人教版七年级下数学第五章相交线与平行线能力提升练习

合集下载

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。

人教版七年级数学下册第五章 相交线与平行线同步练习(含答案)

人教版七年级数学下册第五章 相交线与平行线同步练习(含答案)

第五章相交线与平行线一、单选题1.如图,直线,a b相交于点O,若130︒∠=()∠=,则2A.150︒B.90︒C.60︒D.30︒2.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.3.如图,点D、E分别为三角形ABC边BC、AC上一点,作射线DE,则下列说法错误的是()A.∠1与∠3是对顶角B.∠2与∠A是同位角C.∠2与∠C是同旁内角D.∠1与∠4是内错角4.下列说法中错误..的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角A .1个B .2个C .3个D .4个5.如图,直线a 、b 都与直线c 相交,给出下列条件:∠∠1=∠2;∠∠3=∠6;∠∠4+∠7=180°;∠∠5+∠8=180°.其中能判断a∠b 的条件是( )A .∠∠B .∠∠C .∠∠∠D .∠∠∠∠ 6.如图,以下说法错误的是( )A .若EADB ∠=∠,则AD BC ∥B .若180EAD D ∠+∠=︒,则AB CD ∥C .若CAD BCA ∠=∠,则AD BC ∥ D .若D EAD ∠=∠,则AB CD ∥ 7.如图,直线AB ∠CD ,CE 平分∠ACD ,交AB 于点E ,∠ACE =20°,点F 在AC 的延长线上,则∠BAF 的度数为( )A .20°B .30°C .40°D .50°8.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )∠//AD BC ;∠B D ∠=∠;∠//AB CD ;∠2180B ∠+∠=︒A .4个B .3个C .2个D .1个9.下列命题中,是真命题的是( )A .互补的角是邻补角B .相等的角是对顶角C .同旁内角互补D .两直线平行,内错角相等10.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题11.如图,想过点A建一座桥,搭建方式最短的是垂直于河两岸的AO,理由是_______.12.如图,对于下列条件:∠∠B+∠BCD=180°;∠∠1=∠2;∠∠3=∠4;∠∠D=∠5;其中一定能判定AB∠CD的条件有_____(填写所有正确条件的序号).13.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是130°,则第二次的拐角∠B是______,根据是______.14.根据图中数据求阴影部分的面积和为_______.三、解答题15.如图,直线AB、CD相交于O点,OM∠AB;(1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC与∠MOD.16.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∠BE证明:∠DF平分∠ADE(已知)∠__________=12∠ADE()∠∠ADE=60°(已知)∠_________________=30°()∠∠1=30°(已知)∠____________________()∠____________________()17.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∠CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD 的度数.你能求出∠ECD的度数吗?如果能,请写出理由.18.如图,AF ∠DE ,B 为AF 上一点,∠ABC =60°,交ED 于C ,CM 平分∠BCE ,∠MCN =90°.(1)求∠DCN 的度数;(2)若∠CBF 的平分线交CN 于N ,求证:BN ∠CM .19.如图,ABC V 的顶点都在边长为1的正方形方格纸的格点上,将ABC V 向左平移2格,再向上平移4格.(1)在图中画出平移后的三角形A B C '''V ;(2)在图中画出三角形A B C '''V 的高C D ''、中线B E '';(3)图中线段AB 与A B ''的关系是_____;(4)ABC V 的面积是_____答案1.D 2.C 3.D 4.C 5.D 6.B7.C8.A9.D10.B11.垂线段最短12.∠∠13.130°;两直线平行,内错角相等14.815.解:(1)∠OM∠AB∠∠AOM=90°∠∠1+∠AOC=90°∠∠1=∠2∠∠2+∠AOC=90°∠∠CON=90°∠∠NOD=180°-∠CON=90°(2)∠OM∠AB∠∠AOM=∠BOM=90°∠∠1=14∠BOC∠∠1=13∠BOM=30°∠∠AOC=∠AOM-∠1=60°∠∠MOD=180°-∠1=150°16.解:∠DF平分∠ADE,(已知)∠∠EDF=12∠ADE.(角平分线定义)∠∠ADE=60°,(已知)∠∠EDF=30°.(等量代换)∠∠1=30°,(已知)∠∠1=∠EDF,(等量代换)∠DF∠BE,(内错角相等,两直线平行);故答案为:∠EDF,角平分线定义;∠EDF,等量代换;∠1=∠EDF,等量代换;DF∠BE,内错角相等,两直线平行.17.15.ECD∠=o理由:如图,过点E作EF∠AB,∠AB∠CD,∠EF∠AB∠CD,∠45BAE AEF ECD FEC∠=∠=∠=∠o,,∠604515CEF AEC AEF∠=∠-∠=-=o o o,∠15.ECD∠=o18.解:(1)∠AF∠DE,∠ABC=60°,∠∠BCE=180°﹣60°=120°,∠BCD=∠ABC=60°,∠CM平分∠BCE,∠∠MCB=60°,∠∠MCN=90°,∠∠BCN=90°﹣60°=30°,∠∠DCN=60°﹣30°=30°;(2)∠∠ABC=60°,∠∠FBC=120°,∠BN平分∠FBC,∠∠NBC=60°,∠∠BCM=60°,∠∠NBC=∠BCM,∠BN∠CM.19.(1)如图所示;(2)如图所示;(3)∠∠A′B′C′由∠ABC 平移而成, ∠线段AB 与A′B′平行且相等. 故答案为:平行且相等;(4)S ∠ABC=12×4×4=8.故答案为:8。

