据SAS 定理证出ACD CBE ≅V V ,从而可得60AFG =︒∠,根据等边三角形的判定可得AFG V 是等边三角形,再根据SAS 定理证出ACF ABG ≅V V ,从而可得60BGC BAC AFG ∠=∠=︒=∠,根据平行线的判定可得AF BG ∥,从而可得AFG ABF S S m ==V V ,然后根据:5:3AF EF =可得:2:5EG FG =,最后根据三角形的面积公式即可得.【详解】解:∵ABC V 是等边三角形,∴,60BC AC AB ACB CBA BAC ==∠=∠=∠=︒,在ACD △和CBE △中,BC AC ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ACD CBE ≅V V ,∴CAD BCE ∠=∠,∵60BCE ACE ACB ∠+∠=∠=︒,∴60AFG CAD ACE BCE ACE ∠=∠+∠=∠+∠=︒,∵FG FA =,∴AFG V 是等边三角形,,60AF AG FAG ∴=∠=︒,BAC BAD FAG BAD ∴∠-∠=∠-∠,即CAF BAG ∠=∠,在ACF V 和ABG V 中,AC AB CAF BAG AF AG =⎧⎪∠=∠⎨⎪=⎩,()SAS ACF ABG ∴≅V V ,ACF ABG ∴∠=∠,又AEC BEG ∠=∠ ,60BGC BAC ∴∠=∠=︒,BGC AFG ∴∠=∠,AF BG ∴∥,AFG ABF S S m ∴==V V (同底等高),∵:5:3AF EF =,FG FA =,∴:5:3FG EF =,∴:2:5EG FG =,∴:2:5AEG AFG S S =V V ,∴2255AEG AFG S S m ==V V ,即AEG △的面积为25m ,故选:A .【点睛】本题考查了等边三角形的判定与性质、三角形全等的判定与性质等知识点,正确找出两组全等三角形是解题关键.14.D【分析】由“SAS ”可证△ABD ≌△AEF ,利用全等三角形的性质判断可求解.【详解】解:∵AD ⊥BC ,AF ∥BC ,∴AF ⊥AD ,∴∠FAD =∠BAC =90°,∴∠FAE =∠BAD ,故①正确;在△ABD 和△AEF 中,AB BE BAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△AEF (SAS ),∴BD =EF ,∠ADB =∠AFE =90°,故②正确;∵AF =AD ,∠DAF =90°,∴∠AFD =45°=∠EFD ,∴FD 平分∠AFE ,故③正确;∵△ABD ≌△AEF ,∴S △ABD =S △AEF ,∴S 四边形ABDE =S 四边形ADEF ,故④正确;如图,过点E 作EN ⊥EF ,交DF 于N ,∴∠FEN =90°,∴∠EFN =∠ENF =45°,∴EF =EN =BD ,∠END =∠BDF =135°,在△BGD 和△EGN 中,BDG ENG BGD EGN BD NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDG ≌△ENG (AAS ),∴BG =GE ,故⑤正确,故选:D .【点睛】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当辅助线构造全等三角形是解题的关键.15.∠B =∠D (或∠C =∠E 或AB =AD )【分析】根据等式的性质可得∠BAC =∠DAE ,然后利用全等三角形的判定方法,即可解答.【详解】解:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AE =AC,∴再添加AB =AD ,利用“SAS”可以证明△ABC ≌△ADE ;添加∠B =∠D ,利用“AAS” 可以证明△ABC ≌△ADE ;添加∠C =∠E ,利用“ASA” 可以证明△ABC ≌△ADE .故答案为:∠B =∠D (或∠C =∠E 或AB =AD ).【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法,是解题的关键.16.6【分析】先根据角平分线的定义、线段垂直平分线的性质、等腰三角形的性质可得,AE BE ABE CBE A =∠=∠=∠,再根据三角形的内角和定理可得30CBE ∠=︒,设AE BE x ==,则9CE x =-,在Rt BCE V 中,根据含30度角的直角三角形的性质即可得.【详解】解:BE 平分ABC ∠,ABE CBE ∴∠=∠,ED 垂直平分AB ,AE BE ∴=,ABE A ∴∠=∠,ABE CBE A ∴∠=∠=∠,又90C ∠=︒ ,90ABE CBE A ∴∠+∠+∠=︒,解得30CBE ∠=︒,设AE BE x ==,则9CE AC AE x =-=-,在Rt BCE V 中,90C ∠=︒,30CBE ∠=︒,2BE CE ∴=,即()29x x =-,解得6x =,即6AE =,故答案为:6.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、含30度角的直角三角形的性质等知识点,熟练掌握含30度角的直角三角形的性质是解题关键.17.5【分析】利用平行线之间的距离相等可得△ABC 和△BDE 的高相等,再根据点D 是BC 中点可得△ABC 的面积是△BDE 面积的2倍,从而可得结果.