初中数学讲义--第12讲 二元一次方程组的应用
初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用二元一次方程组是初中数学中的重要内容,它涉及到两个未知数的方程组。
在本文中,我们将介绍二元一次方程组的解法以及它在实际生活中的应用。
一、解法1. 消元法消元法是求解二元一次方程组最常用的方法之一。
对于形如:a₁x + b₁y = c₁a₂x + b₂y = c₂的方程组,首先选择其中一个方程,通过系数的适当倍乘,使得其中一个未知数的系数相等。
然后将两个方程相减,消去该未知数,得到一个只含有另一个未知数的一元一次方程。
求解该方程后,代入到原方程得出另一未知数的值。
2. 代入法代入法是另一种常用的解二元一次方程组的方法。
首先选择其中一个方程,解出其中一个未知数,然后将该值代入到另一个方程中,求解得到另一个未知数的值。
二、应用1. 几何问题二元一次方程组可以应用于几何问题中。
例如,已知两条直线的方程,求解它们的交点坐标。
将两条直线的方程组成二元一次方程组,通过解方程组可以求得它们的交点坐标。
2. 商业问题二元一次方程组在商业问题中也有广泛的应用。
例如,某公司生产两种产品,已知这两种产品的生产成本和售价,求解生产和销售这两种产品的数量,以最大化利润。
通过建立二元一次方程组,并求解方程组可以得到最优解。
3. 等比数列问题等比数列问题中常常需要解二元一次方程组。
例如,已知等比数列的第一项和公比,求解前n项的和。
通过建立关于等比数列的二元一次方程组,并求解可以得到所需的结果。
总结:二元一次方程组的解法有消元法和代入法,根据问题的要求可以选择不同的方法进行求解。
而二元一次方程组在几何、商业和数列等领域都有广泛的应用,通过解方程组可以求解实际问题,提高解决问题的能力。
以上是关于初一数学二元一次方程组的解法与应用的内容论述。
通过消元法和代入法,我们可以解决二元一次方程组,并且这些方法在几何、商业和数列等领域都有广泛的应用。
希望本文对您理解和掌握二元一次方程组有所帮助。
二元一次方程组的应用优秀课件PPT

代入法
利用已知方程的解,代入 另一方程求得另一未知数 的值。
消元法
通过加减乘除等运算将未 知数的系数降为1,从而 求得未知数的值。
二元一次方程组的应用
求两个数的和与积
通过已知两个数的和与积,求出两个数的值。
求两个数的差与商
通过已知两个数的差与商,求出两个数的 值。
租房的问题
道谢并结束PPT呈现
谢谢大家的聆听,祝您学习愉快,加油!
二元一次方程组的应用优 秀课件PPT
本课件旨在介绍二元一次方程组的基本概念、解法和应用。通过图解、代入 和消元法等多种方法,深入浅出地让学生掌握方程组的解法和应用优势。
什么是二元一次方程组
定义
由两个未知数和两个方程组成的方程组。
基本概念
包括系数、未知数、等式、解等概念。
二元一次方程组的解法
பைடு நூலகம்
图解法
通过已知房租总额和房间数量,求解每个房间 的租金。
买苹果的问题
已知苹果数量和总价格,求单价以及苹果 的购买数量。
二元一次方程组与几何图形的关系
直线方程
一元一次方程的解可表示在二 维坐标系上的一条直线。
两条直线的交点
同时满足两条直线方程的点为 两线的交点。
两条直线是否平行
两条直线的斜率相等,则这两 条直线平行。
课后练习及答案解析
练习题覆盖了各种类型的二元一次方程组求解题目,让学生可以巩固所学知 识。
引导学生进一步学习的推荐资源
推荐一些网站、教材和书籍,供学生进一步学习和深入了解二元一次方程组。课程结束后,老师可以继 续与学生交流讨论。
Q&A交流时段
在此时段,学生可以提出问题并与老师和同学进行交流讨论。附上老师的联 系方式和课程网址。
二元一次方程组的实际应用

思路探索:本题的两个相等关系分别为小晶家水费19元和小磊家水费31元。
解析:设小晶家5月份用水y m 3,则小磊家5月份用水1.5y m 3。
可列方程组52(5)1952(1.55)31x y x y ⨯-=⎧⎨⨯-=⎩++,解得 243xy x =⎧⎨=⎩,即38x y =⎧⎨=⎩答:表中的x 的值为3。
规律总结:根据本题中的相等关系虽然列出的是二元二次方程组,但我们可以把这个方程组看作是关于xy 和y 的二元一次方程组,然后求解。
例2:某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐. (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.思路探索:(1)本题有两个未知数“1个大餐厅、1个小餐厅分别可供多少名学生就餐”,两个相等关系“同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐”“同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐”(2)计算出“5个大餐厅和2个小餐厅”能够提供的吃饭的人数,然后跟5300相比较。
解析:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280.x y x y +=⎧⎨+=⎩,解这个方程组,得960360.x y =⎧⎨=⎩,答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐. (2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.规律总结:题中出现多个相等关系的题目就要考虑使用二元一次方程组,尽管题目的问题可能问的不是直接求未知数的值。
探究:教材106页:探究3:如图,长青化工厂与A 、B 两地有公路、铁路相连,这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地。
七年级数学二元一次方程组的应用PPT教学课件

y
12
答:鸡有23只,兔有12只。
解:设自行车路段长为x m,长跑路段长为y m,
根据题意可得: x y 5000
自行车 长跑
x
10
y 10
15 60
x 路段长
(m)
y
3
即:
x y 5000 x3y 9000
x
y
时间 (s)
10
10 3
解得
x 3000
y
2000
自行车路段长+长跑路段长=总路程
答:自行车路段长度为3骑00自0m行,车长的跑时路间段+长长跑20时00间m=总时间
例2 某食品厂要配制含蛋白质15%的 100kg食品,现在有含蛋白质分别为20 %,12%的两种配料. 用这两种配料可 以配制出所要求的食品吗?如果可以
的话,它们各需多少千克?