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

第五章 相交线与平行线一、单选题1.下列说法中:①对顶角相等;①相等的角是对顶角;①若两个角不相等,则这两个角一定不是对顶角;①若两个角不是对顶角,则这两个角不相等.不正确的有( ) A .①①B .①①C .①①D .①①2.如图,直线AB ,CD 相交于点O ,EO①CD 于点O ,①AOE =36°,则①BOD =( )A .36°B .44°C .50°D .54°3.如图,①1的同位角是( )A .①4B .①3C .①2D .①14.如图,下列条件中,不能判定AB CD ∥的是( )A .180D BAD ∠+∠=︒B .12∠=∠C .34∠=∠D .B DCE ∠=∠5.已知在同一平面内三条直线a 、b 、c ,若a ①c ,b ①c ,则a 与b 的位置关系是( )A.a①b B.a①b或a①b C.a①b D.无法确定6.如图,l1①l2,①1=56°,则①2的度数为()A.34°B.56°C.124°D.146°7.将一直角三角板与两边平行的纸条如图放置.若①1=60°,则①2的度数为( )A.60°B.45°C.50°D.30°8.下列命题的逆命题为真命题的是()A.对顶角相等B.内错角相等,两直线平行C.直角都相等D.如果x=3,那么|x|=39.下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.10.如图,AB①EF,设①C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°二、填空题11.如图是一把剪刀,若①AOB+①COD=80°,则①AOC=_____度.12.如图,要使a①b图中用数字表示的角应具备什么条件:_____(写一个即可).13.命题“等腰三角形两底角相等”的逆命题是_______14.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为______m2.三、解答题15.如图,直线AB、CD、EF相交于点O,OG①CD,(1)已知①BOD=36°,求①AOG的度数;(2)如果OC是①AOE的平分线,那么OG是①AOF的平分线吗?说明理由.16.如图,GM ①HN ,EF 分别交AB 、CD 于点G 、H ,①BGH 、①DHF 的平分线分别为GM 、HN ,求证:AB ①CD .17.如图,MN OP P ,点A 为直线MN 上一定点,B 为直线OP 上的动点,在直线MN 与OP 之间且在线段AB 的右方作点D ,使得AD BD ⊥.设(DAB αα∠=为锐角).(1)求NAD ∠与PBD ∠的和;(提示过点D 作)EF MN ∥(2)当点B 在直线OP 上运动的过程中,若AD 平分NAB ∠,AB 也恰好平分OBD ∠,请求出此时α的值18.如图,已知AM①BN ,①A =80°,点P 是射线AM 上动点(与A 不重合),BC 、BD 分别平分①ABP 和①PBN ,交射线AM 于C 、D . (1)求①CBD 的度数;(2)当点P 运动时,那么①APB :①ADB 的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使①ACB=①ABD时,求①ABC的度数.答案 1.C 2.D 3.A 4.C 5.C 6.C 7.D 8.B 9.C 10.B 11.14012.①1=①3或①2+①5=180°或①4=①5. 13.有两个角相等的三角形是等腰三角形 14.6900.15.(1)AB CD Q 、相交于点O , AOC BOD ∠∠∴=(对顶角相等)Q BOD ∠= 36o (已知)AOC BOD ∠∠∴== 36oQ OG CD ⊥(已知)∴ o COG 90∠=(垂直的定义)即o AOC AOG 90∠+=∴ o o o o AOG 90AOC=9036=54∠∠=--(2)Q OC 平分AOE ∠∴ AOC COE ∠∠=(角平分线定义) Q o COG 90∠=(已证)即o AOC AOG 90∠+=Q o COE AOC AOG GOF 180∠∠∠∠+++= (平角定义) ∴ o COE GOF 90∠∠+=(等式性质) ∴ AOG=GOF ∠∠(等角的余角相等)∴OG 是∠AOF 的角平分线(角平分线定义)16.证明:①GM ①HN , ①①MGH =①NHF ,①①BGH 、①DHF 的平分线分别为GM 、HN , ①①BGH =2①MGH ,①DHF =2①NHF , ①①BGH =①DHF , ①AB ①CD .17.(1)①NAD +①PBD=90°;(2)30° 18.解:(1)①AM①BN ,①A =80°,①①ABN+①A=180°,①①ABN=180°﹣80°=100°,①①ABP+①PBN=100°,①BC平分①ABP,BD平分①PBN,①①ABP=2①CBP,①PBN=2①DBP,①2①CBP+2①DBP=100°,①①CBD=①CBP+①DBP=50°;(2)不变,①APB:①ADB=2:1.①AM①BN,①①APB=①PBN,①ADB=①DBN,①BD平分①PBN,①①PBN=2①DBN,①①APB:①ADB=2:1;(3)①AM①BN,①①ACB=①CBN,当①ACB=①ABD时,则有①CBN=①ABD,①①ABC+①CBD=①CBD+①DBN,①①ABC=①DBN,由(1)可知①ABN=100°,①CBD=50°,①①ABC+①DBN=50°,①①ABC=25°。

人教版数学七年级下册 第五章 相交线与平行线章节综合练习(含答案 )

 人教版数学七年级下册 第五章 相交线与平行线章节综合练习(含答案 )