【详解】解:∵12l l ∥,∴△ABC 和△BDE 的高相等,∵点D 为BC 中点,10ABC S =△cm 2,∴S △ABC=2S △BDE =10cm 2,∴S △BDE =5cm 2,故答案为:5.【点睛】本题主要考查了平行线的性质,利用平行线之间的距离处处相等得出△ABC 和△BDE 的高相等是解题的关键.18.8【分析】根据等腰三角形的性质和三角形外角的性质依次可得1A AB ∠的度数,21A AC ∠的度数,32A A B ∠的度数,43A A C ∠的度数,依此得到规律,再根据三角形外角需要小于90°即可求解.【详解】解:由题意可知:1121,AO A A A A A A ==,…;则111212AOA OA A A AA A A A ∠=∠∠=∠,,…;∵∠BOC =10°,∴12 20A AB BOC ∠=∠=︒,同理可得21324354 30 40 50 60A AC A A B A A C A A B ∠=︒∠=︒∠=︒∠=︒,,,,65768770 8090A A C A A B A A C ∠=︒∠=︒∠=︒,,,∴第9个三角形将有两个底角等于90°,不符合三角形的内角和定理,∴最多能画8条线段;故答案为:8.【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等:三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和;准确地找到规律是解决本题的关键.19.∠AEC =75°,∠DAE =15°.【分析】根据三角形内角和定理求出∠BAC ,根据角平分线的定义得到∠BAE =∠CAE =12∠BAC =33°,根据三角形的外角性质求出∠AEC ,根据直角三角形的性质求出∠DAE .【详解】解:∵∠BAC +∠B +∠C =180°,∠B =42°,∠C =72°,∴∠BAC =66°,∵AE 平分∠BAC ,∴∠BAE =∠CAE =12∠BAC =33°,∴∠AEC =∠B +∠BAE =75°,∵AD ⊥BC ,∴∠ADE =90°,∴∠DAE =90°-∠AEC =15°.【点睛】本题考查的是三角形内角和定理、三角形的高和角平分线,掌握三角形内角和等于180°是解题的关键.20.(1)BD 的长为3;(2)∠ACE 的度数为110°.【分析】(1)利用全等三角形的性质得到CD =AB =1,BC =DE =2,据此即可求得BD 的长;(2)利用全等三角形的性质得到∠ECD =∠A ,再利用三角形的外角性质即可求解.(1)解:∵△ABC ≌△CDE ,AB =1,DE =2,∴CD =AB =1,BC =DE =2,∴BD =BC +CD =2+1=3;(2)解:∵△ABC ≌△CDE ,∴∠ECD =∠A ,∵∠ACD =∠ACE +∠ECD =∠A +∠B ,∴∠ACE =∠B =110°.【点睛】本题考查了全等三角形的性质.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.21.EG 垂直平分DF ,理由见解析【分析】根据题意,证明BDE V ≌CEF △可得ED EF =,根据等腰三角形三线合一,结合G 是DF 的中点,即可得证.【详解】EG 垂直平分DF ,理由如下:AB AC = ,B C ∴∠=∠,DEC B BDE DEF FEC ∠=∠+∠=∠+∠ ,DEF B ∠=∠,BDE CEF ∴∠=∠,在BDE V 和CEF △中,B C BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,BDE ∴V ≌()CEF AAS V ,ED EF ∴=,又 点G 是DF 的中点,EG ∴垂直平分DF .【点睛】本题考查了等腰三角形的性质,全等三角形的性质与判定,证明BDE V ≌CEF △是解题的关键.22.(1)证明见解析(2)6【分析】(1)如图所示,连接BD ,CD ,先利用SAS 证明△BGD ≌△CGD 得到BD =CD ,再由角平分线的性质得到DE =DF ,即可利用HL 证明Rt △DEB ≌Rt △DFC 则BE =CF ;(2)证明Rt △ADE ≌Rt △ADF (HL ),得到AF =AE ,由(1)得BE =CF ,则AE =AF =AC +CF ,据此求出BE 的长,即可求出AE 的长.(1)解:如图所示,连接BD ,CD ,∵G 是BC 的中点,DG ⊥BC ,∴BG =CG ,∠BGD =∠CGD =90°,又∵DG =DG ,∴△BGD ≌△CGD (SAS ),∴BD =CD ,∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∠DEB =∠DFC =90°,又∵DB =DC ,∴Rt △DEB ≌Rt △DFC (HL ),∴BE =CF ;(2)解:在Rt △ADE 和Rt △ADF 中,AD AD DE DF =⎧⎨=⎩,∴Rt △ADE ≌Rt △ADF (HL ),∴AF =AE ,由(1)得BE =CF ,∴AE =AF =AC +CF ,∴AB =AE +BE =AC +CF +BE =AC +2BE ,∵AB =8,AC =4,∴BE =2,∴AE =AB -BE =6.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的性质,熟知全等三角形的性质与判定条件是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据尺规作图的步骤作图即可;(2)延长CO 至点E 使得OE OC =,连接BE ,先证明AOC BOE ∆≅∆,再证明△DBE 是等腰三角形即可.