立体几何垂直的证明

合集下载

立体几何第五讲 垂直的性质和证明学生

立体几何第五讲 垂直的性质和证明学生

(2)平面与平面垂直的判定定理
文字语言
图形语言
符号语言
判定 如果一个平面经过另一个平面的一条 定理 垂线那么这两个平面互相垂直
l⊂β ⇒α⊥β
l⊥α
(3)平面与平面垂直的性质定理 文字语言
性质 定理
如果两个平面垂直,那么在 一个平面内垂直于它们交线 的直线垂直于另一个平面
图形语言
符号语言
α⊥β α∩β=a ⇒l⊥α l⊂β l⊥a
A.4 B.3 C.2 D.1 6.如图,正方体 ABCD-A1B1C1D1 的棱长为 1,过 A 点作平面 A1BD 的垂线,垂足为点 H, 有下列三个结论:
①点 H 是△A1BD 的中心; ②AH 垂直于平面 CB1D1; ③AC1 与 B1C 所成的角是 90°. 其中正确结论的序号是________. 7. 如图,AB 为⊙O 的直径,PA 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN⊥PM, N 为垂足.
6
(1)求证:AN⊥平面 PBM. (2)若 AQ⊥PB,垂足为 Q, 求证 NQ⊥PB.
8. 如图,在直三棱柱 ABC—A1B1C1 中,E、F 分别是 A1B、A1C 的中点,点 D 在 B1C1 上, A1D⊥B1C1. 求证:(1)EF∥平面 ABC;
(2)平面 A1FD⊥平面 BB1C1C.
3 积.
2
[玩转跟踪] 1.(2018·江苏高考)在平行六面体 ABCD­A1B1C1D1 中,AA1=AB,AB1⊥B1C1. 求证:(1)AB∥平面 A1B1C; (2)平面 ABB1A1⊥平面 A1BC.
2.(2020·安徽淮北一中模拟)如图,四棱锥 P­ABCD 的底面是矩形,PA⊥ 平面 ABCD,E,F 分别是 AB,PD 的中点,且 PA=AD. 求证:(1)AF∥平面 PEC; (2)平面 PEC⊥平面 PCD.

立体几何平行垂直的证明

立体几何平行垂直的证明
平行、垂直的证法方法归纳总结
一、平行问题的证明方法
平行问题证明的基本思路:平面平行 线面平行 线线平行.
1.线线平行的证明方法:
①利用平面几何中的定理:三角形(或梯形)的中位线与底边平行;
平行四边形的对边平行;
利用比例、……;
②三线平行公理:平行于同一条直线的两条直线互相平行;
③线面平行的性质定理:如果一条直线平行于一个平面,经过这条直线的平面和这个平面相交,则这条直线和
垂直问题证明的基本思路:面面垂直 线面垂直 线线垂直.
1.线线垂直的证明方法:
①利用平面几何中的定理:勾股定理、等腰三角形,三线合一、菱形对角线、直径所对的圆周角是直角、点在
线上的射影。
②线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直;
③三垂线定理或三垂线逆定理:如果平面内的一条直线和斜线的射影垂直,则它和斜线垂直;反之亦成立。
交线行;
④面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;
⑤线面垂直的性质定理:垂直于同一个平面的两条直线平行。
2.线面平行的证明方法:
①线面平行的定义:直线与平面没有公共点;
②线面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;
④如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
2.线面垂直的证明方法:
①线面垂直的定义:直线与平面内任意直线都垂直;
②线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面;
③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面;
1.如图,四棱锥 中,四边形 为矩形, 为等腰三角形, ,平面 平面 ,且 . 分别为 和 的中点.

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

立体几何第五讲 垂直的性质和证明学生

立体几何第五讲 垂直的性质和证明学生

第五讲垂直的判定与性质[玩前必备]1.直线与平面垂直2.(1)平面与平面垂直的定义如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理判定定理如果一个平面经过另一个平面的一条垂线那么这两个平面互相垂直⎭⎪⎬⎪⎫l⊂βl⊥α⇒α⊥β(3)平面与平面垂直的性质定理文字语言图形语言符号语言性质定理如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎪⎬⎪⎫α⊥βα∩β=al⊂βl⊥a⇒l⊥α[玩转典例]题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.[玩转跟踪]1.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.题型二 平面与平面垂直的判定与性质例2 (2018·全国Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积. [玩转跟踪]1.(2018·江苏高考)在平行六面体ABCD ­A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; (2)平面ABB 1A 1⊥平面A 1BC .2.(2020·安徽淮北一中模拟)如图,四棱锥P ­ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD . 求证:(1)AF ∥平面PEC ; (2)平面PEC ⊥平面PCD .题型三直线、平面垂直的综合应用例3如图所示,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P—ABCD的体积.[玩转跟踪]1.(江西)如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离.题型四垂直的探索性综合应用例4如图,在三棱台ABC­DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.[玩转跟踪]1.(2020·郑州模拟)如图,已知三棱柱ABC­A′B′C′的侧棱垂直于底面,AB=AC,∠BAC =90°,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面AA′C′C;(2)设AB=λAA′,当λ为何值时,CN⊥平面A′MN,试证明你的结论.[玩转练习]1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.已知空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是()A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交3. 如图,在正方形ABCD中,E、F分别为边BC、CD的中点,H是EF的中点.现沿AE、AF、EF把这个正方形折成一个几何体,使B、C、D三点重合于点G,则下列结论中成立的是________.(填序号)①AG⊥平面EFG;②AH⊥平面EFG;③GF⊥平面AEF;④GH⊥平面AEF.4. 如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.5. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3C.2 D.16.如图,正方体ABCD-A1B1C1D1的棱长为1,过A点作平面A1BD的垂线,垂足为点H,有下列三个结论:①点H是△A1BD的中心;②AH垂直于平面CB1D1;③AC1与B1C所成的角是90°.其中正确结论的序号是________.7. 如图,AB为⊙O的直径,P A垂直于⊙O所在的平面,M为圆周上任意一点,AN⊥PM,N为垂足.(1)求证:AN⊥平面PBM.(2)若AQ⊥PB,垂足为Q,求证NQ⊥PB.8. 如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C1.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.9.(2020·淄博模拟)如图,在四棱锥P­ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:P A∥平面EDB;(2)证明:PB⊥平面EFD.10.(2016·全国乙卷)如图,已知正三棱锥P­ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF的体积.11.(2015·新课标全国卷Ⅰ)如图,四边形ABCD为菱形,G为AC 与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E­ACD的体积为63,求该三棱锥的侧面积.。