甲乙
总质量
质量(kg) x + y = 100
+ 三级工定额完成产品件数
=1400(件)
50x
200y
解:
x y 设二级工有 名,三级工有 名.根据题意,有
x + y =22,
用二元一次方程组解决实际问题的步骤如下:
实际问题 设两个未知数, 并找出两个等量关系
列方程组 解方程组 检验解是否符合实际情况
3.某船的载重为260吨,容积这1000米3 .现有甲、乙两种货物 要运,其中甲种货物每吨体积为8米3 ,乙种货物每吨体积 为2米3 ,若要充分利用这艘船的载重与容积,甲、乙两种 货物应各装多少吨?(设装运货物时无任何空隙)
1.3.1二元一次方程组的应用
例:解方程组
2x-7y = 8, 3x-8y-10 = 0.
二元一次方程组的应用

二元一次方程组的应用二元一次方程组是高中数学的重要内容之一,它在实际生活中有着广泛的应用。
本文将探讨二元一次方程组的应用,并通过实例来解释其中的原理和方法。
一、二元一次方程组的定义二元一次方程组由两个方程组成,每个方程都包含两个变量,且变量的最高次数为1。
一般而言,二元一次方程组的形式如下:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,a₁、b₁、c₁、a₂、b₂、c₂为已知的系数,x、y为未知的变量。
二、二元一次方程组的求解方法解二元一次方程组有多种方法,常见的有代入法、消元法和图解法。
下面将分别介绍这几种方法。
1. 代入法代入法的基本思想是将其中一个方程中的一个变量表示成另一个方程中的变量的函数,然后代入到另一个方程中进行求解。
具体步骤如下:(1)选择一方程,将其中一个变量表示成另一个方程中的变量的函数。
(2)将所得的表达式代入另一个方程中,得到一个只包含单一变量的一元方程。
(3)解这个一元方程,求出该变量的值。
(4)将求得的变量值代入已知的方程中,求得另一个变量的值。
2. 消元法消元法是通过将两个方程中的同一变量系数相等,然后相加或相乘的方式,将这个方程组转变为只含有一个变量的一元方程。
具体步骤如下:(1)使两个方程中同一变量的系数相等或成比例。
(2)将两个方程相加或相减,得到一个只包含单一变量的一元方程。
(3)解这个一元方程,求出该变量的值。
(4)将求得的变量值代入已知的方程中,求得另一个变量的值。
3. 图解法图解法是通过在坐标系中表示方程组的直线图像,通过观察直线的交点确定方程组的解。
具体步骤如下:(1)将方程转化为y = ax + b的形式,确定方程的直线图像。
(2)在坐标系中画出两个直线的图像。
(3)观察两个直线的交点,该交点即为方程组的解。
三、二元一次方程组的应用举例二元一次方程组在现实生活中的应用非常广泛,下面举几个实际问题来说明。
1. 商品优惠某商场进行商品促销活动,甲乙两种商品的原价分别为x元和y元,打折后的价格分别为x-100元和y-150元。
二元一次方程组的应用ppt课件

6.3 二元一次方程组的应用
解析:四个小组每天能制造螺栓: 8+9+7+6=30(个), 四个小组每天能制造螺母: 10+12+11+7=40(个).
设四个小组制造螺栓 x 天,制造螺母 y 天.依据“把一个螺母和一个螺
栓配套组装成一个新型零件,以及一共制造了 7 天”列方程组,得
解得
所以 30x=120,即 7 天中这四个小组最 多可组装120 个零件.
解析:本题中的等量关系是:①七年级人数+八年级人数=2 350 人;②七 年级人数的 2 倍=八年级人数的 3 倍-550 人.
答案:解:设七、八年级学生分别有 x 人,y 人.由题意,得 解这个方程组,得
答:七、八年级学生分别有 1 300 人和 1 050 人. 易错:列方程组为 错因:七年级人数的 2 倍比八年级人数的 3 倍少 550 人,这个等量关 系找错. 满分备考:解决和差倍分问题时,要弄清楚谁是谁的几倍,或谁比谁多多 少,切记不要弄反等量关系.
汤.仔细阅读小明父母之间的对话,妈妈:“今天买这两样食材共花了 45 元, 上月买同质量的这两样食材只要 36 元.”爸爸:“报纸上说了萝卜的单价上涨 50%,排骨的单价上涨 20%.”小明听后很快计算出今天排骨的单价为 ____ 元.
解析:设上个月萝卜的单价为 x 元,排骨的单价为 y 元.由题意,得
答案:120
易错:100
错因:弄错题目中存在的等量关系或直接设 7 天 中这四个小组最多可组
装 x 个零件,从而找不到等 量关系,列不出方程组,导致出错.
