19届高三理科数学上学期半期考试试卷答案
2019届高三数学上学期半期联考试题 理新人教版

2019学年第一学期高三年段数学(理科)学科半期考联考试卷(考试时间:2016年11月18日上午)分值:150分 完卷时间:120分钟一、选择题(本大题共12题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{}022≥--=x x x A ,{}1log 2≤=x x B ,则()R AC B =( )A .{|2}x x <B .{|12}x x x <-≥或C .{|2}x x ≥D .{|12}x x x ≤->或 2.设120.6a =,140.5b =,lg 0.4c =,则( )A .a b c <<B .a c b <<C .c b a <<D .c a b <<3.已知α为锐角,若1sin 2cos 25αα+=-,则tan α=( ) A .3 B .2 C .12 D .134.下列函数中为偶函数又在),0(+∞上是增函数的是( )A .x y )21(=B .x x y 22+=C .|ln |y x =D .2xy -=5.下列四种说法正确的是( )①若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数”是“)()(x g x f 是偶函数”的充要条件。
②命题 “,20xx R ∀∈>”的否定是“,R x ∈∀ x2≤0”③命题“若x=2,则0232=+-x x ”的逆命题是“若0232=+-x x ,则x=2” ④命题p :在ABC ∆中,若B A 2cos 2cos =,则B A =; 命题q :x y sin =在第一象限是增函数; 则q p ∧为真命题。
A.①②③④B.①③C.③④D.③ 6.将函数3sin(4)6y x π=+的图象上各点的横坐标伸长为原来的2倍,再向右平移6π个单位,所得函数图象的一个对称中心为( ) A .7(,0)48π B .(,0)3π C . 7(,0)12π D .5(,0)8π7.函数()(1)ln ||f x x x =-的图象大致为( )8.若函数32()132x a f x x x =-++在区间1(,3)2上单调递减,则实数a 的取值范围为( ) A .510(,)23 B .10(,)3+∞ C .10[,)3+∞ D .[2,)+∞9.如图所示,由函数()sin f x x =与函数()cos g x x =在区间30,2π⎡⎤⎢⎥⎣⎦上的图象所围成的封闭图形的面积为( )A .1B .2CD .10.已知()f x 是定义在R 上的奇函数,当()20,3x f x x x ≥=-时.则函数()()3g x f x x =-+ 的零点的集合为 ( )A .{21,3}-B .{}3,1,1,3-- C .{1,3} D .{23}11.已知函数x xxx f sin 11ln )(+-+=,则关于a 的不等式0)4()2(2>-+-a f a f 的解集是( ) A .()2,3 B .)2,3(- C .)5,2( D .()5,312.设函数a ax x e x f x22)12()(+--=,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .⎪⎭⎫⎢⎣⎡-21,43e B .33[,)24e - C .⎪⎭⎫⎢⎣⎡21,43e D .3[,1)2e二、填空题(本大题共4小题,每小题5分,共20分)13.已知扇形的圆心角为060,其弧长为π,则此扇形的面积为 。
陕西师范大学附属中学2022-2023学年高三上学期期中理科数学试题含解析

A. B. C.2D.
【答案】B
【解析】
【分析】将 代入双曲线方程求出点 的坐标,通过解直角三角形列出三参数 , , 的关系,求出离心率的值.
【详解】由于 轴,且 在第一象限,设
所以将 代入双曲线的方程得 即 ,
7.侏罗纪蜘蛛网是一种非常有规律的蜘蛛网,如图是由无数个正方形环绕而成的,且每一个正方形的四个顶点都恰好在它的外边最近一个正方形四条边的三等分点上,设外围第1个正方形的边长是m,侏罗纪蜘蛛网的长度(蜘蛛网中正方形的周长之和)为Sn,则()
A.Sn无限大B.Sn<3(3+ )m
C.Sn=3(3+ )mD.Sn可以取100m
17.已知 中,角A,B,C的对边分别为a,b,c, .
(1)若 ,求 的值;
(2)若 的平分线交AB于点D,且 ,求 的最小值;
【答案】(1) ;(2)4
【解析】
【分析】(1)由 ,利用正弦定理将边转化为角得到 ,再根据 ,有 ,然后利用两角差的正弦公式展开求解.
(2)根据 的平分线交AB于点D,且 ,由 ,可得 ,化简得到 ,则 ,再利用基本不等式求解.
