遗传算法详解

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。

运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。

因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示

遗传算法的基本原理和对生活的启示一、遗传算法的基本原理遗传算法是一种受自然界进化机制启发的优化算法,其基本原理主要包括基因编码、初始种群的产生、适应度函数的确定、选择操作、交叉操作和变异操作等几个方面。

1.基因编码:遗传算法需要对问题进行编码,将问题的解空间映射到基因空间。

常见的编码方式有二进制编码、实数编码等。

2.初始种群的产生:通过随机方式生成一定数量的初始解,构成初始种群。

3.适应度函数的确定:根据问题的目标函数,定义适应度函数,用于评估种群中每个个体的优劣。

4.选择操作:根据适应度函数,选择适应度较高的个体进行遗传操作,生成下一代种群。

5.交叉操作:通过交叉配对和重组,生成新的个体。

6.变异操作:对个体的一定概率发生基因位的变异,增加种群的多样性。

遗传算法通过不断的迭代,不断优化种群中的个体,最终得到满足要求的最优解。

二、对生活的启示遗传算法的原理不仅在计算机科学中有着广泛的应用,而且也能给我们的生活带来很多启示。

以下是一些主要的启示:1.适应环境:在自然界中,生物通过进化适应环境。

同样,在生活中,我们也应该积极适应环境,不断学习和改进自己。

2.多样性思维:遗传算法中的变异操作增加了种群的多样性,使得算法能够更好地搜索解空间。

在解决问题时,我们也应该尝试多种方法,不要局限于一种思路。

3.持续优化:遗传算法通过不断迭代优化种群中的个体,最终得到最优解。

在生活中,我们也应该不断优化自己的行为和思维,提升自己的能力和素质。

4.合作与竞争:遗传算法中的选择和交叉操作体现了竞争和合作的机制。

在竞争中,优秀的个体得以保留;在合作中,新的个体得以产生。

这启示我们在生活中要学会竞争与合作,互相促进,共同成长。

遗传算法的基本原理及流程

遗传算法的基本原理及流程

遗传算法的基本原理及流程遗传算法(Genetic Algorithm,简称GA)是一种通过模拟自然界进化过程来求解优化问题的算法。

它是一种群体性优化算法,最初由美国学者J. Holland提出,目前已经被广泛应用于优化、搜索、分类、数据挖掘等领域。

本文将从基本原理和流程两方面介绍遗传算法。

一、基本原理1.1 模拟自然进化过程遗传算法的灵感来源于自然界,它主要是模拟了生物进化的过程。

在遗传算法中,问题的解被表示成一个个体,每个个体都具有一定的适应度(Fitness),代表着它对问题的解决程度。

所有个体组成一个种群(Population),这个种群包含了多个可能的解决方案。

1.2 遗传操作在遗传算法中,种群经过不断的遗传操作(Cross、Mutation、Selection),产生新的个体,新个体替代原个体,直到达到最优解。

其操作的具体过程如下:(1)Cross:交叉操作,即将两个个体的某些部分进行交换,创造出新的个体。

(2)Mutation:变异操作,即对某个个体的某些部分进行修改,创造出一个新个体。

(3)Selection:选择操作,根据个体的适应度对种群进行选择,留下较优的个体,淘汰劣质的个体。

1.3 评价适应度在遗传算法中,每个个体都有一个适应度值,代表着解决问题的效果。

评价适应度通常采取如下方式:(1)目标函数:根据问题的定义,构建一个目标函数,根据该函数的值评价个体的适应度。

(2)实验法:在实际操作中,通过实验方法进行评价,得到与问题解决程度相关的数据。

二、流程介绍2.1 初始化遗传算法的第一步是初始化,首先随机生成一批个体,构成种群。

个体的生成可以采用数值或二进制方式。

在这个过程中,可以设置种群大小、交叉率、变异率等参数。

2.2 选择根据个体的适应度值,从当前种群中选择一部分个体作为下一代的种群。

选择的过程中,可以采用轮盘赌(Roulette Wheel)选择等方式。

2.3 交叉在构建新一代种群时,采用交叉操作,即两个个体随机交换某一部分基因。

《遗传算法详解》课件

《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率

遗传算法及几个例子

遗传算法及几个例子

遗传算法及几个例子遗传算法是一种模拟自然选择和遗传机制的优化算法。

它是由约翰·霍兰德(John Holland)于1975年首次提出的。

遗传算法通过模拟生物的进化过程,利用适者生存的原则来问题的最优解。

遗传算法的主要应用领域包括优化问题、机器学习、组合优化、图像处理等。

本文将介绍遗传算法的工作原理及几个应用实例。

首先,遗传算法的工作原理是模拟自然界的进化过程。

它由三个基本操作组成:选择、交叉和变异。

选择操作是指根据适应度函数选择出优秀个体,将它们作为父代参与下一代的繁衍。

适应度函数是用来评估个体在问题空间中的优劣程度的函数。

交叉操作是指将两个父代个体的染色体进行交换,产生子代个体。

交叉操作可以通过染色体的交叉点位置进行分类,如一点交叉、多点交叉、均匀交叉等。

变异操作是指对个体的部分基因进行突变,以增加空间的多样性。

变异操作在遗传算法中起到"探索"新解的作用。

下面是几个遗传算法的应用实例:1. 旅行商问题(Traveling Salesman Problem,TSP)旅行商问题是指在给定的一系列城市中,找到一条路径使得旅行商遍历每个城市且每个城市仅访问一次,最终回到起点城市。

