概率论与数理统计1.3 概率的古典定义

合集下载

概率论与数理统计目录

概率论与数理统计目录

概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。

概率论与数理统计的基本概念和原理简介

概率论与数理统计的基本概念和原理简介

概率论与数理统计的基本概念和原理简介概率论和数理统计是数学中重要的分支学科,它们在现代科学和生活中扮演着重要角色。

本文将对概率论和数理统计的基本概念和原理进行简要介绍。

一、概率论的基本概念和原理1. 随机试验随机试验是指具有以下特点的试验:在相同条件下可以重复进行,每次试验的结果不确定,但所有可能结果都是事先确定的且互不相容。

2. 随机事件与样本空间试验的每个可能结果称为基本事件,基本事件的集合称为样本空间。

样本空间中的子集称为随机事件。

3. 概率的定义一般来说,事件发生的概率是指该事件发生的可能性大小。

概率的定义可以通过频率的概念来解释:事件A发生的概率等于在多次重复试验中,事件A发生的频率趋近于一个常数。

4. 概率的性质概率具有以下性质:- 0 ≤ P(A) ≤ 1,概率值的取值范围在0到1之间。

- P(Ω) = 1,样本空间发生的概率为1。

- 对于任意的事件序列 {Ai},若相互不相容,则有 P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An)。

5. 概率的计算方法计算概率的常用方法有古典概型法、几何概率法、频率概率法和叠加原理等。

二、数理统计的基本概念和原理1. 总体与样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

通过对样本的统计分析,可以推断总体的性质。

2. 统计量统计量是样本的函数,用于刻画样本的某种性质。

常见的统计量有样本均值、样本方差等。

3. 参数估计参数估计是通过样本统计量推断总体参数的值。

常用的参数估计方法有点估计和区间估计。

4. 假设检验假设检验是指对于总体参数提出一个假设,并通过对样本进行统计推断来判断是否拒绝假设。

假设检验分为单侧检验和双侧检验。

5. 相关与回归分析相关分析用于刻画两个变量之间的线性关系,回归分析用于建立一个变量与其他变量之间的函数关系。

三、概率论与数理统计的应用领域概率论和数理统计广泛应用于各个领域:1. 金融风险管理概率论和数理统计对金融领域的风险管理起着关键作用,可以通过建立数学模型对金融市场进行预测和评估。

概率论与数理统计 第一章 1.3等可能概型

概率论与数理统计 第一章  1.3等可能概型
C1C1 + C1C1 = 9⋅ 3 + 3⋅ 9 = 54 . 9 3 3 9
概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为

概率的定义

概率的定义
称具有上述特点的试验为古典试验,建立在古典试验上的数 学模型为古典概型。
3 概率的公理化定义
设E是随机试验,是它的样本空间,对于E的每一事件A
都有一个实数P(A)与之对应,称为事件A的概率,如果
集合函数P()满足下列条件
1:非负性
对于每一个事件 A,有P(A) 0
2:规范性
P() 1,P() 0
2: 概率的古典定义
若试验结果一共有n个结果(样本点,基本事件),1,1 n
且每次实验中,各个基本事件出现的可能性完全相同,而事件
A有其中m个事件i1,i2 im组成,则事件A的概率
P(A) m n
注:概率的古典定义要求试验具有两个特点: 1)试验的样本空间的样本点个数有限 2)每次试验中基本事件出现的可能性相同。
i 1
i 1
1i jn
n
n
10 : P( Ai ) P( Ai )
i 1

i 1
3: 利用概率的性质计算
例1:P(A) P,且P(AB) P(AB)求:P(B)
解: P(AB) P(A B)
1 P(A B)
1 P(A) P(B) P(AB)
1 P(A) P(B) 0 P(B)1 P(A)
3:可列可加性
设A1, A2 An ,....是两两不相容的事件 即i j时,Ai Aj ,则有

P( A1 A2 An ...) P( Ai ) i 1
二 概率的性质
1:非负性
2:规范性
3:可列可加性
对于每一个事件 A,有P(A) 0
P() 1,P() 0
设A1, A2 An...是两两不相容的事件, 即i j时,Ai Aj ,则有