【详解】设 , ,
则 , ,
如图所示,
连接 交 于点 ,连接 、 ,
因为 平面 , 平面 ,
所以 ,而 ,所以四边形 是直角梯形,
则有 ,
, ,
所以有 ,
故 ,
因为 平面 , 平面 ,
所以 ,又因为 为正方形,所以 ,
而 平面 ,
所以 平面 ,即 平面 ,
,
所以 , ,
故答案为:③④.
江西省临川第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

2018—2019学年度上学期临川一中期末考试高三理科数学试卷卷面满分:150 分 考试时间: 120分钟 命题人:朱建洲 审题人:许卫民、张文军一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1M =-,{}2,N x x a a M ==∈,则集合=⋃N M ( ) A.{}1,0,1-B. {}2,0,2-C. {}0D.{}2,1,0,1,2--2.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作5~10年的员工400人,工作0~5年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作5~10年的员工代表有( ) A .8人B .16人C .4人D .24人3.在ABC ∆中,,1CA CB CA CB ⊥==,D 为AB 的中点,将向量CD u u u r 绕点C 按逆时针方向旋转90o得向量CM u u u u r ,则向量CM u u u u r在向量CA u u u r 方向上的投影为( )A.1-B.1C.12-D.124.已知复数(2i)i 5i(,)m n m n -=+∈R ,则复数i1im n z +=-的共轭复数z 虚部为( ) A .32B .32-C .72D .72- 5.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8 C. 3 D .4 6.已知某几何体的三视图如图所示,则该几何体的体积为( ) A. 2π B. 3π C. 5π D. 7π 7.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图,给出了利用秦九韶算法求某多项式值的一个实例,若输入x 的值为2,则输出v 的值为( )A. 621-B. 62C. 631- D. 63 8.若20π<<x ,则1tan <x x 是1sin <x x 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.如图,在由0x =, 0y =, 2x π=,及cos y x =围成区域内任取一点,则该点落在0x =,sin y x =及cos y x =围成的区域内(阴影部分)的概率为( )A. 212-B. 212- C. 322- D. 21- 10.在三棱锥S ABC -中,2AB BC ==, 2SA SC AC === ,二面角S AC B--的余弦值是 33,则三棱锥S ABC -外接球的表面积是( )A. 32π B. 2π C. 6π D. 6π11.已知函数ln ,0()ln(),0mx x x f x mx x x ->⎧=⎨+-<⎩.若函数()f x 有两个极值点12,x x ,记过点11(,())A x f x 和22(,())B x f x 的直线斜率为k ,若02k e <≤,则实数m 的取值范围为( )A.1(,2]eB.1(,]e eC.(,2]e eD.1(2,]e e + 12.已知抛物线C :()022>=p py x 的焦点到准线的距离为2,直线1+=kx y 与抛物线C交于N M 、两点,若存在点()1,0-x Q 使得QMN ∆为等边三角形,则=MN ( ) A. 8 B. 10 C. 12 D. 14第Ⅱ卷 (非选择题共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.已知菱形ABCD 中,2=CD ,060=∠ABC ,分别以A 、B 、C 、D 为圆心,1为半径作圆,得到的图形如下图所示,若往菱形内投掷10000个点,则落在阴影部分内的点约有________________个.(3取1.8) 14.设⎰-=22cos ππxdx a ,则421⎪⎭⎫⎝⎛++x a x 的展开式中常数项为_________.15.已知数列{}n a 的首项21=a ,方程23cos sin 12019-=-⋅+⋅+n n a x a x x 有唯一实根,则数列{}n a 的前n 项和为_________.16.在平面直角坐标系xOy 中,已知圆1:22=+y x O ,直线a x y l +=:,过直线l 上点P 作圆O 的切线PB PA ,,切点分别为B A ,,若存在点P 使得→→→=+PO PB PA 23,则实数a 的取值范围是 .三、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知ABC △中,2BC =,45B =︒,(01)AD AB λλ=<<u u u r u u u r.(I )若1=∆BCD S ,求CD 的长;(II )若30A =︒,31=λ,求sin sin ACDDCB ∠∠的值.18.(本小题满分12分)如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,BE EC ⊥,6BC =,3AB =30ABC ∠=︒.(I )求证:AC BE ⊥;(II )若二面角B AC E --为45︒,求直线AB 与平面ACE 所成角的正弦值.19. (本小题满分12分)已知椭圆()222210x y a b a b+=>>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63x 轴正半轴一点(),0m 且斜率为33-的直线l 交椭圆于,A B 两点.(I )求椭圆的标准方程;(II )是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由.20.