遗传算法可以通过优化路径找到满足条件的最短路径。

2.集装箱装载问题集装箱装载问题是指如何在给定的一系列货物和一些规定的集装箱中,找到一种最佳的装载方案,以使得尽可能多的货物被装载到集装箱中。

遗传算法可以通过调整货物装载顺序和集装箱布局等来解决这个问题。

3.入侵检测系统入侵检测系统(Intrusion Detection System,IDS)用于检测计算机网络中的恶意入侵行为。

遗传算法可以通过学习适应网络环境的特征和规则,以准确地识别出正常和异常的网络流量。

4.机器学习中的特征选择和参数优化在机器学习任务中,特征的选择和参数的优化对于模型性能的提升非常重要。

遗传算法可以通过优化特征子集的选择和调整模型参数的取值,来提高机器学习模型的性能。

遗传算法基本概念

遗传算法基本概念

遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。

遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。

二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。

其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。

1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。

常用的编码方式有二进制编码、实数编码和排列编码等。

2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。

适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。

3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。

常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。

4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。

常用的交叉方法有单点交叉、多点交叉和均匀交叉等。

5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。

常用的变异方法有随机变异、非一致性变异和自适应变异等。

三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。

具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。

2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。

3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。

4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。

5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.3 遗传算法的基本操作
一般的遗传算法都包含三个基本操作:复制 一般的遗传算法都包含三个基本操作:复制(reproduction)、 、 交叉(crossover)和变异 和变异(mutation)。 交叉 和变异 。 1. 复制 复制(又称繁殖),是从一个旧种群( ),是从一个旧种群 复制(又称繁殖),是从一个旧种群(old population) ) 中选择生命力强的字符串( 中选择生命力强的字符串(individual string)产生新种群 ) 的过程。或者说,复制是个体位串根据其目标函数f( 的过程。或者说,复制是个体位串根据其目标函数 (即 适值函数)拷贝自己的过程。直观地讲, 适值函数)拷贝自己的过程。直观地讲,可以把目标函数 f看作是期望的最大效益的某种量度。根据位串的适值所 看作是期望的最大效益的某种量度。 看作是期望的最大效益的某种量度 进行的拷贝, 进行的拷贝,意味着具有较高适值的位串更有可能在下一 代中产生一个或多个子孙。显然,在复制操作过程中, 代中产生一个或多个子孙。显然,在复制操作过程中,目 标函数(适值 是该位串被复制或被淘汰的决定因素。 适值)是该位串被复制或被淘汰的决定因素 标函数 适值 是该位串被复制或被淘汰的决定因素。