【详解】(1)如图1,AC BD 、即为所求.(2)如图2,延长CO 至点E 使得OE OC =,连接BE∵O AB 点为线段的中点,=OA OB ∴,AOC BOE ∆∆在和中,∵=OC OE AOC EOB OA OB =⎧⎪∠∠⎨⎪=⎩,AOC BOE ∴∆≅∆,,AC BE ACO OEB ∴=∠=∠,AC BD = 又,BE BD ∴=,BDO OEB ∴∠=∠,ACO BDO ∴∠=∠.【点睛】本题考查了尺规作图和全等三角形,解题的关键是做辅助线把所证的角或线段放到两个全等的三角形中.24.(1)t,(6﹣t);(2)2或4;(3)△CMQ不会变化,始终是60°,理由见解析【分析】(1)根据点P、Q的速度都为1厘米/秒.得到BQ=t厘米,AP=t厘米,则BP=AB-AP=(6-t)厘米;(2)分当∠PQB=90°时和当∠BPQ=90°时,两种情况讨论求解即可;(3)只需要证明△ABQ≌△CAP得到∠BAQ=∠ACP,则∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,即∠CMQ不会变化.(1)解:∵点P、Q的速度都为1厘米/秒.∴BQ=t厘米,AP=t厘米,∴BP=AB-AP=(6-t)厘米,故答案为:t,(6﹣t);(2)解:由题意得:AP=BQ=t厘米,BP=AB-AP=(6-t)厘米,①如图1,当∠PQB=90°时,∵△ABC是等边三角形,∴∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得6﹣t=2t,解得,t=2,②如图2,当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(6﹣t),解得,t=4,∴当第2秒或第4秒时,△PBQ 为直角三角形;(3)解:∠CMQ 不变,理由如下:∵△ABC 是等边三角形,∴AB =AC ,∠ABC =∠CAB =60°,在△ABQ 与△CAP 中,60AB CA B CAP AP BQ t =⎧⎪∠=∠=︒⎨⎪==⎩,∴△ABQ ≌△CAP (SAS ),∴∠BAQ =∠ACP ,∴∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°,∴∠CMQ 不会变化.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的性质与判定等等,熟知等边三角形的性质是解题的关键.24.(1)26P ∠=︒(2)①12P B D ∠=∠+∠(),理由见解析;②1180()2P B D ∠=︒-∠+∠;③190+()2P B D ∠=︒∠+∠【分析】(1)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠P +∠3=∠1+∠ABC ,∠P +∠2=∠4+∠ADC ,相加得到2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,继而得到2∠P =∠ABC +∠ADC ,代入数据得∠P的值;(2)①按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠PAD +∠P =∠PCD +∠D ,∠PAB +∠P =∠4+∠B ,分别用∠2,∠3表示出∠PAD 和∠PCD ,再整理即可得解;②按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAP +∠P +∠4+∠B =360°,∠2+∠P +∠PCD +∠D =360°,分别用∠2,∠3表示出∠BAP 和∠PCD ,再整理即可得解;③按解析图标记好∠1,∠2,∠3,∠4,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据题干的结论列出∠BAD +∠B =∠BCD +∠D ,∠2+∠P =∠PCD +∠D ,分别用∠2,∠3表示出∠BAD 、∠BCD 和∠PCD ,再整理即可得解;(1)解:∵AP 、CP 分别平分∠BAD 、∠BCD ,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,由(1)的结论得:∠P +∠3=∠1+∠ABC ①,∠P +∠2=∠4+∠ADC ②,①+②,得2∠P +∠2+∠3=∠1+∠4+∠ABC +∠ADC ,∴2∠P =∠ABC +∠ADC ,∴∠P =12(∠ABC +∠ADC )=12(36°+16°)=26°.(2)12P B D ∠=∠+∠(),理由如下:①∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD +∠P =∠PCD +∠D ③,∠PAB +∠P =∠4+∠B ④,∵∠PAB =∠1,∠1=∠2,∴∠PAB =∠2,∴∠PAD=∠PAB+∠BAD=∠2+180°-2∠2=180°-∠2,∴∠2+∠P =∠3+∠B ⑤,③+⑤得∠2+∠P +∠PAD +∠P =∠3+∠B +∠PCD +∠D ,∴∠2+∠P +180°-∠2+∠P =∠3+∠B +180°-∠3+∠D即2∠P +180°=∠B +∠D +180°,∴12P B D ∠=∠+∠().