(本小题满分12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示:并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示:表(1) 表(2)(I )将表(1)补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关?(II )现从表(2)中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为X ,求X 的分布列及数学期望()E X .n a b c d =+++.21.(本小题满分12分)已知函数)(1ln )(R a x ax x f ∈--=. (I )求)(x f 的单调区间; (II )若0=a ,令223)1()(++++=x x tx f x g ,若1x ,2x 是)(x g 的两个极值点,且0)()(21>+x g x g ,求正实数t 的取值范围.选做题(本小题满分10分):(以下两道选做题任选一道,若两道都做按第一道给分) 22.在直角坐标系xOy 中,直线l 的参数方程为5cos sin x t y t αα=+⎧⎨=⎩,(t 为参数,α为直线倾斜角).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4cos ρθ=.(Ⅰ)当45α=o 时,求直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)已知点C 的直角坐标为(2,0)C ,直线l 与曲线C 交于,A B 两点,当ABC ∆面积最大时,求直线l 的普通方程.23.已知函数错误!未找到引用源。
福建省莆田第一中学2019届高三上学期期末考试数学(理)试题 Word版含答案

2018-2019学年莆田一中高三上学期期末理科数学考试2019-1-27命题人:钱剑华 审核人:曾献峰一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1. 若21zi i=-+(i 为虚数单位),则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B = ( )A. (0,2)B. (1,0)-C. (2,0)-D. (2,2)-3.下列叙述中正确的是( )A.命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题为“a +b 不是偶数,则a 、b 都是奇数”B.“方程221Ax By +=表示椭圆”的充要条件是“A B ≠”C.命题“2,0x R x ∀∈>”的否定是“200,0x R x ∃∈≥”D. “m =2”是“1l :()2140x m y +++=与2l : 320mx y +-=平行”的充分条件4.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .955.《九章算术》一书中,第九章“勾股”中有如下问题:今有勾八步,股一十五步.问勾中容圆径几何?其意思是,今有直角三角形,短的直角边长为8步,长的直角边长为15步,问该直角三角形能容纳圆的直径最大是多少?通过上述问题我们可以知道,当圆的直径最大时,该圆为直角三角形的内切圆,则往该直角三角形中随机投掷一点,该点落在此三角形内切圆内的概率为( ) A.320π B.310π C.4π D 5π6.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为( ) A .8-4π3 B .8-π C .8-2π3D .8-π37.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,若将f (x )图象上的所有点向右平移π6个单位长度得到函数g (x )的图象,则函数g (x )的单调递增区间为( )A.⎣⎡⎦⎤k π-π4,k π+π4,k ∈Z B.⎣⎡⎦⎤2k π-π4,2k π+π4,k ∈Z C.⎣⎡⎦⎤k π-π3,k π+π6,k ∈ZD.⎣⎡⎦⎤2k π-π3,2k π+π6,k ∈Z 8.函数f (x )=ln|x -1||1-x |的图象大致为( )9.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若AP →=xAB →+yAD →,则3x +2y 的最大值为( ) A .4B .5C .2D .1310.已知定义在R 上的可导函数f (x )的导函数为()f x ',若对于任意实数x ,有f (x )>()f x ',且y =f (x )-1为奇函数,则不等式f (x )<e x 的解集为( )A .(-∞,0)B .(0,+∞)C .(-∞,e 4)D .(e 4,+∞)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得1221sin sin a c MF F MF F =∠∠,则该椭圆离心率的取值范围为( ) A .(0,2-1) B.⎝⎛⎭⎫22,1C.⎝⎛⎭⎫0,22 D .(2-1,1)12.抛物线y 2=8x 的焦点为F ,设A (x 1,y 1),B (x 2,y 2)是抛物线上的两个动点,若x 1+x 2+4=233|AB |,则∠AFB 的最大值为 ( )A.π3B.3π4C.5π6D.2π3二、填空题(本题共4道小题,每小题5分,共20分)13.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .14. ()()6221x x -+的展开式中4x 的系数为 .15.2016年9月3日,二十国集团(G20)工商峰会在杭州开幕,为了欢迎二十国集团政要及各位来宾的到来,杭州市决定举办大型歌舞晚会.现从A 、B 、C 、D 、E 5名歌手中任选3人出席演唱活动,当3名歌手中有A 和B 时,A 需排在B 的前面出场(不一定相邻),则不同的出场方法有 .16.已知函数f (x )=(3x +1)e x +1+mx ,若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是 .三.