导数及其应用(2)
导数的应用(2)

点a叫做函数y=f(x)的极大值点. 叫做函数 的极大值点. 叫做函数y=f(x)的极小值点. 点b叫做函数 的极小值点.
回味反思
我行 我能 我要成功 我能成功
观察下列图像,结合定义思考以下问题: 观察下列图像,结合定义思考以下问题: (1)极值是某一点附近的小区间而言 ) 1、极值是局部性质还是整体而言? 、极值是局部性质还是整体而言? 是函数的局部性质,不是整体的最值 的,是函数的局部性质 不是整体的最值 是函数的局部性质 不是整体的最值; 2、极值唯一吗? 、极值唯一吗? (2)函数的极值不一定唯一 在整个定 )函数的极值不一定唯一,在整个定 义区间内可能有多个极大值和极小值; 义区间内可能有多个极大值和极小值; 3、极大值与极小值大小关系是否确定? 、极大值与极小值大小关系是否确定? (3)极大值与极小值没有必然关系, )极大值与极小值没有必然关系, 极大值可能比极小值还小. 极大值可能比极小值还小 y P(x1,f(x1)) a x1 Q(x2,f(x2)) x2 x3 x4 b x y=f(x)
2 3
x
f ′( x)
f (x)
1 (−∞, ) 12
–
1 12 0
1 ( ,+∞) 12 +
单调递减
49 − 24
单调递增
1 49 1 所以, 所以 当 x = 时, f (x)有极小值 f ( ) = − 有极小值 . 12 24 12
练习2 练习
求下列函数的极值: 求下列函数的极值
(1) f ( x) = 6x − x − 2; (2) f ( x) = x − 27 x; 3 3 (3) f ( x) = 6 +12x − x ; (4) f ( x) = 3x − x . 解: 列表: (2) 令f ′( x) = 3x2 − 27 = 0, 解得 x1 = 3, x2 = −3.列表
_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.
_高中数学第一章导数及其应用2

[提示] ΔΔyx=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx
∴ lim Δx→0
2x+Δx+xx-+2Δx
=2x-x22.
Байду номын сангаас
[问题3] F(x)的导数与f(x)、g(x)的导数有何关系? [提示] F(x)的导数等于f(x)、g(x)导数和.
[问题 4] 试说明 y=cos3x-π4如何复合的. [提示] 令 u=g(x)=3x-π4,y=f(u)=cos u,
(3)y′=(2x2+3)′·(3x-2)+(2x2+3)·(3x-2)′
=4x·(3x-2)+(2x2+3)·3
=18x2-8x+9.
(4)y′=xl+n x1′-(2x)′
=1xx+x+1- 12ln
x -2xln
2
=1+x1x+-1ln2
x -2xln
2.
二. 复合函数的导数
例题 2 求下列函数的导数:
(1)y=1-12x3;
(2)y=cos x2;
(3)y=sin3x-π4; (4)y=lg(2x2+3x+1).
• [思路点拨] 解答本题可先分析复合函数的复合过 程,然后运用复合函数的求导法则求解.
解析: (1)设 y=u13,u=1-2x, 则 y′x=y′u·u′x =u13′·(1-2x)′ =-3u-4·(-2) =1-62x4. (2)设 y=cos u,u=x2, 则 y′x=y′u·u′x=(cos u)′·(x2)′ =-sin u·2x =-2x·sin x2.
(4)开始学习求复合函数的导数要一步步写清楚,熟 练后中间步骤可省略.
特别提醒:只要求会求形如f(ax+b)的复合函数的导 数.
导数的应用(二)

导数应用(二)教学目标:了解函数的极大(小)值、最大(小)值与导数的关系;会求不超过三次的多项式函数的极大(小)值,以及在指定区间上不超过三次的多项式函数的最大(小)值,2010年考试说明要求为B 级。
知识点回顾:1.利用导数求极值:ⅰ)求导数)(x f ';ⅱ)求方程0)(='x f 的根;ⅲ)列表得极值2.利用导数最大值与最小值:ⅰ)求极值;ⅱ——求区间端点值(如果有);ⅲ)得最值 课前训练:1. 求下列函数的极值(1)x x y 1+=; (2)31431)(3+-=x x x f ; (3)32+=x x y ;(4)x x y cos 2-=,)2,23(ππ∈x (5)ex e y x -=2.求下列函数在所给区间上的值域(1)]3,31[,1)(∈+=x x x x f ;(2)]3,2[,5323-∈+-=x x x y ;(3)]2,0[,sin π∈+=x x x y(4)]2,0[,21∈+-=x x x y ; (5)]2,2[,cos 21ππ-∈-=x x x y ;(6)x x x f sin 21)(+=在 ]2,0[π3.已知函数f(x)= sinx+cosx ,x ∈(0,π2)(1)求0x ,使得0)(0'=x f ;(2)解释(1)中的0x 及)(0x f 的意义。
典型例题:已知0>a ,)ln()(a x x x f +-=,),0(+∞∈x .若)(x f 在),0(+∞上存在极值,求实数a 取值范围.设函数)1ln (2)1()(2x x x f +-+=.若当]1,11[--∈e ex (其中⋅⋅⋅=71828.2e )时,不等式m x f <)(恒成立,求实数m 的取值范围。
课堂检测:1.已知函数qx px x x f --=23)(的图象与x 轴切于点)0,1(,则)(x f 的极大值和极小值分别为 和2. 函数()3221f x x ax bx a x =+++=在处有极小值10,则a+b 的值为__ __4. 0≠=,且关于x 的函数f(x)=x x ⋅++2331在R 上有极值,则a 与b 的夹角范围为______18.已知a 是实数,函数2()()f x x x a =-.(Ⅰ)若'(1)3f =,求a 值及曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求()f x 在区间[]2,0上的最大值.12.已知2()ln ,()3f x x x g x x ax ==-+-.(1)求函数()f x 在[,2](0)t t t +>上的最小值;(2)对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围。
高三数学总复习优质课件 函数 导数及其应用 第2节 函数的单调性与最值

(B)(1,+∞)
(C)(-∞,1)
(D)(0,+∞)
解析:因为f(x)是R上的减函数且f(2a-1)<f(a),所以2a-1>a,所以a>1,故
选B.