②11802P B D ∠=︒-∠+∠(),理由如下:如图4,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∠BAD =180°﹣2∠1,∠BCD=180°﹣2∠3,由题干可知:∠BAD +∠B =∠BCD +∠D ,∴(180°﹣2∠1)+∠B =(180°﹣2∠3)+∠D ,在四边形APCB 中,∠BAP +∠P +∠3+∠B =360°,即(180°﹣∠2)+∠P +∠3+∠B =360°,⑥在四边形APCD 中,∠2+∠P +∠PCD +∠D =360°,即∠2+∠P +(180°﹣∠3)+∠D =360°,⑦⑥+⑦得:2∠P +∠B +∠D +∠2﹣∠2+∠3﹣∠3=360°∴2∠P +∠B +∠D =360°,∴11802P B D ∠=︒-∠+∠();③1902P B D ∠=︒+∠+∠(),理由如下:如图5,∵AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,由题干结论得:∠BAD +∠B =∠BCD +∠D ,即2∠2+∠B =(180°﹣2∠3)+∠D ⑧,∠2+∠P =∠PCD +∠D ,即∠2+∠P =(180°﹣∠3)+∠D ⑨,⑨×2﹣⑧得:2∠P ﹣∠B =180°+∠D ,∴1902P B D ∠=︒+∠+∠().【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8”字形的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.26.(1)证明见解析(2)2BF CH =,理由见解析(3)323【分析】(1)先根据垂直的定义可得90ADC CEB ∠=∠=︒,从而可得90DAC DCA ∠+∠=︒,再根据90ACB ∠=︒可得DAC ECB ∠=∠,然后根据AAS 定理即可得证;(2)作AM CG ∥交直线l 于点M ,连接GM ,先根据ASA 定理证出ACM CBF ≅△△,根据全等三角形的性质可得,CM BF AM CF ==,从而可得AM GC =,再根据ASA 定理证出AMH GCH ≅△△,根据全等三角形的性质可得MH CH =,由此即可得出结论;(3)先根据ADC CEB ≅V V 可得15AD CE ==,再根据AMH GCH ≅△△可得40G AMH HC S S ==V △,利用三角形的面积公式可得163MH =,然后根据MH CH =,2BF CH =即可得出答案.(1)证明:,AD DE BE DE ⊥⊥ ,90ADC CEB ∴∠=∠=︒,90DAC DCA ∴∠+∠=︒,90ACB ∠=︒ ,90ECB DCA ∴∠+∠=︒,DAC ECB ∴∠=∠,在ADC V 和CEB △中,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADC CEB ∴≅△△.(2)解:2BF CH =,理由如下:如图,作AM CG ∥交直线l 于点M ,连接GM ,180MAC ACG ∴∠+∠=︒,3603609090180ACG BCF ACB FCG ∠+∠=︒-∠-∠=︒-︒-︒=︒ ,MAC BCF ∠=∠∴,90ACM BCE ∠+∠=︒,90BCE CBF ∠+∠=︒,ACM CBF =∠∴∠,在ACM △和CBF V 中,MAC FCB AC CB ACM CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ACM CBF ∴≅△△,,CM BF AM CF ∴==,Rt FCG V 是等腰直角三角形,CF GC ∴=,AM GC ∴=,又AM CG ∥,MAH CGH ∴∠=∠,AMH GCH ∠=∠,在AMH V 和GCH △中,MAH CGH AM GC AMH GCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AMH GCH ≅△△,MH CH ∴=,2BF CM CH ∴==.(3)解:如图,作AM CG ∥交直线l 于点M ,连接GM,ADC CEB ≅ △△,15CE =,15AD CE ∴==,AMH GCH ≅ △△,40GHC S =V ,40G AMH HC S S ∴==V △,0124AD MH ∴⋅=,即420115MH =⨯,解得163MH =,又MH CH = ,2BF CH =,3223BF MH ∴==.【点睛】本题主要考查了三角形全等的判定与性质、等腰三角形的定义,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。
专题25期中全真模拟卷05-2020-2021学年八年级数学上学期期中考试高分直通车(原卷版)

20202021学年八年级上学期数学期中考试高分直通车【人教版】专题2.5人教版八年级数学上册期中全真模拟卷05姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择12道、填空6道、解答8道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•新都区模拟)下列图形中,是轴对称图形的是()A.B.C.D.2.(2020春•沙坪坝区校级月考)下列各线段中,能与长为4,6的两线段组成三角形的是()A.2B.8C.10D.123.(2019秋•肇庆期末)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE4.