解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在等比数列}{n a 中,首项81=a ,数列}{n b 满足n n a b 2log =,且15321=++b b b .(1)求数列}{n a 的通项公式;(2)记数列}{n b 的前n 项和为n S ,又设数列}1{n S 的前n 项和为n T ,求证:43<n T . 18.(本小题满分12分)如图,在四棱锥S —ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥DC ,平面SAD ⊥平面ABCD ,P 为AD 的中点,SA =SD =2,BC =12AD =1,CD =3.(1)求证:SP ⊥AB ; (2)求直线BS 与平面SCD 所成角的正弦值; (3)设M 为SC 的中点,求二面角S —PB —M 的余弦值. 19.(本小题满分12分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1—50名和951—1000名的学生进行了调查,得到表格中的数据,试问:能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系? (3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取9人,进一步调查他们良好的养眼习惯,并且在这9人中任抽取3人,记名次在1—50名的学生人数为X ,求X 的分布列和数学期望.20. (本小题满分12分)已知点C 为圆22(1)8x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点A (1,0)和AP 上的点M ,满足0MQ AP ⋅=,2AP AM =.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,F H ,O 是坐标原点,且2334OF OH ≤⋅≤时,求k 的取值范围. 21.(本小题满分12分)已知函数f (x )=a ln x -x +1x ,其中a >0. (1)若f (x )在(2,+∞)上存在极值点,求a 的取值范围; (2)设∀x 1∈(0,1),∀x 2∈(1,+∞),若f (x 2)-f (x 1)存在最大值,记为M (a ),则 当a ≤e +1e 时,M (a )是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.请考生在第(22)、(23)题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。
2019届高三上学期期中考试数学(理)试题答案

理科数学高三年级期中考试试题参考答案1-4、BDAD ;5-8、CBAC ;9-12、DCBC ;13、10-;14、3;15、1+=ex y ;16、]22[,-; 17.⑴ 易知:0,a ≠由题设可知()31,1,1122 1.2 2.1.n d a aa n n d d a ⎧+=⎪=⎧⎪∴∴=+-⋅=-⎨⎨=⎩⎪⋅=⎪⎩………6分⑵ 由(I )知2232-+=n b nn ,∴)22420()333(242-++++++++=n T nnn n n n n n -+-=⨯-++--=2)19(89222091)91(9 ………12分 18.⑴)62sin(2cos 2cos 212sin 231cos 2)62sin()(2ππ+=+-=-+-=x x x x x x f ; ∴)(x f 的最小正周期ππ==22T ; 由)(2236222z k k x k ∈+≤+≤+πππππ;解得)(326z k k x k ∈+≤≤+ππππ∴)(x f 的单调递减区间为)](32,6[z k k k ∈++ππππ。
………6分⑵由21)62sin()(=+=πx A f ,),0(π∈A ,得3π=A又9cos ||||=⋅=⋅A AC AB AC AB ,∴18=bc 又c a b ,,成等差数列,∴c b a +=2由余弦定理得bc c b A bc c b a 3)(cos 22222-+=-+=,解得23=aABC ∆周长为29=++c b a ………12分 19.⑴由列联表可知,22200(70406030) 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.∵2.198 2.072>,∴能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. …………4分 ⑵①依题意,可知所抽取的10名30岁以上网民中,经常使用共享单车的有60106100⨯=(人), 偶尔或不用共享单车的有40104100⨯=(人). 则选出的3人中至少2人经常使用共享单车的概率为21364633101023C C C P C C =+=. …………8分②由22⨯列联表,可知抽到经常使用共享单位的频率为1301320020=, 将频率视为概率,即从A 市市民中任意抽取1人,恰好抽到经常使用共享单车的市民的概率为1320. 由题意得)2013,10(~B X ,∴1313()10202E X =⨯=;13791()10202040D X =⨯⨯=. …………12分 20.⑴在直三棱柱中1CC AB ⊥,又1C F AB ⊥,11,C F C C ⊂平面11BCC B ,111CC C F C =,∴AB ⊥平面11BCC B ,又∵AB ⊂平面EBA ,∴平面ABE ⊥平面11B BCC .· ……………………5分 ⑵由(1)可知AB BC ⊥,以B 点为坐标原点,BC 为X 轴正方向,BA 为Y 轴正方向,1BB 为Z 轴正方向,建立坐标系.设 1AA a =,()000B ,,,()200C ,,,()020A ,,,()100B a ,,,()120C a ,,,()102A a ,,, ()11E a ,,,()100F ,,,· ……………………6分 直线1FC 的方向向量()10a =,,a ,平面1ACC A 的法向量()110=,,m ,2a =,· ……………………·8分 ()020BA =,,,()112BE =,,,()200BC =,,, 设平面ABE 的法向量()1x y z =,,n ,∴2020y x y z =⎧⎨++=⎩,∴()1201=-,,n ,· ……………………10分 设平面CBE 的法向量()2x y z =,,n , ∴2020x x y z =⎧⎨++=⎩,∴()2021=-,,n , ……………………11分 记二面角A BE C --的平面角为θ,1cos 5θ=,∴sin 5θ=∴二面角A BE C --的平面角的正弦值为5. ……………………12分21.