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。

【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。

高中数学必修立体几何专题线面垂直方法总结

高中数学必修立体几何专题线面垂直方法总结



A
B
C
D-
A1
B1C
1
D

1



A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.







A
B
C
D-
A1 B 1C
1
D

1

BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。

三垂直定理立体几何

三垂直定理立体几何

三垂直定理立体几何三垂线定理(也称三垂直定理)是立体几何中一个重要的定理,通常用于计算三角形的面积或其他几何量。

在三维空间中,如果一个点P在三角形ABC所在平面上,那么它到三角形的三个顶点的连线所在的直线都与三角形的平面垂直。

换句话说,点P到三角形的三个边AB、BC、CA 所在平面的距离都是垂直距离。

证明:设点P在平面ABC上,向量a、b、c分别表示边向量AB、BC、CA,则向量n=a×b表示平面ABC的法向量(叉积)。

点P到平面ABC的距离(设为h)满足n·OP=h|n|,其中OP 为点P到原点O的向量。

考虑向量PA在向量n上的投影PA',即PA'=(PA·n/|n|)n/|n|。

根据余弦公式,PA·PB=PA^2+PB^2-AB^2/2,因此PA·n=PA·(a×b)=PA·c^2/2SABC。

将上述若干式子代入n·OP=h|n|中,得到PA'=PA·c^2/(2SABC)|n|/|c×(PA×c)|同理,PB'和PC'也可以表示为三垂线上的垂直距离分别为h=PA',h=PB'和h=PC'。

应用:利用三垂线定理,可以方便地计算三角形的面积。

设三角形ABC的三边长分别为a、b、c,其半周长为s=(a+b+c)/2,则三角形的面积S可以表示为S=abc/4R=1/2absinC=1/2crsinA=1/2basinC其中R为三角形外接圆半径,A、B、C为三角形的角度。

由于三条垂线的长度都可以用三条边的长度表示,因此可以通过这些式子计算出三角形的面积。

三垂线还可以用于计算三角形垂心(三条垂线交点)、oktane棱锥的体积等相关几何量。

需要注意的是,在三维空间中绝大多数点不在三角形所在平面上,因此计算其垂距要用到点到平面的距离公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何垂直的证明
1 / 3
垂直的证明
定理一:
一条直线与一个平面

内的两条相交直线都垂直,
则该直线与此平面垂直。
符号语言: amlAmlmala,;;;

定理二:一条直线垂直一个平面,那么它就垂直这个平面内的所有直线
符号语言: baba,

9.如图,已知空间四边形ABCD中,,BCACADBD,E是AB的中点。
求证:(1)AB平面CDE;(2)ABCD
(3)平面CDE平面ABC。

10.如图,三棱锥A-BCS中, AB=AC,SB=SC,O为BC的中点,
(1)求证:BC⊥平面AOS; (2) BC⊥AS

A
E

D
B
C
立体几何垂直的证明

2 / 3
练习
11.如图,四棱锥PABCD中,PD底面ABCD,
底面ABCD是正方形,且PDAB=2.
(1)求PB的长;
(2)求证:AC平面PBD.
(3)求 B到平面PAC的距离

12.在直三棱柱111ABCABC中,3AC,4BC,5AB,14AA,点D是AB的中
点.(Ⅰ)求证11BBCCAC平面;
(Ⅱ)求证1AC∥平面1CDB;

13.
在三棱锥P-ABC中,侧棱PA⊥底面ABC,AB⊥BC,E,F分别是BC,PC的中点.

(1)证明:EF∥平面PAB;

(2)证明:PABBC平面
(3)证明:EF⊥BC.
立体几何垂直的证明

3 / 3
A
B

C
D
E
F

作业
1.如图,在四面体ABCD中,CB=CD,BDAD,点E,F分别是AB,CD的中点.
求证:(1)直线EF// 面ACD;(2)证明:EFCBD面.

2.如图,在正方体1111ABCDABCD中,,EF分别为,ADAB的中点,正方体棱长为2。
(1)求证:11//EFCBD平面
(2)求证:1111AACCDB平面。
(3)求 1C到平面11CDB的距离

3.如图,在正方体1111DCBAABCD中,E是棱1CC的中点,正方体棱长为2.
(1)证明:1AC∥平面BDE;
(2) 证明:11AACCBD平面
(3)证明:1ACBD.
(4) 求C到平面BDE的距离

D
1

B
1

C
1

A
1

D
BECA

相关文档
最新文档