概率论与数理统计—古典概型

概率论与数理统计—古典概型

2023/8/17
3
3.排列:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素的所有排列的个数,叫做从n个不同元素中
取出m个元素的排列数,记为
Pnm n (n 1) (n m 1)
4.组合:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素并成一组, 叫做从n个不同元素中取出m个
元素的组合数,记为
有m1种不同的方法,在第2类中有m2种不同的方法,…… 在第n类中有mn种不同的方法, 那么完成这件事共有
M m1 m2 mn
2.乘法原理:完成1件事,需要分成n个步骤. 做第1步
有m1种不同的方法, 做第2步有m2种不同的方法,…… 做第n步有mn种不同的方法, 那么完成这件事共有
N m1 m2 mn
P( A) C9153 C52 0.1377 C15
100
2023/8/17
6
例3.袋中有a只白球,b只红球,k个人依次在袋中 取一只球,
(1)作放回抽样;(2)作不放回抽样
求第i(i=1,2,…,)人取到白球(记为事件B)的概率 (设k ≤ a+b).
2023/8/17
7
Cnm
n (n
1)
(n m!
m
1)
2023/8/17
4
例1将. n只球随机地装入N个盒子中去,问每个盒子 至多装一只球的概率(设盒子容量不限,n≤N). 解:设A为每个盒子至多装一只球, n只球随机地装入N个盒子共有 N N N N n 每个盒子至多装一只球,则第一只球共有N种装法,
第二只球有N-1种装法,……,第n只球有N-n+1 种,
故N(A)=NP((NA)-1)N…((NN-n+1)1N),n于(N是 n 1)

概率论与数理统计1.3

概率论与数理统计1.3

( N )n N! P ( A) n n N N ( N n)!
旅客 车站
某城市每周发生7次车祸,假设每天发生车祸的概率相同. 求每天恰好发生一次车祸的概率.
( 7 )7 7 ! P ( A) 7 7 7 7
车祸 天
例 设100件产品中有5件次品,现从中任意抽出3件,求: 恰有2件是次品被抽出的概率. A 解法一:设样本点为从100件产品抽出3件的组合 次品 5 件 M件 100 总数: 3 正品 95 件件 N-M 计算A的样本点数分两步: 从5件次品中抽出2件,
1 . 2
n 的增大 稳定于
实验结果与主观一致!
例2(新生儿性别)北京妇产医院6年中新生婴儿的
数量和性别统计 年份 1972 1974 1975 1977 1978 1979 总计
实验结果与主观不一致!
2883 2087 2039 1883 2177 2138 13207 2661 1976 1874 1787 2073 1917 12288 0.5200 0.5137 0.5211 0.5131 0.5122 0.5273 0.5180
P(ABC) = P(A)+P(B)+P(C)
( n)r n! P ( A) r r n n ( n r )!
例 (生日问题)假定每个人的生日在一年365天中 的每一天的可能性是均等的。设某宴会上有 n 个人 ( n 365 ),问此 n 个人中至少有两人生日在同 一天的概率为多少?
解: A 表示至少有两人生日在同一天 设 则 A 表示 每个人的生日全不相同
概 率 的 单 调 性
推论 P(AB) = P(A)P(AB).
A
B
B

1.3古典概型、几何概型

1.3古典概型、几何概型

P(
A)
=
m( A) m( S )
几何概率显然满足:
(1)对任何事件 A,P( A) ³ 0;
(2)P( S) = 1;
(3)若事件 A1, A2,L , An,L 两两互不相容,则
+?
?
( ) P( U n=1
An )
=
?P
n=1