⑴函数()f x 的定义域为()-∞+∞,,()()()e 1e e e x x x xf x x kx x kx x k '=+--=-=-, ·········1分 ①当0k ≤时,令()0f x '>,解得0x >.∴()f x 的单调递减区间是()0-∞,,单调递增区间是[)0+∞,; ·········2分 ②当01k <<时,令()0f x '>,解得lnk x <或0x >.∴()f x 在()ln k -∞,和()0+∞,上单调递增,在[]ln 0k ,上单调递减; ·········3分 ③当1k =时,()0f x '≥,()f x 在()-∞+∞,上单调递增;· ········4分④当1k >时,令()0f x '>,解得0x <或ln x k >,所以()f x 在()0-∞,和()ln k +∞,上单调递增,在 []0ln k ,上单调递减. ·········5分 ⑵()01f =-, ①当01k <≤时,由(1)知,当()0x ∈-∞,时, ()()()()()22max ln ln 1ln ln 11022k k f x f x f k k k k k ⎡⎤≤==--=--+<⎣⎦,此时()f x 无零点, ·········6分 当[)0x ∈+∞,时,()222e 2e 20f k =-≥->.又∵()f x 在[)0+∞,上单调递增,∴()f x 在[)0+∞,上有唯一的零点,∴函数()f x 在定义域()-∞+∞,上有唯一的零点;· ········7分 ②当1k >时,由(1)知,当()lnk x ∈-∞,时,()()()max 010f x f x f ≤==-<,此时()f x 无零点;· ········8分 当[)ln x k ∈+∞,时,()()ln 010f k f <=-<,()()()2211111e e 22k k k k k f k k k ++⎡⎤+++=-=-⎢⎥⎢⎥⎣⎦.令()21e 2tg t t =-,12t k =+>,则()e t g t t '=-,()e 1t g t ''=-,∵2t >,()0g t ''>,()g t '在()2+∞,上单调递增,()()22e 20g t g ''>=->,∴()g t 在()2+∞,上单调递增,得()()22e 20g t g >=->,即()10f k +>.∴()f x 在[)ln k +∞,上有唯一的零点,故函数()f x 在定义域()-∞+∞,上有唯一的零点.·········11分 综合①②知,当0k >时函数()f x 在定义域()-∞+∞,上有且只有一个零点. ……………·12分 22.⑴由4cos ρθ=得24cos ρρθ=,化为直角坐标方程为224x y x +=, 所以圆C 的直角坐标系方程为2240x y x +-=.由12 2x y =⎧⎪⎨=⎪⎪⎪⎩消t得102x y --=,所以直线l 的普通方程为2210x y --=.…………5分 ⑵显然直线l 过点102M ⎛⎫ ⎪⎝⎭,,将122x y ⎧=⎪⎪⎨⎪=⎪⎩代入圆C 的直角坐标方程2240x y x +-=得27024t --=, 根据直线参数方程中参数的几何意义知:47||||||21==⋅t t MB MA . ……………………10分 23.⑴若不等式()1f x m ≥-有解,只需()f x 的最大值()1max f x m ≥-即可. 因为()()12123x x x x --+≤--+=,所以13m -≤,解得24m -≤≤,所以实数m 的最大值4M =. ……………………5分 (2)根据(1)知正实数a ,b 满足2234a b +=, 由柯西不等式可知()()()2223313a ba b ++≥+,所以,()2316a b +≤,因为a ,b 均为正实数,所以34a b +≤(当且仅当1a b ==时取“=”). ……………………10分。
2019年高三上学期联考数学(理)试题含答案

2019年高三上学期联考数学(理)试题含答案一、选择题(本大题共10题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={0,1,2,3},N =,则=( ) A .{0}B .C .D . {1,2}2.已知函数,则 ( ) A .1B .-2C .2D .3.要得到函数的图象,只需将函数的图象( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度4. 由曲线,直线及轴所围成的图形的面积为( ) A .103B .4C .163D .6 5.在中,角所对的边分别为,表示的面积,若2221cos cos sin ,()4a B b A c C S b c a +==+-,则( )A .B .C .D .6.若a ,b 为实数,则“”是“”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7. 已知函数()()1ln 1f x y f x x x ==--,则的图象大致为( )8. 已知锐角满足,,则= ( ) A . B .πC . 或πD .9.如果实数满足不等式组302301x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,目标函数的最大值为6,最小值为0,则实数的值为( ) A .1B .2C .3D .410.定义域为R 的函数,若对任意两个不相等的实数,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数为“H 函数”,现给出如下函数:①②③④其中为“H 函数”的有( ) A .①②B .③④C . ②③D . ①②③二、填空题(大题共5题,每小题5,共25分,把答案填写在答题卡中横线上) 11. 已知复数,且是实数,则实数k =12. 已知角的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2=__________13. 若两个非零向量,满足,则向量与的夹角为____14.已知定义在上的函数满足以下三个条件:①对于任意的,都有 ;②函数的图象关于轴对称;③对于任意的,且 ,都有。