4.若函数f(x)=(m-2)x+b在R上是减函数,则f(m)与f(2)的大小关系是
( A )
(A)f(m)>f(2)
(B)f(m)<f(2)
在这一区间具有(严格的)单调性, 区间D 叫做函数y=f(x)的单调区间.
2.函数的最值
前提
条件
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足
(3)对于任意的 x∈I,
(1)对于任意的x∈I,都有 f(x)≤M ; 都有 f(x)≥M
;
(2)存在x ∈I,使得 f(x0)=M _
(4)存在x ∈I,使得
所以(2a+2b)x+c=0,所以 c=0,a=-b,
所以二次函数图象的对称轴方程为 x= .
因为 f(x)在区间[2m,m+1]上不单调,所以 2m< <m+1,所以- <m< .
答案:(- , )
[对点训练3] 若函数f(x)=2|x-a|+3在区间[1,+∞)上不单调,则a的取值范
是增函数;如果y=f(u)和u=g(x)的单调性相反,那么y=f(g(x))是减函数.在
应用这一结论时,必须注意:函数u=g(x)的值域必须是y=f(u)的单调区间的
子集;
(3)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函
2021届高考数学压轴题专题训练——导数及其应用(2)

2021届高考数学压轴题专题训练——导数及其应用(2)1.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1). (1)求函数f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.2.已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围; (2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >3.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(△)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围; (△)求面积2S 最大时,应怎样设计材料的长和宽? (△)求面积()122S S +最大时,应怎样设计材料的长和宽?4.已知()()2ln xf x ex a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.5.已知函数()()()2ln 1f x ax x x a R =--∈恰有两个极值点12,x x ,且12x x <. (1)求实数a 的取值范围;(2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.6.已知函数f (x )=(ln x ﹣k ﹣1)x (k △R ) (1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x △[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围. (3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .7.已知函数()21e 2xf x a x x =--(a ∈R ). (△)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值; (△)若函数()f x 有两个极值点,求a 的取值范围; (△)证明:当1x >时,1e ln xx x x>-.8.已知函数321233f xx x x b b R . (1)当0b 时,求f x 在1,4上的值域;(2)若函数f x 有三个不同的零点,求b 的取值范围.9.已知函数2ln 21)(2--=x ax x f . (1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程; (2)讨论函数)(x f 的单调性.10.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈.(△)求函数()f x 在其定义域内的极值;(△)若在[1,]e 上至少存在一个0x ,使得0002()ekx f x x ->成立,求实数k 的取值范围.参考答案1.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0 故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a 的取值范围为a ∈(0,]∪[e ,+∞).(16分)2.(1)解:h (x )=f (x )﹣g (x )=,则, △h (x )=f (x )﹣g (x )在(0,+∞)上单调递增, △对△x >0,都有,即对△x >0,都有,.…………2分 △,△, 故实数a 的取值范围是;.…………3分(2)解:设切点为,则切线方程为,即,亦即,令,由题意得, , 令,则,.…………6分当时,在上单调递减;当时,在上单调递增,△,故的最小值为﹣1;.…………7分 (3)证明:由题意知,, 两式相加得 1ln x ax b x ---211()h x a x x'=+-211()0h x a x x '=+-≥211a x x≤+2110x x+>0a ≤(],0-∞0001,ln x x x ⎛⎫- ⎪⎝⎭()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭010t x =>220011a t t x x =+=+002ln 1ln 21b x t t x =--=---2()ln 1a b t t t t ϕ+==-+--()()2111()21t t t t ttϕ+-'=-+-=()0,1t ∈()()0,t t ϕϕ'<()0,1()1,t ∈+∞()()0,t t ϕϕ'>()1,+∞()()11a b t ϕϕ+=≥=-a b +1111ln x ax x -=2221ln x ax x -=()12121212ln x x x x a x x x x +-=+两式相减得即 △,即,. 9分不妨令,记, 令,则,△在上单调递增,则, △,则,△, 又△,即,.…………10分 令,则时,,△在上单调递增. 