-6-
6.3 二元一次方程组的应用
满分备考:应用二元一次方程组解决实际问题时,有时可以直接设所求的 量列出方程组,有时直接设所求的量找不到等量关系,则需设与所求量相关联 的量,列出方程组,解决问题.
第12讲二元一次方程组的应用七年级数学上册同步精品课堂(沪科版2024)[含答案]
![第12讲二元一次方程组的应用七年级数学上册同步精品课堂(沪科版2024)[含答案]](https://img.taocdn.com/s3/m/cb7944138f9951e79b89680203d8ce2f0066653e.png)
第12讲二元一次方程组的应用(4个知识点+7种题型+过关检测)知识点1.由实际问题抽象出二元一次方程(1)由实际问题列方程是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有2个未知量就必须列出2个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程的关键和难点.常见的一些公式要牢记,如利润问题,路程问题,比例问题等中的有关公式.知识点2.二元一次方程的应用二元一次方程的应用(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.知识点3.由实际问题抽象出二元一次方程组(1)由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.(2)一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数值要相符.(3)找等量关系是列方程组的关键和难点,有如下规律和方法:①确定应用题的类型,按其一般规律方法找等量关系.②将问题中给出的条件按意思分割成两个方面,有“;”时一般“;”前后各一层,分别找出两个等量关系.③借助表格提供信息的,按横向或纵向去分别找等量关系.④图形问题,分析图形的长、宽,从中找等量关系.知识点4.二元一次方程组的应用(一)列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.(二)设元的方法:直接设元与间接设元.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.题型一、方案问题(二元一次方程组的应用)(21-22七年级上·安徽合肥·期末)1.在某学校举行的课间“桌面操”比赛中,为奖励表现突出的班级,学校计划用260元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品只能购买3个或4个且钱全部用完的情况下(注:每种方案中都有三种奖品),共有多少种购买方案()A.12种B.13种C.14种D.15种(21-22七年级上·安徽六安·期末)2.有三个家庭团队结伴到一景区游玩,一号家庭团队有3个成年人和4个小孩参加,共交费150元,二号家庭团队有2个成年人和1个小孩参加,共交费75元,按照这样的收费标准,三号家庭团队有1个成年人和3个小孩参加,所需的费用为元.(22-23七年级上·安徽宣城·期末)3.某医疗器械厂计划用600万元资金采购一批口罩生产机器,其中甲型机器每台的售价为10万元,乙型机器每台的售价为45万元.若购买甲型机器的数量是乙型机器数量的5倍还多3台,则甲、乙两种机器分别购入多少台?题型二、行程问题(二元一次方程组的应用)(21-22七年级上·安徽阜阳·阶段练习)4.甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为()A.330千米B.170千米C.160千米D.150千米(21-22七年级上·安徽合肥·阶段练习)5.小北同学早晨骑车去上学,半小时可到达学校,妈妈发现他的数学书丢在家中,在小北出发310小时后乘上出租车去学校送书,出租车每小时的速度比小北骑车的速度快20千米,由于市政建设,出租车到校行驶的路程比小北骑车行驶的路程多1千米,恰好与小北同时到达学校.求小北需要骑行多少千米到学校?题型三、销售、利润问题(二元一次方程组的应用)(21-22七年级上·安徽六安·期末)6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?()A.一盒“福娃”玩具和一枚徽章的价格分别为100元和25元B.一盒“福娃”玩具和一枚徽章的价格分别为120元和5元C .一盒“福娃”玩具和一枚徽章的价格分别为125元和10元D .一盒“福娃”玩具和一枚徽章的价格分别为130元和6元(23-24七年级上·安徽蚌埠·期末)7.某商场第1次用39000元购进甲,乙两种商品,销售完后获得利润6000元,它们的进价和售价如表(总利润=单价利润´销售量):价格商品进价(元/件)售价(元/件)甲120135乙100120(1)该商场第1次购进甲,乙两种商品各多少件?(2)商场第2次以原进价购进甲,乙两种商品,购进甲商品的件数不变,而购进乙商品的件数是第1次的2倍,甲商品按原售价销售,而乙商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于5400元,则乙种商品是按几折销售的?题型四、几何问题(二元一次方程组的应用)(23-24七年级上·安徽亳州·期末)8.如图,王英家客厅的电视背景墙是由8块形状大小相同的长方形墙砖砌成,已知电视背景墙的长度为2.4m ,则每一块长方形墙砖的面积为( )A .20.36mB .20.9mC .20.4mD .22.4m (19-20七年级上·安徽蚌埠·期末)9.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为3-,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意易知,点A 是点B 的“追赶点”,()134(AB AB =--=表示线段AB 的长,以下相同);类似的,MN =______.(2)在A ,M ,N 三点中,若其中一个点是另两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM BN =,43MN BM =,求m 和n 的值.题型五、图表信息题(二元一次方程组的应用)(21-22七年级上·安徽安庆·期末)10.把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则y x 的值为( )A .1B .8C .9D .-8(21-22七年级上·安徽淮北·期末)11.根据如图所示给出的信息,求每支钢笔和每支铅笔的价格.题型六、古代问题(二元一次方程组的应用)(23-24七年级上·安徽亳州·阶段练习)12.