2019届高三数学上学期半期联考试题理

2019届高三数学上学期半期联考试题理一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把答案填涂在答题卷相应位置上...............。
1.已知集合M={}0x ,2y |y x >=,N=(){}2x x 2lg y |x -=,则M ∩N 为( )A .(1,2)B .(1,∞+)C .(2,∞+)D .[1,∞+)2.下列函数中,在区间(0,∞+)上为增函数的是( )A .y=B .2)1(-=x yC .x y -=2D .)1(log 5.0+=x y 3.下列四个结论正确结论的是( )A .设b a ,为非零向量,若,则a ∥b 恒成立; B .命题“若x 2=1,则x=1”的否命题为:“若x 2=1,则x ≠1”;C .“命题p ∨q 为真”是“命题p ∧q 为真”的充分不必要条件;D .关于x 的方程0a x 2ax 2=+-有且仅有一个实根,则1a ±=;4.已知命题p :“∃0x ∈R ,使得01ax 2x 020<++成立”为真命题,则实数a 满足( ). A .[-1,1) B .(-∞,-1)∪(1,+∞) C .(1,+∞) D .(-∞,-1)5.设x ,y ∈R ,向量a =(x ,1),b =(1,y ),c =(2,﹣4)且a ⊥c ,b ∥c , b a = ( )A .5B .10C .52D .106.函数)sin()(φω+=x x f (2,0πφω<>)的图象如图所示,为了得到x x g 2cos )(=的图象,则只需将 f (x )的图象( )A .向右平移6π个长度单位B .向右平移12π个长度单位 C .向左平移6π个长度单位 D .向左平移12π个长度单位 7.已知α为第二象限角,3sin cos αα+=,则cos 2α=( ) A 5 B 5.5.58.函数2)(,log )(22+-==x x g x x f ,则)()(x g x f 的图象只可能是( )A .B .C .D .9.已知点C 在以O 为圆心的单位圆圆弧AB 上运动(含端点),且0=•OB OA , OB y OA x OC 2+=),(R y x ∈,则y x +2 的取值范围是( ) A .B .C .D . 10.已知函数的图象与直线m y =有三个交点的横坐标分别为x 1,x 2,x 3(x 1<x 2<x 3),那么x 1+2x 2+x 3的值是( )A .43π B .34π C .35π D .23π 11.设)(x f 是定义在R 上的偶函数,且)2()2(x f x f -=+,当[]2,0∈x 时, 1)2()(-=x x f ,若关于x 的方程0)2(log )(=+-x x f a (a >0且a ≠1) 在区间(﹣2,6)内恰有4个不等的实数根,则实数a 的取值范围是( )A .(,1)B .(1,4)C .(1,8)D .(8,+∞)12.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,则关于函数f (x )有以下四个命题:①f (f (x ))=0;②函数f (x )是偶函数;③任意一个非零有理数T ,f (x+T )=f (x )对任意x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是( )A .4B .3C .2D .1 二、填空题:本题共4小题,每小题4分,共16分。
高三理科数学期末试题及答案

高三年级第一学期期末统一考试数学试卷(理工类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题:每小题5分:共40分.在每小题给出的四个选项中:选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N =A .{}|01x x ≤<B .{|01x x <<C .{}|0x x ≥D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图:则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处:现随机抽取其中的200辆进行车速统计:统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h :试km/h )错误!估计2000辆车中:在这段时间内以正常速度通过该处的汽车约有A .30辆B .300辆C .170辆D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y :则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示:则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D :如果存在正实数m :使得对任意x D ∈:都有()()f x m f x +>:则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数:且当0x >时:()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”:则实数a 的取值范围是 A .0a > B .5a < C.10a<D .20a <第二部分(非选择题 共110分)二、填空题:本大题共6小题:每小题5分:共30分.把答案填在答题卡上.侧视图俯视图9.函数2sin(2)16y x π=++的最小正周期是 :最小值是 .10.