An
古典概型、几何概型
例 5(约会问题)甲乙二人相约在 0 到T 这段时间内,在预定地 点会面.到达时刻是等可能的,先到的人等候另一人,经过时间
(1)有放回抽样;(2)无放回抽样两种情形下,
第k (k = 1, 2,L , m + n) 次取到红球的概率.
解 设事件 A表示第k次取到红球,
(1)有放回抽样: P( A) = m . m+n
(2)无放回抽样:
P( A)
=
m×Amm++nn--11 Am+n
m+n
=
m(m+ n - 1)! (m+ n)!
概率论与数理统计
Probability and Statistics
— 概率论与数理统计教学组—
第1章 随机事件及其概率
1.3 古典概型、几何概型
学习 要点
古典概型 古典概型的概率计算方法 几何概型 几何概型的概率计算方法
古典概型、几何概型
一、古典概型的引入
掷一颗骰子,问“出现偶数点”“点数大于 4”的概率分别是
针与最近的一条平行线相交的充分必要条件是 x £ l sinq .
l
2a
x •
M
古典概型、几何概型
例 6(比丰投针问题)在平面上画有等距离的平行线,平行线间

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍-CAL-FENGHAI.-(YICAI)-Company One1一、概率定义的发展与分析1.古典定义的历史脉络古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比.2.古典定义的简单分析古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提.如何在更多和更复杂的情况下,体现出“同等可能”伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题.“应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评.3.统计定义的历史脉络概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布•伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”.事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯•米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.4.统计定义的简单分析虽然统计定义不能像古典定义那样确切地算出概率,但是却给出了一个估计概率的方法.而且,它不再需要“等可能”的条件,因此,从应用的角度来讲,它的适用范围更广.但是从数学理论上讲,统计定义是有问题的.在古典概率的场合,事件概率有一个不依赖于频率的定义——它根本不用诉诸于试验,这样才有一个频率与概率是否接近的问题,其研究导致伯努利大数定律.在统计定义的场合这是一个悖论:你如不从承认大数定律出发,概率就无法定义,因而谈不上频率与概率接近的问题;但是你如承认大数定律,以便可以定义概率,那大数定律就是你的前提,而不是一再需要证明的论断了.5.公理化定义的历史脉络正因为古典定义和统计定义数学理论上的这样或那样的问题,所以到了19世纪,无论是概率论的实际应用还是其自身发展,都要求对概率论的逻辑基础作出更加严格的考察.1900年,38岁的希尔伯特(1862—1943)在世界数学家大会上提出了建立概率公理系统的问题,这就是著名的希尔伯特23个问题中的第6个问题.这引导了一批数学家投入这方面的工作.在概率公理化的研究道路上,前苏联数学家柯尔莫哥洛夫(1903—1987)成绩最为卓著,1933年,他在《概率论基础》中运用集合论和测度论表示概率论的方法赋予了概率论严密性.6.公理化定义的简单分析为什么直到20世纪才实现了概率论的公理化,这是因为20世纪初才完成了勒贝格测度与积分理论以及抽象测度与积分理论,而这都是概率论公理化体系建立的基础.柯尔莫哥洛夫借助实变函数论和测度论来定义概率概念,形成了概率论的公理化体系,他的公理体系既概括了古典定义、统计定义的基本特性,又避免了各自的局限.例如,公理中有一条,是把事件概率的存在作为一个不要证明的事实接受下来,在这个前提下,大数定律就成为一个需要证明且可以得到证明的论断,这就避免了“4”中统计定义的数学理论上的问题;而公理中关于“概率存在”的规定又有其实际背景,这就是概率的古典定义和统计定义.所以,我们说,概率论公理体系的出现,是概率论发展史上的一个里程碑,至此,概率论才真正成为了严格的数学分支.