又,△,即..…………12分3.(△)由题意,,,.…………1分设,则,由△ADP△△CB'P ,故PA=PC=x ﹣y ,()21221112ln x x x a x x x x x --=-212112ln 1x x ax x x x +=-()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭120x x <<211x t x =>()21()ln (1)1t F t t t t -=->+()221()0(1)t F t t t -'=>+()21()ln 1t F t t t -=-+()1,+∞()21()ln (1)01t F t t F t -=->=+()21ln 1t t t ->+2211122()ln x x x x x x ->+1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭1212121212122()ln ln ln 2ln x x x x x x x x x x +-<==2ln 2>1>2()ln G x x x =-0x >212()0G x x x'=+>()G x ()0,+∞1ln 210.8512e =+-≈<ln 1G =>>>2122x x e >AB x =2-BC x =2,12x x x >-∴<<=DP y PC x y =-由PA 2=AD 2+DP 2,得即:..…………3分 (△)记△ADP 的面积为,则分当且仅当时,取得最大值.,宽为时,最大.….…………7分(△) 于是令分 关于的函数在上递增,在上递减,当时, 取得最大值.,宽为时, 最大..…………12分4.(1)时,, ,,所以在处的切线方程为 (2)存在,,即:在时有解; 设, 令, 所以在上单调递增,所以 1°当时,,△在单调增, 所以,所以()()2222x y x y -=-+121,12y x x ⎛⎫=-<< ⎪⎝⎭2S ()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭()1,2x =2S (2m 2S ()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭∴x 12+2S S ()2∴x =12+2S S (m 12+2S S 1a =()()2ln 1xf x ex =++()2121x f x e x '=++()01f =()10231f '=+=()f x ()0,131y x =+[)00,x ∈+∞()()20002ln f x x a x <++()02200ln 0x ex a x -+-<[)00,x ∈+∞()()22ln xu x e x a x =-+-()2122x u x e x x a'=--+()2122xm x ex x a =--+()()21420x m x e x a '=+->+()u x '[)0,+∞()()102u x u a''≥=-12a ≥()1020u a'=-≥()u x [)0,+∞()()max 01ln 0u x u a ==-<a e >2°当时,设, 令, 所以在单调递减,在单调递增 所以,所以所以设,,令,所以在上单调递增,所以所以在单调递增,△, 所以, 所以所以,当时,恒成立,不合题意 综上,实数的取值范围为.5.(1)因为,依题意得为方程的两不等正实数根,12a <()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭()11211122x h x x x -'=-=++()102h x x '>⇒>()1002h x x '<⇒<<()h x 10,2⎛⎫ ⎪⎝⎭1,2⎛⎫+∞ ⎪⎝⎭()1102h x h ⎛⎫≥=> ⎪⎝⎭11ln 22x x ⎛⎫+>+ ⎪⎝⎭()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭()2221x g x e x '=--()2221xx ex ϕ=--()242420x x e ϕ'=-≥->()2221xx e x ϕ=--[)0,+∞()()010g x g ''≥=>()g x ()0,+∞()()00g x g >>()()00g x g >>()()()22ln 0xu x e x a x g x =-+->>12a <()()22ln f x x a x >++a 12a ≥()ln 2f x a x x '=-12,x x ln 20a x x -=△,, 令,, 当时,;当时,,所以在上单调递增,在上单调递减,,当时,,所以 △ 解得,故实数的取值范围是.(2)由(1)得,,,两式相加得,故 两式相减可得,故 所以等价于, 所以所以, 即, 所以, 0a ≠2ln x a x =()ln x g x x =()21ln x g x x -'=()0,x e ∈()0g x '>(),x e ∈+∞()0g x '<()g x ()0,e (),e +∞()10g =x e >()0g x >()20g e a <<()210g e a e<<=2a e >a ()2,e +∞11ln 2a x x =22ln 2a x x =()()1212ln ln 2a x x x x λ+=+()12122ln ln x x x x aλλ++=()()1212ln ln 2a x x x x -=-12122ln ln x x a x x -=⋅-12ln ln 1x x λλ+>+()1221x x a λλ+>+()()1221x x a λλ+>+()()121212221ln ln x x x x x x λλ-+>+-()()121212ln ln 1x x x x x x λλ+->+-112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-因为,令,所以 即,令,则在上恒成立,, 令, △当时,所以在上单调递减,所以在上单调递增,所以符合题意△当时,所以在上单调递增故在上单调递减,所以不符合题意;△当时,所以在上单调递增,所以所以在上单调递减,故不符合题意综上所述,实数的取值范围是.6.