(2020•温州模拟)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1B.1C.﹣5D.55.(2020春•肇东市期末)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形6.(2019秋•松滋市期末)如图,已知D为BC上一点,∠B=∠1,∠BAC=64°,则∠2的度数为()A .37°B .64°C .74°D .84°7.(2019秋•万州区期末)如图,在△ABC 中,边AC 的垂直平分线交边AB 于点D ,连结CD .若∠A =50°,则∠BDC 的大小为( )A .90°B .100°C .120°D .130°8.(2020•恩平市模拟)如图,AB =DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A .BC =BEB .AC =DE C .∠A =∠D D .∠ACB =∠DEB9.(2019•霞山区一模)如图,点P 是∠AOB 的角平分线OC 上一点,PD ⊥OA ,垂足为点D ,PD =2,M 为OP 的中点,则点M 到射线OB 的距离为( )A .12B .1C .√2D .210.(2019•大庆)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A.15°B.30°C.45°D.60°11.(2019秋•郯城县期中)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD 为直角三角形,则∠BCD的度数为()A.60°B.10°C.45°D.10°或60°12.(2019秋•西城区校级期中)如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点,如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s 的速度运动.经过()秒后,△BPD与△CQP全等.A.2B.3C.2或3D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上13.(2020秋•江岸区校级月考)五边形的内角和是,外角和是,对角线有条.14.(2019秋•铜山区期中)如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=8,点E是AB上一动点,DE的最小值为.15.(2019•广安)如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.16.(2019秋•岱岳区期中)茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需这种材料的长度为cm.17.(2019秋•镇原县期末)如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.18.(2018秋•全南县期中)在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•禅城区期末)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1,点A、B、C的对应点分别是A1、B1、C1,则A1、B1、C1的坐标为:A1(,),B1(,)、C1(,);(2)画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,则△CC1C2的面积是.20.(2020•宁波模拟)如图1是五个小正方形拼成的图形,请你移动其中一个小正方形,重新拼一个图形,使得所拼成的新图形:(1)是轴对称图形,但不是中心对称图形.(2)既是轴对称图形,又是中心对称图形.(请将两个小题依次作答在图①、②中,均只需画出符合条件的一种情形,内部涂上阴影)21.(2020•江阴市模拟)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.22.(2019秋•鹿邑县期末)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.23.(2019•重庆)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.24.(2019秋•渝中区校级期中)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE ⊥BC交BC于点E,交CA延长线于点F.(1)证明:AF=AD;(2)若∠B=60°,BD=4,AD=2,求EC的长.25.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.26.(2019秋•日照期中)综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省2021版高二上学期数学期中考试试卷A卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共14题;共28分)
1. (2分) (2020高一上·平遥月考) 不等式x2-2x-3>0的解集是()
A . {x∣-1<x<3}
B . {x∣x<-3或x>1}
C . {x∣-3<x<1}
D . {x∣x<-1或x>3}
2. (2分)设等差数列的前项和为且满足,,则中最大的项为()
A .