二、关于概率定义教学的几点思考对于概率的定义,教科书是先给出古典定义,然后再给出统计定义.这与历史上概率定义的发展相吻合,从“简单到复杂”.在教学中,我们不仅要明了这种顺序的设计意图,而且还要抓住不同定义的特点和思想,以引导学生更好地理解概率.1.古典定义的教学定位在前面的分析中,我们说“等可能”是古典概率非常重要的一个特征,它是古典概率思想产生的前提.正是因为“等可能”,所以才会有了“比率”.因此,“等可能性”和“比率”是古典定义教学中的两个落脚点.“等可能”是无法确切证明的,往往是一种感觉,但是这种感觉是有其实际背景的,例如,掷一枚硬币,“呈正面”“呈反面”是等可能的,因为它质地均匀;而掷一枚图钉,“钉帽着地”“顶针着地”不是等可能的,因为图钉本身给我们的感觉就是帽重钉轻.因此,“等可能”并不要多么严密的物理上或化学上的分析,只需要通过例子感知一下“等可能”和“不等可能”即可,以便让学生明白古典定义的适用对象须具备的条件.2.统计定义的教学定位从直观上讲,统计定义是非常容易接受的,但是它的内涵是非常深刻的,涉及到大数定律.在初中阶段,我们不可能让学生接触其严格的形式和证明.因此,统计定义定位在其合理性和必要性是比较恰当的.如何让学生体会其合理性和必要性?罗老师的课堂教学比较好地实现了这两点.从教学顺序来看,罗老师将“掷硬币”作为归纳统计定义的例子,“掷硬币”可以用古典定义求概率,所以概率值是明确的,而通过试验的方法计算得到的频率就可以和这个明确的概率值相比较,如此更容易让学生体会到“频率具有稳定性”这一事实,从而感受到“用频率估计概率”的合理性;罗老师将“掷图钉”作为统计定义的应用,“掷图钉”不能用古典定义求概率,由此能让学生体会到学习统计定义计算事件概率的必要性.从教学手段来看,罗老师主要采用了“学生试验”的方法,学生的亲自试验在这节课所起的作用是无可代替的:“亲自试验”获得的结果能够给学生以真实感和确切感;“亲自试验”能够让学生感受到频率的随机性和稳定性等特点.所以,像概率与统计的学习,学生应该有更多的主动权和试验权,在动手和动脑中感受概率与统计的思想和方法.3. 概率与统计教学的背后:专业素养的提升在课题研讨时,教师们表现出这样一些困惑:随着试验次数的增加,频率就越来越稳定频率估计概率,一定要大量试验实验次数多少合适事实上,这些问题涉及的就是概率与统计的专业素养.对于大多数教师而言,概率与统计相对而言比较陌生,这是很自然的,因为在教师自身接受的数学专业学习中,概率与统计就是一个弱项.但是,既然要向学生教授概率与统计,那么还是需要有“一桶水”的.就像上面的问题,翻阅任何一本《概率论与数理统计》,都可以给我们知识上的答案,而翻阅一下相关的科普读物或史料,就可以给我们思想方法上的答案.举个例子:伯努利大数定律:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则对任意的,有.狄莫弗-拉普拉斯极限定理:设m是n重伯努利试验中事件A出现的次数,又A在每次试验中出现的概率为p(),则.伯努利大数定律只是告诉我们,当n趋于无穷时,频率依概率收敛于概率p.伯努利的想法是:只要n充分大,那么频率估计概率的误差就可以如所希望的小.值得赞赏的是,他利用了“依概率收敛”而不是更直观的p,因为频率是随着试验结果变化的,在n次试验中,事件A出现n次也是有可能的,此时p就不成立了.伯努利不仅证明了上述大数定律,而且还想知道:若想要把一个概率通过频率而确定到一定的精确度,要做多少次观察才行.这时,伯努利大数定律无能为力,但是狄莫弗-拉普拉斯极限定理给出了解答:.(*)例如研究课中掷硬币的问题,若要保证有95%的把握使正面向上的频率与其概率0.5之差落在0.1的范围内,那要抛掷多少次?根据(*)式,可以估计出.三、概率论发展简史概率论有悠久的历史,它的起源与博弈问题有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 5
所以,所求概率为
C 1 P( A) C 21
2 5 4 10
2. 掷两颗骰子,求事件“至少有一颗出现6点”, “点数之和为8”的概率。 解 总的基本事件数为
1 2 1 5
6 36
2
事件A“至少出现一个6点”所包含的基本事件数为
C C 1 11
事件B“点数之和为8”所包含的样本点为
b( a b 1)! b p (a b)! ab
解法2:
a N Ca b , 不区分同色球,所有的排法共有 再将所有的位置分成两类:第k个位置和剩余的(a+b-1) 个位置,放球顺序: (1)先放置第k个位置:从一个位置上挑一个位置,在b个黑球 中取一个,当然有b种方法,由于不区分 ,除去b,所以还是1. (2)再放置剩余的(a+b-1),从中挑a个位置,放进a个白球,在 剩余的b-1个位置上放进b-1个黑球.