《孙子算经》中有一道题,原文是:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?小伟同学准备用二元一次方程组解决这个问题,他已列出一个方程是 4.5y x -=,则符合题意的另一个方程是( )A .112y x =-B .112x y =-C .112y x =+D .112x y =+(22-23七年级上·安徽六安·期末)13.“今有四十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为.今有40只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,且恰好每个圈舍都能放满,求所需圈舍的间数.设所需大圈舍x间,小圈舍y间,则x y+求得的结果有种.(22-23七年级上·安徽滁州·期中)14.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每1只各重多少斤?”请列方程组解答上面的问题.题型七、其他问题(二元一次方程组的应用)(2021·重庆渝中·二模)15.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身20个,或制作盒底30个,一个盒身与两个盒底配成一套糖果盒.现有35张铁皮,设用x张制作盒身,y张制作盒底,恰好配套制成糖果盒,则下列方程组中符合题意的是()A.3530202x yyx+=ìïí=ïîB.3520230x yx y+=ìí=´îC.352x yy x+=ìí=îD.3522030x yx y+=ìïí=ïî(22-23七年级上·安徽安庆·期末)16.学校为丰富大课间体育活动项目,决定再购买一批乒乓球拍和羽毛球拍,小明完成购买任务回学校向李老师汇报说:“这两种球拍共30付,乒乓球拍单价为40元,羽毛球拍单价为64元,买之前我领了1600元,现在还余76元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他忘记还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为介于10到20之间的整数,请问:笔记本的单价为多少元?一、单选题17.如果一个两位数的十位数字和个位数字之和是5,则这样的两位数有()个.A.4B.5C.6D.718.不考虑优惠,买1本笔记本和3支水笔共需14元,买4本笔记本和6支水笔共需38元,则购买1本笔记本和1支水笔共需( )A.13元B.8元C.5元D.3元19.某车间35名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.一个螺栓要配两个螺母,问应该分配()名工人生产螺栓,才能使当天的螺栓和螺母刚好配套?A.13人B.14人C.15人D.16人20.《算法统宗》是中国古代数学名著,其中有一道题.原文是:“哑子来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉?”意思是:一个哑巴来买肉,说不出钱的数目.买一斤(16两)还差二十五文钱,买八两多十五文钱.问哑巴所带的钱数和肉价各是多少?设肉价为x文/两,哑巴所带的钱数为y文.则下面所列方程组正确的是()A.1625815x yy x=-ìí-=îB.1625815x yx y-=ìí-=îC.8251615x yx y-=ìí=-îD.1625815x yy x-=ìí-=î21.如图,宽为25cm的长方形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.2100cm B.2200cm C.2300cm D.2400cm22.用如图1中的长方形和正方形纸板作侧面和底面,做成如图2的横式和竖式的两种无盖纸盒,现有a张正方形纸板和b张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则a b+的值可能是()A.100B.101C.102D.10323.为喜迎“全国两会”胜利召开,某校开展了以“永远跟党走,奋进新征程”为主题的演讲活动,现计划拿出200元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的同学,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A.6种B.5种C.4种D.3种24.古书《九章算术》有这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”大意是:有几个人共同出钱买鸡,每人出9钱,则多了11钱,每人出6钱,则少了16钱,那么有几个人共同买鸡?鸡的总价是多少?若有x个人共同买鸡,鸡的总价是y元,则可列方程组为( )A.911616x yx y-=ìí-=-îB.911616x yx y-=ìí-=îC.911616x yx y-=-ìí-=-îD.911616x yy x-=ìí-=-î25.有一些苹果箱,若每个装苹果25kg,则剩余40kg苹果无处装,若每个装苹果30kg.则余20个空箱,这些苹果箱有()A.12个B.60个C.112个D.128个26.我国民间流传这样一道数学名题:其大意是:听见隔壁一些人在分银两,每人7两还缺7两,每人半斤则多半斤,问共有多少人?共有多少两银子?数学原题:只闻隔壁人分银,不知多少银和人,每人7两还缺7两,每人半斤多半斤,试问各位善算者,多少人分多少银?(1斤等于10两)设有x个人,共分y两银子,根据题意,可列方程组为()A.7755y xy x=-ìí=+îB.7755y xy x=+ìí=+îC.7755y xy x=-ìí=-îD.7755y xy x=+ìí=-î二、填空题27.某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子比红色帽子多1倍,则男生有 人.28.某同学家离学校4千米,每天骑自行车上学和放学.有一天上学时顺风,从家到学校共用12分钟,放学时逆风,从学校回家共用时20分钟,已知该同学在无风时骑自行车的速度为x 千米/时,风速为y 千米/时,则根据题意,列出方程组 .29.如图宽为60cm 的长方形图案是用8块相同的小长方形地砖拼成的,则每块小长方形地砖的长是30.寒假期间,爱学习的小幸决定将部分压岁钱用于购买A B 、两种文具.3月17日,A 文具的单价比B 文具的单价少2元,小幸购进A B 、两种文具共3件;3月27号,A 文具的单价翻倍,B 文具的单价不变,小幸购进A B 、两种文具共4件;若A B 、文具的单价和数量均为正整数且小幸第二次购买文具比第一次购买文具多花费5元,则小幸两次购买文具共花费 元.三、解答题31.有大小两种货车,2辆大货车与1辆小货车一次可以运货10.5吨,1辆大货车与2辆小货车一次可以运货9吨.