人教版数学七年级下册 第五章 相交线与平行线章节综合练习(含答案 )一、单选题1.下列叙述中正确的是( )A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角2.如图,AO BO ⊥于点O ,CO DO ⊥,若15240AOD '∠=︒,则BOC ∠等于( )A .6240'︒B .3120'︒C .2820'︒D .2720'︒ 3.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角 4.在同一平面内,下列说法:∠过两点有且只有一条直线;∠两条不相同的直线有且只有一个公共点;∠经过直线外一点有且只有一条直线与已知直线垂直;∠经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个5.如图所示,点E 在AC 的延长线上,下列条件中能判断AB∠CD 的是( )A .∠3=∠AB .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180° 6.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=︒C .34∠=∠D .14∠=∠ 7.如图,给出下列条件:∠∠1=∠2;∠∠3=∠4;∠∠B =∠DCE ;∠AD∠BC 且∠B =∠D .其中,能推出AB∠DC 的是( )A .∠∠B .∠∠C .∠∠D .∠∠∠8.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°9.下列选项中,可以用来证明命题“若2a 4>,则a 2>”是假命题的反例是( ) A .a 3=- B .a 2=- C .a 2= D .a 3=10.如图,在图形M 到图形N 的变化过程中,下列述正确的是( )A .先向下平移3个单位,再向右平移3个单位B .先向下平移3个单位,再向左平移3个单位C .先向上平移3个单位,再向左平移3个单位D .先向上平移3个单位,再向右平移3个单位二、填空题11.如图,小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段_________的长度.12.如图,当∠1=∠_____时,AB∠CD ;当∠D +∠_____=180°时,AB∠CD ;当∠B =∠_____时,AB∠CD .13.如图所示:Rt ABC ∆的直角顶点C 放在直尺边上,若158∠=︒,则ACD ∠=_____.14.在长方形的草坪上有两条互相垂直的小路,为求草坪的面积,我们进行了如图的平移,那么草坪的面积用代数式表示为 .三、解答题15.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥,垂足为O ,求:(1)求∠BOE 的度数.(2)求EOF ∠的度数.16.如图,某工程队从点A 出发,沿北偏西67o 方向铺设管道AD ,由于某些原因,BD 段不适宜铺设,需改变方向,由B 点沿北偏东23o 的方向继续铺设BC 段,到达C 点又改变方向,从C 点继续铺设CE 段,ECB ∠应为多少度,可使所铺管道CE AB ∥?试说明理由.此时CE 与BC 有怎样的位置关系?17.完成下面的说理过程:如图,在四边形ABCD 中,E ,F 分别是CD ,AB 延长线上的点,连接EF ,分别交AD ,BC 于点G ,H .已知12∠=∠,A C ∠=∠.对//AD BC 和//AB CD 说明理由.理由:12∠=∠Q (已知),1AGH ∠=∠(______),2AGH ∴∠=∠(等量代换).//AD BC ∴(______).ADE C ∴∠=∠(______).A C ∠=∠Q (______),ADE A ∴∠=∠(______).//AB CD (______).18.如图,已知∠1+∠2=180°,∠A =∠C ,AD 平分∠BDF 。

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