解:(1)△f (x )=(lnx ﹣k ﹣1)x (k△R ),△x >0, =lnx ﹣k ,△当k≤0时,△x >1,△f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值;△当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k 时,f′(x )<0;当x >e k ,f′(x )>0,△函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k ,无极大值.(2)△对于任意x△[e ,e 2],都有f (x )<4lnx 成立,120x x <<()120,1x t x =∈()ln 11t t t λλ+>+-()()()ln 110t t t λλ+-+-<()()()()ln 11h t t t t λλ=+-+-()0h t <()0,1()ln h t t t λλ'=+-()ln I t t t λλ=+-()()()2210,1t I t t t t tλλ-'=-=∈1λ≥()0I t '<()h t '()0,1()()10h t h ''>=()h t ()0,1()()10h t h <=0λ≤()0I t '>()h t '()0,1()()10h t h ''<=()h t ()0,1()()10h t h >=01λ<<()01I t t λ'>⇔<<()h t '(),1λ()()10h t h ''<=()h t (),1λ()()10h t h >=λ[)1,+∞△f(x)﹣4lnx<0,即问题转化为(x﹣4)lnx﹣(k+1)x<0对于x△[e,e2]恒成立,即k+1>对于x△[e,e2]恒成立,令g(x)=,则,令t(x)=4lnx+x﹣4,x△[e,e2],则,△t(x)在区间[e,e2]上单调递增,故t(x)min=t(e)=e﹣4+4=e>0,故g′(x)>0,△g(x)在区间[e,e2]上单调递增,函数g(x)max=g(e2)=2﹣,要使k+1>对于x△[e,e2]恒成立,只要k+1>g(x)max,△k+1>2﹣,即实数k的取值范围是(1﹣,+∞).证明:(3)△f(x1)=f(x2),由(1)知,函数f(x)在区间(0,e k)上单调递减,在区间(e k,+∞)上单调递增,且f(e k+1)=0,不妨设x1<x2,则0<x1<e k<x2<e k+1,要证x1x2<e2k,只要证x2<,即证<,△f(x)在区间(e k,+∞)上单调递增,△f(x2)<f(),又f(x1)=f(x2),即证f(x1)<,构造函数h(x)=f(x)﹣f()=(lnx﹣k﹣1)x﹣(ln﹣k﹣1),即h(x)=xlnx﹣(k+1)x+e2k(),x△(0,e k)h′(x)=lnx+1﹣(k+1)+e2k(+)=(lnx﹣k),△x△(0,e k),△lnx﹣k<0,x2<e2k,即h′(x)>0,△函数h(x)在区间(0,e k)上单调递增,故h′(x)<h(e k),△,故h(x)<0,△f(x1)<f(),即f(x2)=f(x1)<f(),△x1x2<e2k成立.7(△)由()21e 2x f x a x x =--得()e 1x f x a x '=--. 因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,所以()010f a '=-=,解得1a =.(△)由(△)知()e 1x f x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反. 令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-, 所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增. 又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<.(△)证明:令()1e ln x g x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x '=+--. 令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x -++, 因为1x >,所以e ln 0xx >,e 0x x >,()2e 10x x x ->,320x >, 所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增. 所以1x >时,()0g x >,即1x >时,1e ln x x x x>-.20.(1)当0b 时,321233f x x x x ,2'4313f x x x x x .当1,3x时,'0f x ,故函数f x 在1,3上单调递减; 当3,4x时,'0f x ,故函数f x 在3,4上单调递增. 由30f ,4143f f . △f x 在1,4上的值域为40,3; (2)由(1)可知,2'4313f xx x x x , 由'0f x 得13x ,由'0f x 得1x 或3x .所以f x 在1,3上单调递减,在,1,3,上单调递增; 所以max 413f xf b ,min 3f x f b , 所以当403b且0b ,即403b 时,10,1x ,21,3x ,33,4x ,使得1230f x f x f x , 由f x 的单调性知,当且仅当4,03b时,f x 有三个不同零点.8.(1)当时,函数,, △,, △曲线在点处的切线方程为. (2). 当时,,的单调递减区间为;当时,在递减,在递增.10.(△)在上恒成立,即. △,△.故在上恒成立1=a 2ln 21)(2--=x x x f x x x f 1)('-=0)1('=f 23)1(-=f )(x f ))1(,1(f 23-=y )0(1)('2>-=x xax x f 0≤a 0)('<x f )(x f ),0(+∞0>a )(x f ),0(a a ),(+∞a a 211()0sin f x x x θ'=-+≥•[1,)-+∞2sin 10sin x x θθ•-≥•(0,)θπ∈sin 0θ>sin 10x θ•-≥[1,)-+∞只须,即,又只有,得. 由,解得. △当时,;当时,.故在处取得极小值1,无极大值.(△)构造,则转化为;若在上存在,使得,求实数的取值范围.当时,,在恒成立,所以在上不存在,使得成立. △当时,. 因为,所以,所以在恒成立.故在上单调递增,,只要, 解得. △综上,的取值范围是.sin 110θ•-≥sin 1θ≥0sin 1θ<≤sin 1θ=2πθ=22111()0x f x x x x-'=-+==1x =01x <<()0f x '<1x >()0f x '>()f x 1x =1212()ln ln e e F x kx x kx x x x x+=---=--[1,]e 0x 0()0F x >k 0k ≤[1,]x e ∈()0F x <[1,]e [1,]e 0x 0002()e kx f x x ->0k >2121()e F x k x x +'=+-2222121()kx e x kx e e e x x x++-+++-==[1,]x e ∈0e x ->()0F x '>[1,]x e ∈()F x [1,]e max 1()()3F x F e ke e ==--130ke e -->231e k e +>k 231(,)e e ++∞。