若x :y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列n a 中:若22a :则132a a 的最小值是 .12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间:甲同学不与老师相邻:则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心):且满足||25CA CB +==AB .14.已知点O 在ABC ∆的内部:且有xOA yOB zOC ++=0:记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===:则::AOB BOC AOC S S S ∆∆∆= :若2,3,4x y z ===:则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题:共80分.解答应写出文字说明:演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班:现从高一年级选10名同学组成社区服务小组:其中高一(1)班选取3名同学:其它各班各选取1名同学.现从这10名同学中随机选取3名同学:到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率:(Ⅱ)设X 为选出同学中高一(1)班同学的人数:求随机变量X 的分布列和数学期望.16.(本小题满分13分)如图:在ABC ∆中:点D 在BC 边上:7,42CAD AC π∠==:cos 10ADB ∠=-.(Ⅰ)求sin C ∠的值:(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)如图:在四棱锥P ABCD -中:底面ABCD 是菱形:且60DAB ∠=︒.点E 是棱PC 的中点:平面ABE 与棱PD 交于点F .(Ⅰ)求证:AB ∥EF :(Ⅱ)若PA PD AD ==:且平面PAD ⊥平面ABCD : 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+:其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数:求a 的取值范 围:(Ⅱ)当e a =-时:(ⅰ)证明:()20f x +≤:19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A :B 两点. (Ⅰ)求椭圆C 的离心率: (Ⅱ)求证:OA OB ⊥: (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分) 已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数:且满足条件:①1k a a =:②11212(1,2,3,,1)n n n n a a n k a a +++=+=-.(Ⅰ)若13,2k a ==:求出这个数列: (Ⅱ)若4k =:求1a 的所有取值的集合: (Ⅲ)若k 是偶数:求1a 的最大值(用k 表示).数学答案(理工类) .1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空:第一空3分:第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A :则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0:1:2:3:则03373107(0)24C C P X C ⋅===: 123731021(1)40C C P X C ⋅===: 21373107(2)40C C P X C ⋅===:30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分 16.(本小题满分13分) 解:(Ⅰ)因为cos 10ADB ∠=-:所以sin 10ADB ∠=. 又因为4CAD π∠=:所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45=. ………………………7分 (Ⅱ)在ACD ∆中:由ADCAC C AD ∠=∠sin sin:得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形:所以AB ∥CD . 又因为AB ⊄面PCD :CD ⊂面PCD :所以AB ∥面PCD . 又因为,,,A B E F 四点共面:且平面ABEF平面PCD EF =:所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G :连接,PG GB .因为PA PD =:所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD : 且平面PAD平面ABCD AD =:所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中:因为AB AD =: 60DAB ∠=︒:G 是AD 中点: 所以AD GB ⊥.如图:建立空间直角坐标系G xyz -.设2PA PD AD a ===: 则(0,0,0),(,0,0)G A a :,0),(2,0),(,0,0),)B C a D a P --.又因为AB ∥EF :点E 是棱PC 中点:所以点F 是棱PD中点.所以(,,)22E a -:(2a F -.所以3(2a AF =-:(,2a EF =.设平面AFE 的法向量为(,,)x y z =n :则有0,0.AF EF ⎧⋅=⎪⎨⋅=⎪⎩n n所以,.z y x ⎧=⎪⎨=⎪⎩令3x =:则平面AFE 的一个法向量为=n .因为BG ⊥平面PAD :所以(0,,0)GB =是平面PAF 的一个法向量.因为cos ,39GB <GB >GB⋅===⋅n n n所以平面PAF 与平面AFE . ……………………13分 18.(本小题满分14分)解:函数()f x 定义域),0(+∞∈x :1()f x a x'=+.