第五章 相交线与平行线一、单选题1.如图所示,两条直线a b ,相交于点O ,若160∠=︒,则2∠=( )A .120︒B .60︒C .30°D .15︒2.如图,从直线EF 外一点P 向EF 引四条线段PA ,PB ,PC ,PD ,其中最短的一条是( )A .PAB .PBC .PCD .PD3.下列图形中,1∠和2∠不是同位角的是( ).A .B .C .D . 4.下列说法正确的是( )①平面内,不相交的两条直线是平行线;①平面内,过一点有且只有一条直线与已知直线垂直;①平面内,过一点有且只有一条直线与已知直线平行;①相等的角是对顶角;①P是直线a外一点,A、B、C分别是a上的三点,P A=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个5.如图所示:若m①n,①1=105°,则①2=()A.55°B.60°C.65°D.75°6.如图所示,下列推理及括号中所注明的推理依据错误的是()A.①①1=①3,①AB①CD(内错角相等,两直线平行)B.①AB①CD,①①1=①3(两直线平行,内错角相等)C.①AD①BC,①①BAD+①ABC=180°(两直线平行,同旁内角互补)D.①①DAM=①CBM,①AB①CD(两直线平行,同位角相等)7.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则①1的度数是()A.45°B.60°C.75°D.82.5°8.已知l1①l2,一个含有30°角的三角尺按照如图所示位置摆放,则①1+①2的度数为()A.90°B.120°C.150°D.180°9.下列语句不是命题的是()A.两点之间线段最短B.不平行的两条直线有一个交点C.同位角相等D.如果x与y互为相反数,那么x与y的和等于0吗10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格二、填空题11.在同一平面内,直线AB与直线CD相交于点O,①BOC:①BOD=4:5,射线OE①CD,则①BOE的度数为__.12.如图,直线a、b都与直线c相交,给出下列条件:①①1=①2;①①3=①6;①①1=①8;①①5+①8=180°,其中能判断a①b 的条件是:____________(把你认为正确的序号填在空格内).13.如图,将一张长方形纸条沿某条直线折叠,若1116︒∠=,则①2等于________.14.如图,在一块长为20m ,为10m 的长方形草地上,修建两条宽为2m 的长方形小路,则这块草地的绿地面积(图中空白部分)为___m 2.三、解答题15.如图所示,直线AB ,EF 交于点O ,OD 平分BOF ∠,CO EF ⊥于点O ,70AOE ∠=︒,求COD ∠的度数16.如图所示,直线AB 和CD 相交于点O ,OA 是①EOC 的角平分线.(1)若①EOC =80°,求①BOD 的度数;(2)①EOC :①EOD =2:3,求①BOD 的度数.17.如图,①1=30°,①B =60°,AB ①AC .(1)①DAB +①B 等于多少度?(2)AD 与BC 平行吗?AB 与CD 平行吗?18.如图,直线AB 与CD 相交于点O ,直线AB 与EF 相交于点H ,//EF CD ,OG CD ⊥于点O ,40BOG ∠=︒,求AOC ∠与AHE ∠的度数.19.如图,将三角形ABC 水平向右平移得到三角形DEF ,A ,D 两点的距离为1,CE =2,①A=70°.根据题意完成下列各题:(1)AC和DF的数量关系为;AC和DF的位置关系为;(2)①1= 度;(3)BF= .答案1.B 2.B 3.C 4.B5.D6.D7.C8.A9.D10.C11.170°或10°.12.①①①13.58°14.144.15.55°16.(1)40°;(2)①BOD=36°17.解:(1)180°;(2)无法确定AB与CD的关系. 18.50°;13019.(1)AC=DF,AC①DF;(2)110;(3)4。