复制操作的初始种群(旧种群 的生成往往是随机产生 复制操作的初始种群 旧种群)的生成往往是随机产生 旧种群 例如,通过掷硬币20次产生维数 次产生维数n= 的初始种群如下 的。例如,通过掷硬币 次产生维数 =4的初始种群如下 (正面 ,背面 : 正面=1,背面=0): 正面 01101 11000 01000 10011 显然, 显然,该初始种群可以看成是一个长度为五位的无符 号二进制数,将其编成四个位串,并解码为十进制的数: 号二进制数,将其编成四个位串,并解码为十进制的数: 位串1 01101 13 位串1: 位串2 11000 24 位串2: 位串3 01000 8 位串3: 位串4 10011 19 位串4:
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。按表5-1可绘制如图的转轮 可绘制如图的转轮。 的一个扇区。按表 可绘制如图的转轮。 复制时, 复制时,只要简单地转动这个按权重 划分的转轮4次 从而产生4个下一代 划分的转轮 次,从而产生 个下一代 的种群。例如对于表5-1中的位串 中的位串1, 的种群。例如对于表 中的位串 , 其适值为169,为总适值的 其适值为 ,为总适值的14.4%。 。 因此, 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 的概率为 。 代时, 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 的转轮,产生一个复制的候选者。 这样位串的适值越高, 这样位串的适值越高,在其下代中 图5-1 产生的后代就越多。 产生的后代就越多。
一般的交叉操作过程: 一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。 遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体; 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。 表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 列出了交叉操作之后的结果数据, 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位 的具体过程。首先,随机配对匹配集中的个体,将位串1 配对, 串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4, 配对;然后,随机选取交叉点,设位串1 =4, 二者只交换最后一位,从而生成两个新的位串, 二者只交换最后一位,从而生成两个新的位串,即
遗传算法的特点
同常规优化算法相比,遗传算法有以下特点: 同常规优化算法相比,遗传算法有以下特点: 遗传算法是对参数的编码进行操作, ① 遗传算法是对参数的编码进行操作,而非对参 数本身。 数本身。 遗传算法是从许多点开始并行操作, ② 遗传算法是从许多点开始并行操作,并非局限 于一点, 于一点 , 从而可有效防止搜索过程收敛于局部最 优解。 优解。 遗传算法通过目标函数计算适值, ③ 遗传算法通过目标函数计算适值,并不需要其 它推导和附加信息,因而对问题的依赖性较小。 它推导和附加信息,因而对问题的依赖性较小。
当一个位串被选中时, 当一个位串被选中时,此位串将被完整地复 然后将复制位串送入匹配集(缓冲区) 制,然后将复制位串送入匹配集(缓冲区)中。 旋转4次转轮即产生 个位串。 次转轮即产生4个位串 旋转 次转轮即产生 个位串。这4个位串是上代种 个位串是上代种 群的复制,有的位串可能被复制一次或多次, 群的复制,有的位串可能被复制一次或多次,有 的可能被淘汰。在本例中,位串3被淘汰 位串4 被淘汰, 的可能被淘汰。在本例中,位串 被淘汰,位串 被复制一次。如表6-2所示 所示, 被复制一次。如表 所示,适值最好的有较多的 拷贝, 拷贝,即给予适合于生存环境的优良个体更多繁 殖后代的机会,从而使优良特性得以遗传,反之, 殖后代的机会,从而使优良特性得以遗传,反之, 最差的则被淘汰。 最差的则被淘汰。
遗传算法的寻优规则是由概率决定的, ④ 遗传算法的寻优规则是由概率决定的,而非确 定性的。 定性的。 遗传算法在解空间进行高效启发式搜索, ⑤ 遗传算法在解空间进行高效启发式搜索,而非 盲目地穷举或完全随机搜索。 盲目地穷举或完全随机搜索。 ⑥ 遗传算法对所求解的优化问题没有太多的数学 要求。 要求。 遗传算法具有并行计算的特点, ⑦ 遗传算法具有并行计算的特点,因而可通过大 规模并行计算来提高计算速度。 规模并行计算来提高计算速度。
5.遗传算法 遗传算法