求每辆大货车与每辆小货车一次分别可以运货多少吨?32.对任意一个三位正整数m ,如果各个数位上的数字之和为18,则称这个三位正整数m 为“美好数”.(1)最小的三位“美好数”是 ,最大的三位“美好数”是 .(2)求证:任意一个三位“美好数”都能被9整除.(3)若一个三位“美好数”前两位数字组成的两位数与这个“美好数”个位数字的4倍的和为111,求满足条件的三位“美好数”.33.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》名记载了一道数学问题: “今有共买物,人出六,赢二; 人出五,不足三.问人数、物价各几何?译文:“今有人合伙购物,每人出6钱,会多出2钱; 每人出5钱,又差3钱.问人数、物价各多少? ”请解答上述问题.34.如图,长青化工厂与A ,B 两地都有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为2.5元/(t·km),铁路运价为2元/(t·km),且这两次运输共支出公路运费50000元,铁路运输324000元.这批产品的销售款比原料费与运输费的和多多少元?35.风力发电是一种绿色环保的发电方式,一般主要分布在山顶,海上,草原等利用风能发电.其中一套风力发电设备(如图)由一个风机塔筒和三个风机叶片组成,其中碳纤维材料是必须的材料,据了解15吨的碳纤维材料可以制作30个风机塔筒或60个风机叶片.(1)1吨碳纤维材料可以做多少个风机塔筒或多少个风机叶片?(2)现有75吨碳纤维材料,一共可以做多少套风力发电设备?36.课间游戏时同学们设计了一个飞镖游戏,飞镖游戏的规则如下:如图,掷到A区和B区的得分不同,A区为小圆内的部分,B区为大圆内小圆外的部分(A区B区均不含边界,如果掷到边界上重新投掷,投掷在大圆以外的无效).现在将投掷有效的每次位置用一个点标注,统计出小红和小华的有效成绩情况如下:小红得了65分,小华得了71分.(1)掷中A区、B区一次各得多少分?(2)按照这样的计分方法,小明得了多少分?37.某鞋店正举办开学特惠活动,如图为活动说明.小李打算在该店同时购买两双鞋,且他有一张所有购买的商品定价皆打8折的折价券.(1)若小李参加特惠活动需花费420元,比使用折价券多花20元,则两双鞋的原件为多少元?(2)若小李计算后发现使用折价券与参加特惠活动两者的花费相差60元,则两双鞋的原价相差多少元?38.浦东实验中学为了开展全校学生阳光体育运动活动,增强学生身体素质,张老师需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65750第二次37780第三次78742(1)张老师是第________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;´的方格内,各行、各列及对角线上的三个数字之和都相等.39.如图,在33(1)则a=______,b=______.(2)请你在方框内作出以a cm为长,b cm为宽,2a cm为高的长方体.1.C【分析】有两个等量关系:购买A 种奖品钱数+购买B 种奖品钱数+购买C 种奖品钱数=260;C 种奖品个数为3或4个,设两个未知数,得出二元一次方程,根据实际含义确定解.【详解】设购买A 种奖品m 个,购买B 种奖品n 个,当C 种奖品个数为3个时根据题意得1020330260m n ++´=整理得 217m n +=,m n Q 都是正整数,0217n <<1,2,3,4,5,6,7,8n \=当C 种奖品个数为4个时根据题意得1020430260m n ++´=整理得 214m n +=,m n Q 都是正整数,0214n <<1,2,3,4,5,6n \=\有8614+=种购买方案故选:C .【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.要注意题中未知数的取值必须符合实际意义.2.75【分析】设每张成人票的价格为x 元,每张儿童票的价格为y 元,根据“一号家庭团队有3个成年人和4个小孩参加,共交费150元,二号家庭团队有2个成年人和1个小孩参加,共交费75元”,即可列出关于x 、y 的二元一次方程组,两方程相减即可求出三号家庭团队所需的费用.【详解】解:设每张成人票的价格为x 元,每张儿童票的价格为y 元,根据题意得:34150275x y x y +ìí+î=①=②,①-②,得:x +3y =75,所以,三号家庭团队有1个成年人和3个小孩参加,所需的费用为75元故答案为:75.【点睛】本题考查了二元一次方程组的应用,找准等量关系,列出方程组是解题的关键.3.甲型机器购买33台,乙型机器购买6台【分析】根据两个等量关系:用600万元资金与甲型机器的数量是乙型机器数量的5倍还多3台,设甲型机器购买x 台,乙型机器购买y 台,列方程组解出即可.【详解】解:设甲型机器购买x 台,乙型机器购买y 台,由题意得:104560053x y x y +=ìí=+î,解得:336x y =ìí=î答:甲型机器购买33台,乙型机器购买6台.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系列出方程是解题关键.4.C【分析】设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x ,y 的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.【详解】解:设动车平均每小时行驶x 千米,快车平均每小时行驶y 千米,依题意得:()152********y x x y ì=+ïíï++=î,解得:330170x y =ìí=î,330170160-= ,故选:C .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.5千米【分析】设小北每小时骑行x 千米,骑行y 千米到达学校,利用小北同学早晨骑车去上学,半小时可到达学校和出租车到校行驶的路程比小北骑车行驶的路程多1千米,恰好与小北同时到达学校列出方程组即可求解.【详解】解:设小北每小时骑行x 千米,骑行y 千米到达学校,由题意可得1213(20)1 210x yx yì=ïïíæöï-+=+ç÷ïèøî,解得105xy=ìí=î,答:小北需要骑行5千米到达学校.【点睛】本题考查了二元一次方程组的应用,读懂题意,找出题目的等量关系是解题的关键.6.C【分析】根据图表得出等量关系可列出方程进而组成方程组求出即可.【详解】解:设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元,根据题意得:2145 23280 x yx y+=ìí+=î解得:12510 xy=ìí=î所以一盒“福娃”玩具和一枚徽章的价格分别为125元和10元故选:C.