人教版数学七年级下册 第五章 相交线与平行线 练习含答案

人教版数学七年级下册 第五章 相交线与平行线  练习含答案

第五章相交线与平行线 5.2 平行线及其判定 5.2.1 平行线1.下列表示方法正确的是( )A.a∥A B.AB∥cd C.A∥B D.a∥c2.有下列生活实例:①交通道口斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车铁轨线.其中属于平行线的有( )A.1个 B.2个 C.3个 D.4个3. 在同一平面内的两条不重合的直线的位置关系是( )A.垂直或相交 B.平行、垂直或相交 C.平行或相交 D.平行或垂直4. 下列说法:①一条直线的平行线只有一条;②过一点有且只有一条直线与已知直线平行;③同一平面内,若一直线与两平行线中的一条相交,那么它也和另一条相交.其中错误的个数是( )A.0 B.1 C.2 D.35. 下列说法错误的是( )A.过一点有且只有一条直线与已知直线平行B.平行于同一条直线的两条直线平行C.若a∥b,b∥c,c∥d,则a∥dD.同一平面内,若一条直线与两平行线中的一条相交,那么它也和另一条相交6.下列推理正确的是()A.因为a∥b,b∥c,所以c∥d B.因为a∥c,b∥d,所以c∥dC.因为a∥b,a∥c,所以b∥c D.因为a∥b,c∥d,所以a∥c7.a、b、c为同一平面内任意三条直线,交点可能有()A.1个或2个B.1个或2个或3个C.0个或1个或2个或3个D.都不对8. 在同一个平面内,的两条直线叫做平行线.直线a平行于b,记作 .9. 经过直线外一点,有且条直线与这条直线平行.如果两条直线都与第三条直线,那么这两条直线也互相.10. 直线l同侧有A、B、C三点,如果A、B两点确定的直线l1与B、C两点确定的直线l2都与l平行,则A、B、C三点的位置关系是,其理论依据是.11. 观察如图所示的长方体后,用符号表示下列两棱的位置关系:A1B1 AB,AA1 AB,A1D1 C1D1,AD BC(⊥;∥).12.如图所示,能相交的是 (填序号),平行的是 (填序号).13. 如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来: .14. 如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的关系是,理由是.15. 如图,完成下列各题:(1)用直尺在网格中完成:①画出直线AB的一条平行线,②经过C点画直线垂直于CD;(2)用符号表示上面①、②中的平行、垂直关系.16. 如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把平面ABNM平摊在桌面上,另一个面CDMN可任意改变位置,试判断AB与CD之间的关系,并说明理由.17. 如图,P、Q分别是直线EF外两点.(1)过P画直线AB∥EF,过Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?18. [实践]①画∠AOB=60°,在∠AOB内任取一点P,过P作直线CD∥AO,又过点P作直线EF∥OB;②测量:∠CPE、∠EPD、∠DPF、∠CPF的度数.[探究]①这些角的边与∠AOB的边有何关系?②这些角的度数与∠AOB的度数之间存在什么关系?[发现]把你的发现用一句话概括出来.答案;1---7 DDCCA CC8. 不相交a∥b9. 只有一平行平行10. 在同一条直线上过直线外一点,有且只有一条直线与已知直线平行11. ∥ ⊥ ⊥∥12. ③⑤13. CD∥MN,GH∥PN14. 平行如果两条直线都与第三条直线平行,那么这两条直线也互相平行15. 解:(1)如图;(2)EF∥AB,MC⊥CD.16. 解:AB与CD平行.理由:∵AB∥MN,CD∥MN,∴AB∥CD.17. 解:(1)如图:(2)AB∥CD.理由:因为AB∥EF,CD∥EF,所以AB∥CD.18. 解:实践:①画图②∠CPE=120°,∠EPD=60°,∠DPF=120°,∠CPF=60°;探究:①平行,②相等或互补;发现:如果两个角的两边分别平行,那么这两个角相等或互补.。