12! 分组总数= 5!4!3!
4.古典概率典型例题
例1.7口袋中有a只白球和b只黑球,它们除了颜色之外没有其 他的不同,现在把球随机地一只只摸出来,求第k次摸出的一 只球是黑球的概率。 解法1: 将所有球看成时不同的,所有的排法共有(a+b)! 再将所有的位置分成两类:第k个位置和剩余的(a+b-1) 个位置,放球顺序: (1)先放置第k个位置 (2)再放置剩余的(a+b-1) (1)先放置第k个位置,共有b种放法(从黑球中任取一个) (2)再放置剩余的(a+b-1),共有(a+b-1)!种放法。 因此,
(2,6),(3,5),(4, 4),(6, 2),(5,3)
所以
11 5 P( A) , P(B) 36 36
3. 包括甲,乙在内的10个人随机地排成一行, 求甲与乙相邻的概率。若这10个人随机地排成 一圈,又如何呢?
解 总的基本事件数为
10!
排成行时,事件“甲乙相邻”的基本事件数为
抛掷一颗匀质骰子,观察出现的点数 , 求“出现的 点数是不小于3的偶数”的概率.
试验
抛掷一颗匀质骰子,观察出现的点数
样本空间
Ω ={1,2,3,4,5,6} 事件A
事件A的概率
n=6
={4,6} m=2 A=“出现的点数是不小于3的偶数”
m 2 1 P( A) n 6 3
不是古典概型的例子 1.掷两枚硬币{全H,一个H一个T,全T},则 n=3,A={掷两次出现至少一次H},P(A)=? 2/3?显然不对,原因是基本事件不是等概率的. 2.掷2个骰子出现的点数之和{2,3,…,12},不是 等概率的.
30
40
50
P( A) 0.12
0.41 0.51 0.71 0.89 0.97
50个学生有2人生日相同的概率为97%,如果是55 人 ,有99%的概率,如果是100人,概率为0.9999997.
一楼房共15层,假设电梯在一楼启动时有10名乘 客,且乘客在各层下电梯是等可能的。试求下列事件
的概率:A1={10个人在同一层下};A2={10人在不同
基本事件总数 基本事件总数
1 mA C3 9! 3 P( A) n 10! 10
n 10!
mA C 9!
1 3
第五个学生抽 到入场券
另外9个学生抽 取剩下9张
所以抽签后千万别和别人说结果!!!!!
古典概率的计算:数字排列
用1,2,3,4,5这五个数字构成三位数
没有相同数字的三位数的概率
3).放回排序
从n个元素中取1个,每次放回,取m次,共有
m 种情形 n
例1.4,1.5看书!
3.简单的排列组合计算:正品率和次品率
1).设在100 件产品中,有 4 件次品,其余均为正品.
这批产品的次品率,即取1件,刚好是次品的概率
n= 100
mA= 4
任取3件,全是正品的概率
4 P( A) 0.04 100
的楼层下};A3={10人都在第15层下};A4={10人恰有
4人在第8层下}。 解
总的基本事件数:14
10
各事件含有的基本事件数分别为: A1
C
1 14
A2
P
10 14
A3 1
A4
C 13
4 10
6
所以,各事件的概率为: ………..
古典概率的计算:抽签
10个学生,以抽签的方式分配3张音乐会入场券, 抽取10张外观相同的纸签,其中3张代表入场券.求 A={第五个抽签的学生抽到入场券}的概率。
3.性质 (1)0 P( A) 1
(2) P() 1, P() 0 k (3) 若 { Ai }i 1 , 互斥,则 P( 推论 P( A) 1 P( A);
UA ) P( A )
i i 1 i 1 i
k
k
P( A) P( B), P( B A) P( B) P( A); P(A B) P( A) P( B) P( AB),
50个学生
365天
50 365
50个小球
365个盒子
C 50! P( A) 0.03 50 365
某班有n个学生,设一年N天,则他们的生日各不相
同的概率为
n CN n ! P( A) Nn
C n! 至少有两人生日相同的概率为 P( A) 1 Nn
n N
N
10
20
23
P() 0; 若 A B, 则
P( A B C) P( A) P( B) P(C) P( AB) P( AC ) P(BC ) P( ABC ).
二.古典概率的计算
1.基本过程:首先必须判断确为古典概型! 求基本事件的总数N, 求事件A所含基本事件数 nA , 利用 P( A) 求得事件A发生的概率. nA / N
总的基本事件数为 4!
A所包含的基本事件数为 1
所以
1 1 P ( A) 4! 24