遗传算法( 简称GA) 遗传算法(genetic algorithms,简称 )是人工智能 简称 的重要分支,是基于达尔文进化论, 的重要分支,是基于达尔文进化论,在微型计算机上模拟 生命进化机制而发展起来的一门新学科。它根据适者生存、 生命进化机制而发展起来的一门新学科。它根据适者生存、 优胜劣汰等自然进化规则来进行搜索计算和问题求解。 优胜劣汰等自然进化规则来进行搜索计算和问题求解。对 许多用传统数学难以解决或明显失效的非常复杂问题, 许多用传统数学难以解决或明显失效的非常复杂问题,特 别是最优化问题, 提供了一个行之有效的新途径 提供了一个行之有效的新途径。 别是最优化问题,GA提供了一个行之有效的新途径。近 年来, 年来,由于遗传算法求解复杂优化问题的巨大潜力及其在 工业控制工程领域的成功应用, 工业控制工程领域的成功应用,这种算法受到了广泛的关 注。
选择决定生物进化的方向。在进化过程中, 选择决定生物进化的方向。在进化过程中,有的要保 有的要被淘汰。 留,有的要被淘汰。自然选择是指生物在自然界的生存环 境中适者生存,不适者被淘汰的过程。 境中适者生存,不适者被淘汰的过程。通过不断的自然选 有利于生存的变异就会遗传下去,积累起来, 择,有利于生存的变异就会遗传下去,积累起来,使变异 越来越大,逐步产生了新的物种。 越来越大,逐步产生了新的物种。 生物就是在遗传、 生物就是在遗传、变异和选择三种因素的综合作用过 程中,不断地向前发展和进化。 程中,不断地向前发展和进化。选择是通过遗传和变异起 作用的,变异为选择提供资料, 作用的,变异为选择提供资料,遗传巩固与积累选择的资 而选择则能控制变异与遗传的方向, 料,而选择则能控制变异与遗传的方向,使变异和遗传向 着适应环境的方向发展。 着适应环境的方向发展。遗传算法正是吸取了自然生物系 适者生存、优胜劣汰”的进化原理, 统“适者生存、优胜劣汰”的进化原理,从而使它能够提 供一个在复杂空间中随机搜索的方法, 供一个在复杂空间中随机搜索的方法,为解决许多传统的 优化方法难以解决的优化问题提供了新的途径。 优化方法难以解决的优化问题提供了新的途径。
通过一个5位无符号二进制数, 通过一个 位无符号二进制数,可以得到一个 位无符号二进制数 的数值x,它可以是系统的某个参数。 从0到31的数值 ,它可以是系统的某个参数。计算 到 的数值 目标函数或适值f(x)=x2,其结果如表 所示。计算 其结果如表6-1所示 所示。 目标函数或适值 种群中所有个体位串的适值之和,同时, 种群中所有个体位串的适值之和,同时,计算种群 全体的适值比例,其结果示于表中。 全体的适值比例,其结果示于表中。
பைடு நூலகம்
5.1.1 基本遗传学基础
遗传算法是根据生物进化的模型提出的一种优化算法。 遗传算法是根据生物进化的模型提出的一种优化算法。 自然选择学说是进化论的中心内容,根据进化论, 自然选择学说是进化论的中心内容,根据进化论,生物的 发展进化主要由三个原因,即遗传、变异和选择。 发展进化主要由三个原因,即遗传、变异和选择。 遗传是指子代总是和亲代相似。 遗传是指子代总是和亲代相似。遗传性是一切生物所 共有的特性,它使得生物能够把其特性、性状传给后代。 共有的特性,它使得生物能够把其特性、性状传给后代。 遗传是生物进化的基础。 遗传是生物进化的基础。 变异是指子代和亲代有某些不相似的现象, 变异是指子代和亲代有某些不相似的现象,即子代永 远不会和亲代完全一样。它是一切生物所具有的共有特性, 远不会和亲代完全一样。它是一切生物所具有的共有特性, 是生物个体之间相互区别的基础。引起变异的原因主要是 是生物个体之间相互区别的基础。 生活环境的影响及杂交等。 生活环境的影响及杂交等。生物的变异性为生物的进化和 发展创造了条件。 发展创造了条件。
5.1.2 遗传算法的原理和特点
遗传算法将生物进化原理引入待优化参数形成的编码 串群体中, 串群体中,按着一定的适值函数及一系列遗传操作对各个 体进行筛选,从而使适值高的个体被保留下来, 体进行筛选,从而使适值高的个体被保留下来,组成新的 群体,新群体包含上一代的大量信息, 群体,新群体包含上一代的大量信息,并且引入了新的优 于上一代的个体。这样周而复始, 于上一代的个体。这样周而复始,群体中各个体适值不断 提高,直至满足一定的极限条件。此时, 提高,直至满足一定的极限条件。此时,群体中适值最高 的个体即为待优化参数的最优解。 的个体即为待优化参数的最优解。正是由于遗传算法独具 特色的工作原理,使它能够在复杂空间进行全局优化搜索, 特色的工作原理,使它能够在复杂空间进行全局优化搜索, 并且具有较强的鲁棒性;另外,遗传算法对于搜索空间, 并且具有较强的鲁棒性;另外,遗传算法对于搜索空间, 基本上不需要什么限制性的假设(如连续、 基本上不需要什么限制性的假设(如连续、可微及单峰 等)。
相关文档
最新文档