第5章相交线与平行线提升练习2022--2023学年人教版七年级数学下册

第5章相交线与平行线提升练习2022--2023学年人教版七年级数学下册

第5章相交线与平行线(提升练习)-人教版七年级下册一.选择题1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.35°2.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.如图,点E在CD的延长线上,下列条件中能判定BC∥AD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠A D.∠A+∠ADC=180°5.如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°6.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是()A.3.5B.4.1C.5D.5.57.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.6B.11C.7D.178.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°9.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行10.如图,∠1=60°,下列推理正确的是()①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①②B.②④C.②③④D.②③二.填空题11.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为度.12.如图,将△ABO沿着射线AD的方向平移5cm得到△DCE,连接OE,则OE=cm.13.如图,将一张长方形纸片ABCD沿EF折叠,点C、D分别到C′、D′的位置,D′E与BC相交于G,若∠1=40°,则∠2=°.14.如图,把△ABC沿AC方向平移1cm得到△FDE,AE=6cm,则FC的长是cm.15.如图,长方形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠BMC=110°,则∠1的度数为.三.解答题16.如图,已知直线AB∥CD,直线MN分别交AB、CD于点G、E,EF平分∠GED,交直线AB于点F,且GE平分∠BGI,GH平分∠AGE.(1)求证:GH∥FE;(2)若∠FED=68°,求∠HGI的度数.17.判断下列命题是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个钝角的和一定大于180°;(2)异号两数相加和为零;(3)若a2=b2,则a=b.18.如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.19.如图,已知直线AB、CD相交于点O,射线OD平分∠BOF,OE⊥CD于点O,∠AOC =35°.(1)求∠EOF的度数;(2)试判断射线OE是否平分∠AOF,并说明理由.20.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:∠1=°,∠2=°(2)如图2,现把三角板绕B点逆时针旋转n°,当0<n<90,且点C恰好落在DG边上时,①请直接写出∠1=°,∠2=°(结果用含n的代数式表示);②若∠2恰好是∠1的倍,求n的值.(3)如图1三角板ABC的放置,现将射线BF绕点B以每秒2°的转速逆时针旋转得到射线BM,同时射线QA绕点Q以每秒3°的转速顺时针旋转得到射线QN,当射线QN旋转至与QB重合时,则射线BM、QN均停止转动,设旋转时间为t(s).①在旋转过程中,若射线BM与射线QN相交,设交点为P.当t=20(s)时,则∠QPB =°②在旋转过程中,是否存在BM∥QN.若存在,求出此时t的值;若不存在,请说明理由.。