【点睛】此题主要考查了二元一次方程组的应用,根据已知得出等量关系可列出方程是解题关键.7.(1)商场第1次购进甲商品200件,乙商品150件(2)乙种商品打九折销售的【分析】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.(1)设第1次购进甲商品x件,乙商品y件,根据该商场第1次用39000元购进甲乙两种商品且销售完后获得利润6000元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙商品打m折出售,根据总利润=单价利润´销售量,即可得出关于m的一元一次方程,解之即可得出结论.【详解】(1)解:设第1次购进甲商品x件,乙商品y件.根据题意得:()()120100390001351201201006000x y x y +=ìí-+-=î,解得:200150x y =ìí=î.答:商场第1次购进甲商品200件,乙商品150件.(2)解:设乙商品打m 折出售.根据题意得:()2001351201502120100540010m æö´-+´´´-=ç÷èø,解得:9m =.答:乙种商品打九折销售的.8.A【分析】此题考查了二元一次方程组的实际应用,长方形的性质,根据长方形的两组对边分别相等列出方程组是解题的关键.设一块长方形墙砖的长为m x ,宽为m y ,然后用x y 、的代数式分别表示出长方形的长为()4m x y +,两条宽分别为4m y ,m x ,进而根据长方形的性质列出方程组,解方程组得到x y、的值,再根据长方形面积计算公式即可求出面积,【详解】解:设一块长方形墙砖的长为m x ,宽为m y ,依题意得,44 2.4x y x y =ìí+=î,解得 1.20.3x y =ìí=î,∴每一块长方形墙砖的面积为:()21.20.30.36mxy =´=答:每一块长方形墙砖的面积为20.36m .故选:A .9.(1)n m-(2)①M 是A 、N 的中点,23=+n m ;②A 是M 、N 点中点时,6n m =--;③N 是M 、A 的中点时,32m n -+=;(3)4m =,8n =或2m =-,2n =或5m =-,3n =【分析】(1)根据“点A 是点B 的“追赶点”,()134(AB AB =--=表示线段AB 的长,以下相同)”即可得到答案;(2)分三种情况进行分析求解即可;(3)根据AM BN =得到31m n +=-,由43MN BM =,得到413n m m -=-,分别列出方程组进行求解即可.【详解】(1)解:由题意可得,MN n m =-,故答案为n m -;(2)①M 是A 、N 的中点,则()3m n m --=-,23n m \=+;②A 是M 、N 点中点时,则()33m n --=--,∴6n m =--;③N 是M 、A 的中点时,则3n m n -=--,32m n -+\=;(3)AM BN =Q ,31m n \+=-,43MN BM =Q ,413n m m \-=-,313344m n n m m +=-ì\í-=-î或313344m n n m m +=-+ìí-=-î或313344m n n m m --=-ìí-=-+î或313344m n n m m --=-+ìí-=-+î,4m \=,8n =或0.2m =-, 1.8n =-或5m =-,3n =或2m =-,2n =,n m >Q ,4m \=,8n =或2m =-,2n =或5m =-,3n =.【点睛】此题考查了二元一次方程组的应用、线段中点的定义等知识,熟练掌握二元一次方程组的解法和分类讨论是解题的关键.10.A【分析】:根据题意得:得到关于x ,y 的方程组,即可求解.【详解】解:根据题意得:∴8275852x x y +=+ìí++=++î,解得:19x y =ìí=î,∴911y x ==.故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.11.每支铅笔1元、每支钢笔10元【分析】设每支铅笔x 元、每支钢笔y 元,根据买了3支铅笔和2支钢笔,用了23元;乙买了2支铅笔和3支钢笔,用了32元.列出方程组解方程组即可.【详解】解:设每支铅笔x 元、每支钢笔y 元,根据题意可得:3223,2332x y x y +=ìí+=î解得:110x y =ìí=î答:每支铅笔1元、每支钢笔10元.【点睛】此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.A【分析】本题考查了二元一次方程组的应用,根据用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,列出方程组即可得出结果.【详解】解:设木长为x ,绳子长 y ,根据题意,得: 4.5112y x y x -=ìïí=-ïî,故选:A .13.3【分析】根据题意,得6440x y +=,整理得3220x y +=,根据x ,y 都是整数,讨论求解即可.【详解】设所需大圈舍x 间,小圈舍y 间,根据题意,得6440x y +=,整理得3220x y +=,所以20331022x y x -==-,因为x ,y 都是整数,所以31012x -³,解得16x ≤≤,所以x 的值可能是1,2,3,4,5,6,因为3102y x =-是整数,所以x 一定也是偶数,故x 的值为2,4,6,y 对应的值为7,4,1,故x y +的值有3种可能,故答案为:3.【点睛】本题考查了二元一次方程的整数解,熟练掌握方程整数解的解题方法是解题的关键.14.雀、燕每一只各重219斤、338斤【分析】设雀、燕每1只各重x 斤、y 斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】解:设雀、燕每1只各重x 斤、y 斤.根据题意,得45561x y y x x y +=+ìí+=î整理,得340561x y x y -=ìí+=î解得219338x y ì=ïïíï=ïî。
初中数学知识归纳二元一次方程组的解法与应用

初中数学知识归纳二元一次方程组的解法与应用初中数学知识归纳:二元一次方程组的解法与应用一、引言数学中,方程组是一种常见的问题求解形式。
二元一次方程组是最简单的方程组形式之一,也是初中数学中的基础内容。
本文将系统地归纳二元一次方程组的解法及其在实际问题中的应用。
二、二元一次方程组的定义二元一次方程组是由两个方程组成的方程集合,每个方程都是关于两个未知数的线性方程。
一般形式可以表示为:a₁x + b₁y = c₁a₂x + b₂y = c₂其中,a₁、b₁、c₁、a₂、b₂、c₂为已知系数,x、y为未知数。
三、解法一:代入法代入法是解二元一次方程组的一种基本方法。