B .
C .
D .
3. (2分) (2020高一上·广东月考) 若,则下列不等式正确的是()
A .
B .
C .
D .
4. (2分) (2019高三上·禅城月考) 设首项为,公比为的等比数列的前项和为,则()
A .
B .
C .
D .
5. (2分) (2016高一上·广东期末) 已知函数 +2,则关于x的不等式f(3x+1)+f(x)>4的解集为()
A . (﹣,+∞)
B . (﹣,+∞)
C . (﹣,+∞)
D . (﹣,+∞)
6. (2分) (2019高二上·河南月考) 数列中,,,则()
A . 32
B . 62
C . 63
D . 64
7. (2分)“”是“”的()
A . 充分而不必要条件
B . 必要而不充分条件
C . 充分必要条件
D . 既不充分也不必要条件
8. (2分) (2020高一上·上海月考) 不等式的解集是,则的值为()
C . 0
D . 1
9. (2分)若,则下列命题中正确的是()
A .
B .
C .
D .
10. (2分) (2015高二下·福州期中) 已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.
给出如下结论:
①对任意m∈Z,有f(2m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(2n+1)=9;
正确的有()
A . ①②③
B . ①②
C . ①③
D . ②③
11. (2分) (2019高一下·吉林期中) 若,则的最小值为()
A .
D .
12. (2分)设等差数列{an}的公差是d,其前n项和是Sn ,若a1=d=1,则的最小值是()
A .
B .
C . 2 +
D . 2 -
13. (2分)(2020·柳州模拟) 已知,并且成等差数列,则的最小值为()
A . 2
B . 4
C . 5
D . 9
14. (2分)下列命题是真命题的为()
A . 若,则
B . 若,则
C . 若,则
D . 若,则
二、填空题 (共6题;共6分)
15. (1分) (2020高二下·北京期中) 一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的
离心率是________
16. (1分) (2020高一下·宜宾月考) 函数的定义域为________.
17. (1分) (2019高一上·周口期中) 已知函数是定义在区间上的偶函数,则函数的值域为________.
18. (1分)(2012·福建) 已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为________
19. (1分)已知数列{an},a1=m,m∈N* ,,若a1=2013,则a2013=________;若{an}中有且只有5个不同的数字,则m的不同取值共有________个.
20. (1分)数列1 ,2 ,,4 ,…的一个通项公式是________.
三、解答题 (共5题;共50分)
21. (5分) (2020高一上·温州期中) 已知关于的不等式 .
(1)若不等式的解集为,求实数的值;
(2)若,且不等式对都成立,求实数的取值范围.
22. (10分) (2015高三上·大庆期末) 已知数列{an}中,的对称轴为.
(1)试证明{2n•an}是等差数列,并求{an}的通项公式;
(2)设{an}的前n项和为Sn ,求Sn .
23. (10分) (2016高一下·江阴期中) 已知数列{an}满足an+1= an+t,a1= (t为常数,且t≠ ).
(1)证明:{an﹣2t}为等比数列;
(2)当t=﹣时,求数列{an}的前几项和最大?
(3)当t=0时,设cn=4an+1,数列{cn}的前n项和为Tn ,若不等式≥2n﹣7对任意的n∈N*恒
成立,求实数k的取值范围.
24. (10分)(2017·南阳模拟) 已知数列{an}的前n项和为Sn ,且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{ }的前n项和Tn .
25. (15分)(2020·邵阳模拟) 已知正项数列中, .
(1)求数列的通项公式;
(2)若数列是等差数列,且 , ,求数列的前项和 .
参考答案一、单选题 (共14题;共28分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
二、填空题 (共6题;共6分)答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、
考点:
解析:
三、解答题 (共5题;共50分)答案:21-1、
答案:21-2、
考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:
答案:23-1、答案:23-2、
答案:23-3、考点:
解析:
答案:24-1、考点:
解析:
答案:25-1、答案:25-2、
考点:解析:。