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

人教版七年级数学下册第五章 相交线与平行线练习(含答案)

第五章 相交线与平行线一、单选题1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.如图,计划把河水引到水池A 中,可以先引AB ∠CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .两点之间,直线最短3.如图,下列说法正确的是( )A .A ∠与∠1与是内错角B .A ∠与2∠是同旁内角C .∠1与2∠是内错角D .A ∠与3∠是同位角4.下列说法中,正确的是( )A .不相交的两条直线是平行线B .过一点有且只有一条直线与已知直线平行C .从直线外一点作这条直线的垂线段叫做点到这条直线的距离D .在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直. 5.如图,在下列给出的条件中,不能判定//AB DF 的是( )A .1A ∠∠=B .14∠=∠C .A 3∠∠=D .A 2180︒∠+∠= 6.如图,下列条件:∠∠1=∠2;∠∠3=∠4;∠∠B=∠5;∠∠1+∠ACE=180°.其中,能判定AD∠BE 的条件有( )A .2个B .3个C .4个D .1个 7.一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A .第一次向右拐 50︒ ,第二次向左拐130︒B .第一次向右拐 50︒ ,第二次向右拐130︒C .第一次向左拐 50︒ ,第二次向左拐130︒D .第一次向左拐 30︒ ,第二次向右拐 30︒8.如图所示,下列推理及括号中所注明的推理依据错误的是( ).A .∠13∠=∠,∠AB CD ∥(内错角相等,两直线平行)B .∠AB CD ∥,∠13∠=∠(两直线平行,内错角相等)C .∠AD BC ∥,∠180BAD ABC ∠+∠=︒(两直线平行,同旁内角互补) D .∠DAM CBM ∠=∠,∠AB CD ∥(同位角相等,两直线平行)9.下列命题中,真命题的序号为( )∠相等的角是对顶角;∠在同一平面内,若//a b ,//b c ,则//a c ;∠同旁内角互补;∠互为邻补角的两角的角平分线互相垂直.A .∠∠B .∠∠C .∠∠∠D .∠∠10.如图所示的网格中各有不同的图案,不能通过平移得到的是( )A .B .C .D .二、填空题11.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.12.小泽在课桌上摆放了一副三角板,如图所示,得到________∠________,依据是________.13.“如果两个实数相等,那么它们的绝对值相等”的逆命题是:___________________________14.如图,直角三角形ABC的周长为2018,在其内部有5个小直角三角形,且这5个小直角三角形都有一条边与BC平行,则这5个小直角三角形周长的和为______.三、解答题15.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC =70°,∠DOF =90°,求∠EOF 的度数;(2)若OF 平分∠COE ,∠BOF =15°,若设∠AOE =x °.∠用含x 的代数式表示∠EOF ;∠求∠AOC 的度数.16.如图,AB∠BD ,CD∠BD ,∠A 与∠AEF 互补,以下是证明CD∠EF 的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∠AB∠BD ,CD∠BD (已知)∠∠ABD =∠CDB = ( )∠∠ABD+∠CDB =180°∠AB∠ ( )又∠A 与∠AEF 互补 ( )∠A+∠AEF =∠AB∠ ( )∠CD∠EF ( )17.如图,已知//EF AD ,//AD BC ,CE 平分BCF ∠,130DAC ∠=︒,15FEC ∠=︒,求ACF ∠的度数.18.如图,将∠ABC沿射线AB的方向平移2个单位到∠DEF的位置,点A、B、C的对应点分别点D、E、F.(1)直接写出图中与AD相等的线段.(2)若AB=3,则AE=______.(3)若∠ABC=75°,求∠CFE的度数.知识像烛光,能照亮一个人,也能照亮无数的人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档