2.排列组合
1).两个基本原理:乘法原理和加法原理
乘法原理: 若进行A过程有n种方法,进行B过程有m种方 法,则进行A过程后再进行B过程共有mn种方法。 A到C需在B转机,A到B有3个航班,B到C有两个航班,则A到C 有几种方法? 从10个带编号的球中依次取出2个,有多少种方法? 加法原理: 若进行A过程有n种方法,进行B过程有m种方 法,若假定过程A和过程B是并行的,则进行过 程A或过程B的方法共有m+n种。 A到B可以坐火车,也可以坐飞机,坐火车有5个车次,坐飞机 3个班次,一共有多少方式可以从A到B.
n5
3
mA P
3 5
P53 P( A) 3 0.48 5
没有相同数字的三位偶数的概率
n5
3
mB P P
2 1 4 2
P42 P21 P( B) 3 = 0.192 5
个位
百位十位
匹 配 问 题
某人写了4封信和4个信封,现随机地将信装入信封中,
求全部装对的概率。
解 设“全部装对”为事件A
m Cn .
组合数的推广:
从n个元素分成k组,每组分别有 n1 , n2 ,L , nk (n1 n2 L nk n) 个元素,则有
n! 种不同的分法.也可以这样看: n1 !n2 ! L nk !
n! nk n1 n2 Cn · nn1 · · n n1 L nk 1 C L C n1 !n2 ! L nk !
2.古典概型的概率计算公式
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
事件A由其中的m个基本事件组成
事件A包含的基本事件数 m P( A) 试验的基本事件总数 n
一个简单的例子:抛掷骰子
第一次抽取后,产品放回去
第一次抽取后,产品不放回去
8 2 n 10 10 mA 8 2 P( A) 0.16 10 10 8 2 0.1778 n 10 9 mA 8 2 P ( A) 10 9
3).分组组合
考察三种颜色的球的排列问题。设有红球5个,黑球 4个,黄球3个,按任意顺序排成一行,共有多少种 不同的排法。 解法: 实际上只需要考虑不同颜色的球在不同位置的排 法。可以按照在12个位置中选出3组位置(数量 分别是5,4,3)来考虑。12个元素中选出3组的 不同选法,可按分组公式
3 C96 P( B) 3 C100
nC
3 100
mB C
3 96
ቤተ መጻሕፍቲ ባይዱ
任取3件,刚好两件正品的概率
nC
3 100
mC C C
2 96
1 4
2 1 C96C4 P(C ) 3 C100
2).有放回抽样和无放回抽样 设在10 件产品中,有2件次品,8件正品. A=“第一次抽取正品,第二次抽取次品”
第三节 古典概率模型
一.古典概型
最早被研究的情形,基本,重要.
1.定义:两个基本特征 (1)有限性:每次试验中,所有可能发生的结果 只有有限个,即样本空间Ω是个有限集
1, 2 ,..., n
(2) 等可能性每次试验中,每一种可能结果的 发生的可能性相同,即
1 P ( A1 ) P ( A2 ) P ( An ) n 其中 Ai i , i 1, 2,L , n .
PCC
8 8 1 9 1 2
8 8
1 9
1 2
排成圈时,事件“甲乙相邻”的基本事件数为
P C C P C
8 8
1 2
1 2 所求概率为 P(1) , P(2) 5 9
相关文档
最新文档