高考二轮复习 导数及其应用(2)
一、选择题【山东省莱州一中2012届高三第一次质检理】12.已知函数()(R)f x x ∈导函数f ′()x 满足f ′()x <()f x ,则当0a >时,()f a 与(0)a e f 之间的大小关系为() A.()(0)a f a e f < B.()(0)a f a e f >C.()(0)a f a e f =D.不能确定,与()f x 或a 有关【答案】A【山东滨州2012届高三期中联考理12.函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为()A .(-24,8)B .(-24,1]C .[1,8]D .[1,8)【答案】D【山东济宁梁山二中2012届高三12月月考理】11. 已知函数在区间上是减函数,则的最小值是 A.B.C.2D. 3【答案】C二、解答题【山东省聊城一中2012届高三上学期期中理】21.(本小题满分12分) 函数 (I )当时,求函数的极值; (II )设,若,求证:对任意,且,都有. 【答案】21.(本小题满分12分) 解:(1)当时,函数定义域为()且)(131)(23R b a bx ax x x f ∈+-+=、[-1,3]b a +3223R ,2)1ln()(2∈-++=b x x b x x f 23=b )(x f x x f x g 2)()(+=2≥b ),1(,21+∞-∈x x 21x x ≥)(2)()(2121x x x g x g -≥-23=b ,2)1ln(23)(2x x x x f -++=+∞-,1令,解得或…………………2分当变化时,的变化情况如下表:+_ 0 +增函数 极大值减函数极小值增函数所以当时,, 当时,;……………………6分 (2)因为,所以,因为,所以(当且仅当时等号成立), 所以在区间上是增函数,……………………10分 从而对任意,当时,,即,所以. …………12分 【山东省临清三中2012届高三12月模拟理】20.(本小题满分12分) 已知函数. (Ⅰ)求函数的单调区间;(Ⅱ)设,若对任意,,不等式恒成立,求实数的取值范围.【答案】20.解:(I )的定义域是...........1分 02)1(232=-++x x 211-=x 212=x x )(),('x f x f x )21,1(--21-)21,21(-21),21(+∞)('x f )(x f 21-=x 2ln 2345)21()(-=-=f x f 极大值21=x 23ln 2343)21()(+-==f x f 极小值x x b x x f 2)1ln()(2-++=)1(122212)('2->+-+=-++=x x b x x b x x f 2≥b 0)('≥x f 0,2==x b )(x f ),1(+∞-),1(,21+∞-∈x x 21x x ≥)()(21x f x f ≥22112)(2)(x x g x x g -≥-)(2)()(2121x x x g x g -≥-14341ln )(-+-=xx x x f )(x f 42)(2-+-=bx x x g )2,0(1∈x []2,12∈x )()(21x g x f ≥b 14341ln )(-+-=xx x x f (0,)+∞............... 2分由及得;由及得, 故函数的单调递增区间是;单调递减区间是.....4分 (II )若对任意,,不等式恒成立, 问题等价于,.........5分由(I )可知,在上,是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以;.......6分当时,;当时,;当时,;............8分问题等价于或或........11分解得或或 即,所以实数的取值范围是.................12分【山东省聊城市五校2012届高三上学期期末联考】20. (本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:880312800013+-=x x y )1200(≤<x .已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?22243443411)(x x x x x x f --=--='0>x 0)(>'x f 31<<x 0>x 0)(<'x f 310><<x x 或)(x f )3,1(),3(,)1,0(∞+)2,0(1∈x []2,12∈x )()(21x g x f ≥max min )()(x g x f ≥(0,2)1x =min 1()(1)2f x f ==-[]2()24,1,2g x x bx x =-+-∈1b <max ()(1)25g x g b ==-12b ≤≤2max ()()4g x g b b ==-2b >max ()(2)48g x g b ==-11252b b <⎧⎪⎨-≥-⎪⎩212142b b ≤≤⎧⎪⎨-≥-⎪⎩21482b b >⎧⎪⎨-≥-⎪⎩1b <12b ≤≤b ∈∅b ≤b ,⎛-∞ ⎝⎦【答案】20. (I )当x=40时,汽车从甲地到乙地行驶了10040=2.5小时,[来源:Z§xx§]要耗油(1128000×403-380×40+8)×2.5=17.5(升).所以,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5.