具体步骤如下:1. 选其中一个方程,将该方程中的一个未知数用另一个未知数表示。
例如,选取第一个方程,假设a₁≠0,则可以将其改写为 x = (c₁ - b₁y) / a₁。
2. 将已得到的表达式代入另一个方程中,解得另一个未知数的值。
例如,将上述表达式代入第二个方程中,得到 a₂((c₁ - b₁y) / a₁) + b₂y = c₂,整理后解得y的值。
3. 将求得的y值代入第一个方程,解得x的值。
例如,将求得的y值代入第一个方程中,得到 a₁x + b₁(c₁ - b₁y) / a₁ = c₁,整理后解得x的值。
四、解法二:消元法消元法是解二元一次方程组的另一种常用方法。
具体步骤如下:1. 对第一个方程和第二个方程进行倍数变换,使得系数a₁和a₂的相乘后的差为0。
例如,若a₁ ≠ 0,则可以将第一个方程乘以 a₂ / a₁,第二个方程乘以 -a₁ / a₂。
2. 将两个方程相加,得到只含有一个未知数的方程。
例如,将两个方程相加后,得到 (a₁a₂ / a₁ - a₁a₂ / a₂)x +(b₁a₂ - b₂a₁)y = c₁a₂ / a₁ - c₂a₁ / a₂。
3. 解出上述只含有一个未知数的方程。
4. 将求得的未知数的值代入其中一个原方程中,解得另一个未知数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 13 页全方位教学辅导教案学 科: 数学 任课教师: 授课时间: 2020 年 月 日 (星期 ) 【针对性训练】一、 课前检测1、已知是方程组的解,求k 和m 的值.2、若方程组⎩⎨⎧-=+=-15x 4by ax y 与⎩⎨⎧=-=+184393by ax y x 有公共的解,求a ,b .3、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值.姓 名性 别年 级初一第 次课 课题 二元一次方程组的实际应用 课程性质 预习 复习冲刺同步其他教学目标 1、 构造二元一次方程组解决实际问题2、 运用二元一次方程组解决问题,提高分析能力 重点 难点重点:列二元一次方程组解应用题难点:寻找实际问题中已知与未知的相等关系学生表现作业完成情况签字 教学主任:家 长:二、知识点讲解一、关键思路1.列方程组解应用题是把“未知”转化为“已知”的重要方法,关键是把已知量和未知量联系起来,找出题目中的等量关系.2.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.二、一般步骤1.审题:弄清题意和题目中的数量关系;2.设元:可以直接设,也可以间接设,常根据题意用简单设法;3.列出方程组;4.解方程组,并检验所得的解是否符合题意;5.作答.三、列方程解应用题的基本关系量(1)行程问题:速度×时间=路程顺水速度=静水速度+水流速度逆水速度=静水速度—水流速度(2)工程问题:工作效率×工作时间=工作量(3)浓度问题:溶液×浓度=溶质(4)银行利率问题:免税利息=本金×利率×时间四、列方程组解应用题的常见题型(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间第2 页共13 页一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的三、题型训练【题型一】解决和、差、倍、分问题【例1】某年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x人,男生人数为y,则可列出方程组.变式1“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶?变式2游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?第3 页共13 页【题型二】产品配套问题【例2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套.变式1现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?变式2一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.【题型三】行程问题【例3】小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明即返回原地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.求两人的速度.第4 页共13 页变式1 甲、乙两人在东西方向的公路上行走,甲在乙的西边300米处.若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,求甲、乙两人的速度.变式2 甲、乙两列火车,甲车长190米,乙车长250米,在平行的轨道上相向而行,已知两车自车头相遇到车尾相离共经过16秒,甲、乙两车速度之比为7∶4,求两车速度.【题型四】工程问题【例4】某厂接受生产一批农具的任务,按原计划的天数生产,若平均每天生产20件,到时就比订货任务少100件;若平均每天生产23件,则可超过订货任务23件.问这批农具的订货任务是多少件?原计划几天完成?变式1一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?第5 页共13 页【题型五】增长率问题【例5】某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%,问该校去年有寄宿学生与走读学生各多少名设去年有寄宿学生x名,走读学生y名,则可列出的方程组.变式1 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?【题型六】浓度问题【例6】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?变式1 有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问每种各需多少克?【题型七】利润问题第6 页共13 页【例7】某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中()A.不赔不赚 B.赚9元 C.赔8元 D.赔18元变式1变式某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?变式2有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?【题型七】数字问题【例8】一个两位数,个位数字与十位数字之和是9,将个位数字与十位数字对调所得的两位数比原数大9.