(Ⅰ)因为()f x 在区间[1,2]上为增函数:所以()0f x '≥在[1,2]x ∈上恒成立: 即1()0f x a x '=+≥:1a x≥-在[1,2]x ∈上恒成立: 则1.2a ≥- ………………………………………………………4分(Ⅱ)当e a =-时:() e ln f x x x =-+:e 1()x f x x-+'=. (ⅰ)令0)(='x f :得1ex =. 令()0f x '>:得1(0,)e x ∈:所以函数)(x f 在1(0,)e 单调递增.令()0f x '<:得1(,)e x ∈+∞:所以函数)(x f 在1(,)e +∞单调递减.所以:max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知: max ()2f x =-: 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(xx x g -='. 令0)(='x g :得e x =.令()0g x '>:得(0,e)x ∈:所以函数)(x g 在(0,e)单调递增: 令()0g x '<:得(e,)x ∈+∞:所以函数)(x g 在(e,)+∞单调递减:所以:max lne 313()(e)2e 2e 2g x g ==+=+<: 即2)(<x g . 所以)(|)(|x g x f > :即>|)(|x f ln 32x x +.所以:方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分) 解:(Ⅰ)由题意可知24a =:243b =:所以22283c a b =-=.所以3c e a ==.所以椭圆C的离心率为3. …………………………3分 (Ⅱ)若切线l 的斜率不存在:则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -:则110OA OB ⋅=-=.所以OA OB ⊥. 同理:当:1l x =-时:也有OA OB ⊥. 若切线l 的斜率存在:设:l y kx m =+1=:即221k m +=.由2234y kx m x y =+⎧⎨+=⎩:得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y :22(,)B x y :则122631kmx x k +=-+:21223431m x x k -=+.所以2212121212()()()y y kx m kx m k x x km x x m =++=+++. 所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+ 22244431m k k --=+2224(1)44031k k k +--==+. 所以OA OB ⊥.综上所述:总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切:则圆O 半径即为OAB ∆的高: 当l 的斜率不存在时:由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时:由(Ⅱ)可知:AB ===223131k k ==++231k =+. 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++ 24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时:等号成立).所以AB ≤.此时:max (S )OAB ∆=.综上所述:当且仅当3k =±时:OAB ∆面积的最大值为3.…………………14分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==:由①知32a =: 由②知:21211223a a a a +=+=:整理得:2222310a a -+=.解得:21a =或212a =. 当21a =时:不满足2323212a a a a +=+:舍去: 所以:这个数列为12,,22. …………………………………………………3分 (Ⅱ)若4k =:由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=:所以111(2)(1)0n n n n a a a a ++--=.所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=:显然不满足条件: 所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=:共有下面4种情况: (1)若211a a =:3212a a =:4312a a =:则41114a a a ==:解得112a =: (2)若2112a a =:321a a =:4312a a =:则4111a a a ==:解得11a =:(3)若2112a a =:3212a a =:431a a =:则4114a a a ==:解得12a =:(4)若211a a =:321a a =:431a a =:则4111a a a ==:解得11a =: 综上:1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意:设*2,,m 2k m m =∈≥N .由(II )知:112n n a a +=或11(1,2,3,21)n n a n m a +==-.假设从1a 到2m a 恰用了i 次递推关系11n n a a +=:用了21m i --次递推关系112n n a a +=: 则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z . 当i 是偶数时:0t ≠:2111()2tm a a a =⋅=无正数解:不满足条件: 当i 是奇数时:由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤:所以112m a -≤.又当1i =时:若213221222211111,,,,222m m m m a a a a a a a a ---====: 有222111()2m m a a --=⋅:222112m m a a a -==:即112m a -=.所以:1a 的最大值是12m -.即1212k a -=.…………………………………13分。