(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h(x)升,依题意得h(x)=(1128000x 3-380x+8)·100x =11280x 2+800x -154(0<x ≤120),h '(x)=232640640800800640xx x x ⋅-=-(0<x ≤120),令h '(x)=0得x=80当x ∈(0,80)时,h '(x)<0,h(x)是减函数;当x ∈(80,120)时,h '(x)>0,h(x)是增函数,∴当x=80时,h(x)取到极小值h(80)=11.25,因为h(x)在(0,120]上只有一个极值,所以它是最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 【山东省莱州一中2012届高三第一次质检理】19.(本小题满分12分)32()f x x ax bx c =+++在1x =、2x =-处取得极值(1)求a 、b 的值. (2)若[]113,2,()2x f x c ∈->-恒成立,求c 的取值范围. 【答案】19.(1)f ′()x 2320x ax b =++=的两根为1,2-23132623aa b b ⎧-=-⎧⎪=⎪⎪∴∴⎨⎨⎪⎪=-=-⎩⎪⎩11722c c ∴-<-即2311c c c-->0c <<或c >. 【山东省莱州一中2012届高三第一次质检理】22.(本小题满分14分)已知函数2()ln(1)().f x x ax a x a R =---∈ (1)当1a =时,求函数()f x 的最值; (2)求函数()f x 的单调区间;(3)试说明是否存在实数(1)a a ≥使()y f x =的图象与5ln 28y =+无公共点. 【答案】22.解:(1)函数2()ln(1)()f x x ax a x a R =---∈的定义域是(1,)+∞.当1a =时,f ′()x 32()122111x x x x x -=--=--,所以()f x 在3(1,)2为减函数, 在3(,)2+∞为增函数,所以函数()f x 的最小值为33()ln 224f =+.(2) f ′()x 22()22,11a x x a x a x x +-=--=-- 若0a ≤时,则22()221,()021a x x a f x x +-+≤=>-在(1,)+∞恒成立,所以()f x 的增区间为(1,)+∞. 若0a >,则212a +>,故当21,2a x +⎛⎤∈ ⎥⎝⎦,f ′()x 22()201a x x x +-=≤-,[来源:学#科#网] 当2,2a x +⎡⎫∈+∞⎪⎢⎣⎭时,22()2()0,1a x x f x x +-=≥- 所以0a >时()f x 的减区间为21,2a +⎛⎤ ⎥⎝⎦,()f x 的增区间为2,2a +⎡⎫+∞⎪⎢⎣⎭.(3)1a ≥时,由(2)知()f x 在(1,)+∞上的最小值为22()1ln 242a a af a +=-+-, 令22()()1ln 242a a ag a f a +==-+-在[)1,+∞上单调递减, 所以max 3()(1)ln 24g a g ==+,则max 51()(ln 2)088g a -+=>, 因此存在实数(1)a a ≥使()f x 的最小值大于5ln 28+,故存在实数(1)a a ≥使()y f x =的图象与5ln 28y =+无公共点.【山东省济宁市重点中学2012届高三上学期期中理】22.(本小题满分12分)建造一条防洪堤,其断面为如图等腰梯形ABCD ,腰与底边所成角为60︒,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为63平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小. (1) 求外周长的最小值,此时防洪堤高h 为多少?(2) 如防洪堤的高限制在[3,32]范围内,外周长最小为多少米?【答案】22解:(1)由题意, 所以12(2BC+233h)h= 63, BC=63h -33h …………………4分设外围周长为,则 当,即时等号成立.……………………6分 所以外围的周长的最小值为米,此时堤高米. --------------8分(2)由(1),由导数或定义可证明在单调递增,…10分所以的最小值为米(当) -------------------1236)(21=+h BC AD h BC h BC AD 33260cot 20+=+=l 26363333660sin 220≥+=-+=+=h h h h h BC AB l hh 363=6=h 266=h )6(3hh l +=]24,3[∈h l 3533633=+⨯3=h分【山东省济宁市鱼台一中2012届高三第三次月考理】21.(12分)如图,有一块半椭圆形钢板,其长半轴长为2r ,短半轴长为r ,计划将此钢板切割成等腰梯形的形状,下底AB 是半椭圆的短轴,上底CD 的端点在椭圆上,记2CD x =,梯形面积为S .(1)求面积S 以x 为自变量的函数式,并写出其定义域; (2)求面积S 的最大值.【答案】21.解: 以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系.椭圆方程为222214y x r r+=设(,)C x y 则y =(1)1(22)2(2S x r r x =+⋅=+定义域为{}0x x r <<. (2)由(1)知2(S r x =+=设222g(x)=(r+x)(r -x )则22()(2)g (x)x r x r '=-+- 由0g (x)'=得2r x =当02r x <<0g (x)'>当2rx r <<0g (x)'< ∴当2r x =时g(x)取最大值,S 取最大值, 【山东济宁金乡一中2012届高三12月月考理】22、(本小题满分15分)设函数(Ⅰ)求函数的极值点;(Ⅱ)当p >0时,若对任意的x >0,恒有,求p 的取值范围;(Ⅲ)证明:()ln 1f x x px =-+()f x 0)(≤x f ).