则这个两位数为.变式1 一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,则这个两位数为.【题型七】几何问题【例9】如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?第7 页共13 页第 8 页 共 13 页变式1 有两个长方形,其中第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm ,第一个长方形的宽比第二个长方形的长的2倍还大6cm ,求这两个长方形的面积.【题型七】年龄问题【例10】 6年前,小虎的年龄是明明的3倍,现在小虎的年龄是明明的2倍,则小虎现在的年龄为( )A .12岁B .18岁C .24岁D .30岁变式1 今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?【课堂检测】1、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A . ⎩⎨⎧=+=-5253y x y x B .⎩⎨⎧=--=523x y x y C .⎩⎨⎧=+=-152y x y x D .⎩⎨⎧+==132y x yx2、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 .第 9 页 共 13 页3、已知方程⎩⎨⎧=+=+132y nx y x 与⎩⎨⎧=+=+122y x my x 同解,则n m +等于( )A . 3B .—3C .1D .—1 4、如果⎩⎨⎧=-=+.232,12y x y x 那么=-+-+3962242yx y x _______. 5、 已知点A(-y -15,-15-2x),点B (3x ,9y )关于原点对称,则x 的值是______,y 的值是_________. 6、小花解方程组:⎩⎨⎧=-•=+1222y x y x 得到它的解为:⎩⎨⎧*==y x 5,由于不小心,滴上了墨水,刚好遮住了两个数•*和,请你帮他找回这两个数.7、求满足方程组⎩⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy+ 的值.8、甲、乙两人分别从相距s 千米的两地同时出发,若同向而行,则1t 小时后,快者追上慢者;若相向而行,第 10 页 共 13 页2t 小时后,两人相遇,那么快者速度是慢者速度的( ).A . t t t211+倍 B . ttt 121+倍 C . tt t t 2121+-倍 D .tt t t 2121-+倍9、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是( )A . 16B .25C .52D .6110、(1)若方程组①⎩⎨⎧=+=-9.30531332b a b a 的解为⎩⎨⎧==2.13.8b a ,求方程组②⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解时,令方程组②中的x+2=a ,y -1=b ,则方程组②就转化为方程组①,所以可得x+2=8.3,y -1=1.2,故方程组②的解为 .(2)已知关于x ,y 的二元一次方程组③310,215.x ay x by -=⎧⎨+=⎩.的解是71.x y =⎧⎨=⎩,,求关于x ,y 的二元一次方程组④⎩⎨⎧=-++=--+15)()(210)()(3y x b y x y x a y x 的解;(3)若方程组⑤⎩⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==43y x ,求方程组⑥⎩⎨⎧=+=+222111523523c y b x a c y b x a 的解.第 11 页 共 13 页11、已知关于x ,y 的二元一次方程组310,215.x ay x by -=⎧⎨+=⎩,若该方程组的解是71.x y =⎧⎨=⎩,,则关于x ,y 的二元一次方程组3+()102+()15.x y a x y x y b x y --=⎧⎨+-=⎩(),()的解是多少?【课后作业】1. 下列说法中正确的是( ).A .二元一次方程325x y -=的解为有限个B .方程327x y +=的解x 、y 为自然数的有无数对C .方程组00x y x y -=⎧⎨+=⎩的解为0 D .方程组中各个方程的公共解叫做这个方程组的解2. 方程4x+3y=20的所有非负整数解为 .3. 已知⎩⎨⎧-=-=+2513n ny x ny mx 与⎩⎨⎧=+=-82463y x y x 有相同的解,则m = ,n = . 4. ⎩⎨⎧-==12y x 是二元一次方程ax -2=-by 的一个解,则2a -b -6的值等于 . 5. 二元一次方程52=+x y 在正整数范围内的解是 .6. 已知(3x +2y -5)2与│5x +3y -8│互为相反数,则x =______,y =________.7. 对于有理数x 、y ,定义一种新的运算“*”:x * y=ax+by+c ,其中,a 、b 、c 是常数,等式右边为通常的加法和乘法运算,已知3*5=15,4*7=28,1*1= .8. 若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( ) A .1 B .-1 C .-3 D .以上答案都不对9. 一艘轮船顺流航行时,每小时行32千米,逆流航行时,每小时行28千米,则轮船在静水中的速度是每小时行千米.10. 一个两位数,个位上的数比十位上的数的2倍多1,将十位数字与个位数字调换位置,则比原两位数的2倍还多2,则原两位数是.11.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为()A.49 B.101 C.40 D.11012. 甲、乙两人练习跑步,如果让乙先跑10米,甲5秒追上乙;如果让乙先跑2秒,那么甲4秒追上乙.求甲、乙的速度.13.某农户在一个荒坡上种植了杨树和松树两种树,已知种植的杨树棵数比总数的一半多11棵,种植的松树的棵树比总数的三分之一少2棵.两种树各种了多少棵?14.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.求这队工人的人数和全队每天的数额.第12 页共13 页15.已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?16.汶川大地震发生后,各地人民纷纷捐款捐物支援灾区.我市某企业向灾区捐助价值94万元的A、B两种帐篷共600顶.已知4种帐篷每顶1700元,B种帐篷每顶1300元.问A、B两种帐篷各多少顶?第13 页共13 页。