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n【答案】22、解:(1), …………2分当上无极值点…………3分当p>0时,令的变化情况如下表:…………4分从上表可以看出:当p>0 时,有唯一的极大值点…………5分(Ⅱ)当p>0时在处取得极大值,此极大值也是最大值,…………7分 要使恒成立,只需,…………8分∴∴p 的取值范围为[1,+∞…………10分 (Ⅲ)令p=1,由(Ⅱ)知,∴,…………11分∴…………12分 ∴ …………13分),0()(,1ln )(+∞∴+-=的定义域为x f px x x f x pxp x x f -=-='11)(),0()(,0)(0+∞>'≤在时,x f x f p x x f x f p x x f 随、,)()(),,0(10)('+∞∈=∴='()f x p x 1=1x=p 11()lnf pp =()0f x £11()ln 0f p p = 1p ³)2,1ln ,01ln ≥∈-≤∴≤+-n N n x x x x ,1ln 22-≤n n 22222111ln n n n nn -=-≤)11()311()211(ln 33ln 22ln 222222222n n n -++-+-≤+++ )13121()1(222n n +++--=…………14分…………15分∴结论成立【山东济宁梁山二中2012届高三12月月考理】21.(本小题满分12分)已知函数,. (1)设(其中是的导函数),求的最大值; (2)证明: 当时,求证:; (3)设,当时,不等式恒成立,求的最大值. 【答案】21.解:(1),所以. 当时,;当时,. 因此,在上单调递增,在上单调递减.因此,当时,取得最大值;(2)当时,. 由(1)知:当时,,即.因此,有. (3)不等式化为所以对任意恒成立.令,则, ))1(1431321()1(+++⨯+⨯--<n n n )11141313121()1(+-++-+---=n n n )1(212)1121()1(2+--=+---=n n n n n ()ln f x x =21()22g x x x =-/()(1)()h x f x g x =+-/()g x ()g x ()h x 0b a <<()(2)2b af a b f a a-+-<k Z ∈1x >/(1)()3()4k x xf x g x -<++k /()(1)()ln(1)2h x f x g x x x =+-=+-+1x >-1()111xh x x x -'=-=++10x -<<()0h x '>0x >()0h x '<()h x (1,0)-(0,)+∞0x =()h x (0)2h =0b a <<102b aa--<<10x -<<()2h x <ln(1)x x +<()(2)lnln 1222a b b a b af a b f a a a a +--⎛⎫+-==+< ⎪⎝⎭/(1)()3()4k x xf x g x -<++ln 21x x xk x +<+-ln 21x x xk x +<+-1x >()ln 21x x x g x x +=+-()()2ln 21x x g x x --'=-令,则, 所以函数在上单调递增.因为,所以方程在上存在唯一实根,且满足.当,即,当,即, 所以函数在上单调递减,在上单调递增.所以.所以. 故整数的最大值是.【莱州一中2012高三第三次质量检测理】22.(本小题满分14分)已知定义在实数集上的函数(),n n f x x n =∈ N *,其导函数记为()n f x ',且满足222121221()()[(1)]f x f x f ax a x x x -'+-=-,其中a 、1x 、2x 为常数,12x x ≠.设函数()g x = 123()()ln (),(f x mf x f x m +-∈R 且0)m ≠.(Ⅰ)求实数a 的值;(Ⅱ)若函数()g x 无极值点,其导函数()g x '有零点,求m 的值; (Ⅲ)求函数()g x 在[0,]x a ∈的图象上任一点处的切线斜率k 的最大值. 【答案】22.(本小题满分14分) 解:(Ⅰ)因为222(),()2f x x f x x '==,所以222112212[(1)]x x ax a x x x -+-=-,整理得:12()(21)0,x x a --=又12x x ≠,所以12a =.…………………………………………3分 (Ⅱ)因为23123(),(),()f x x f x x f x x ===,所以2()3ln (0)g x mx x x x =+->.…………………………4分()ln 2h x x x =--()1x >()1110x h x x x-'=-=>()h x ()1,+∞()()31ln30,422ln 20h h =-<=->()0h x =()1,+∞0x ()03,4x ∈01()0x x h x <<<时,()0g x '<0()0x x h x >>时,()0g x '>()ln 21x x xg x x +=+-()01,x ()0,x +∞()()()()()000000min001ln 122225,611x x x x g x g x x x x ++-==+=+=+∈⎡⎤⎣⎦--()()0min 25,6k g x x <=+∈⎡⎤⎣⎦k 5导数2 由条件23230,()21mx x x g x mx x x+-'>=-+=.……………………5分 因为()g x '有零点而()g x 无极值点,表明该零点左右()g x '同号,又0m ≠,所以二次方程2230mx x +-=有相同实根,即1240,m ∆=+= 解得124m =-.…………………………………………8分 (Ⅲ)由(Ⅰ)知,2133,()21,22a k g x mx k m x x ''===-+=+,因为1(0,]2x ∈,所以23x ∈[12,+∞],所以①当60m -≤<或0m >时,0k '≥恒成立,所以()k g x '=在(0,12]上递增, 故当12x =时,k 取得最大值,且最大值为5m -,…………10分 ②当6m <-时,由0k '=得x =,而102<.若x ∈,则0k '>,k 单调递增;若1]2x ∈,则0k '<,k 单调递减.故当x =时,k 取得最大值,且最大值等于2311=-…………………13分综上,max5,(600)16)m m m k m --≤<>⎧⎪=⎨-<-⎪⎩或…………………………14分。
202新数学复习第二章函数导数及其应用2.2函数的单调性与最值学案含解析
第二节函数的单调性与最值课标要求考情分析1。
理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质。
1。
主要考查函数单调性的判定、求单调区间、比较大小、解不等式、求最值及不等式恒成立问题.2.题型以选择题、填空题为主,若与导数交汇命题则以解答题的形式出现,属中高档题.知识点一函数的单调性1.增函数、减函数的定义定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2:(1)增函数:当x1〈x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;(2)减函数:当x1〈x2时,都有f(x1)〉f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.注意以下结论1.对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.2.对勾函数y=x+错误!(a〉0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-错误!,0)和(0,错误!].3.在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.4.函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.知识点二函数的最值1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]〉0,则函数f(x)在区间D上是增函数.(√)(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.(×)(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)解析:(2)此单调区间不能用并集符号连接,取x1=-1,x2=1,则f(-1)〈f(1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x1<x2,f(x1)〈f(x2)成立才可以.(4)若f(x)=x,f(x)在[1,+∞)上为增函数,但y=f(x)的单调递增区间是R.2.小题热身(1)下列函数中,在区间(0,+∞)内单调递减的是(A)A.y=错误!-x B.y=x2-xC.y=ln x-x D.y=e x(2)函数f(x)=-x+错误!在区间错误!上的最大值是(A)A.错误!B.-错误!C.-2 D.2(3)设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为[-1,1]和[5,7].(4)函数f(x)=错误!的值域为(-∞,2).(5)函数f(x)=错误!在[2,6]上的最大值和最小值分别是4,错误!.解析:(1)对于A,y1=错误!在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=1x-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y=e x 在(0,+∞)上是增函数.(2)∵函数y=-x与y=错误!在x∈错误!上都是减函数,∴函数f(x)=-x+错误!在错误!上是减函数,故f(x)的最大值为f(-2)=2-错误!=错误!.(3)由图可知函数的增区间为[-1,1]和[5,7].(4)当x≥1时,f(x)=log错误!x是单调递减的,此时,函数的值域为(-∞,0];x<1时,f(x)=2x是单调递增的,此时,函数的值域为(0,2).综上,f(x)的值域是(-∞,2).(5)函数f(x)=错误!=错误!=2+错误!在[2,6]上单调递减,所以f(x)min=f(6)=错误!=错误!。
§3.3-导数的应用(二)
●利用导数解决实际问题中的最值问题的注意事项 (1)在求 实际问题的最大(小)值时,一定要注意考虑实际问题的意义, 不符合实际问题的值应舍去. (2)在实际问题中,有时会遇 到函数在区间内只有一个点使 f′(x)=0的情形,那么不 与端点值比较,也可以知道这就是最大(小)值. (3)在解决实 际优化问题时,不仅要注意将问题中涉及的自变量的函数关 系式给予表示,还应确定函数关系式中自变量的取值范围.
A.-2
B.0
C.2
D.4
解析:f′(x)=3x2-6x,令f′(x)=0,得x=0,x=2(舍去).
比较f(-1),f(0),f(1)的大小知f(x)max=f(0)=2. 答案:C
第9页
3.已知函数f(x)= 1 x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数 2
m的取值范围是()
第30页
创新预测3某地政府为科技兴市,欲在如图所示的矩形ABCD 的非农业用地中规划出一个高科技工业园区(如图中阴影部 分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知 AB=2km,BC=6km,AE=BF=4km,其中AF是以A为顶点、AD为 对称轴的抛物线段.试求该高科技工业园区的最大面积. 解析:以A为原点,AB所在直线为x轴,AD 所在直线为y轴建立直角坐标系,如图,则 A(0,0),F(2,4),
第24页
规律方法:不等式f(x)≥m(或≤m)恒成立的问题可以转化为求函 数f(x)的最小(大)值问题,f(x)≥m恒成立,即m≤f(x)min,f(x)≤m恒 成立即f(x)max≤m.
第25页
创新预测2设函数f(x)= 1 x2+ex-xex. 2
(1)求f(x)的单调区间; (2)若当x∈【 -2,2】时,不等式f(x)>m恒成立,求实数m. 解析:(1)函数f(x)的定义域为(-∞,+∞), 因为f′(x)=x+ex-(ex+xex)=x(1-ex), 由f′(x)=x(1-ex)>0得x<0,由f′(x)<0得x>0, 则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).
《2.13导数的应用(Ⅱ)》 教案
适用学科 适用区域 知 识 点 数学 新课标 用导数处理恒成立问题 利用导数解决生活中的优化问题 1.能利用导数研究函数的单调性、极值或最值,并会解决与之有关的不等式问题. 2.会利用导数解决某些简单的实际问题. 用导数处理恒成立问题 用导数处理恒成立问题 适用年级 课时时长(分钟) 高三 60
)
21 / 34
x+ 3 3 解析:选 B 2xln x≥-x2+ax-3,则 a≤2ln x+x+x ,设 h(x)=2ln x+x+x (x>0),则 h′(x)=
x- x
2
.当 x∈
(0,1)时,h′(x)<0,函数 h(x)单调递减;当 x∈(1,+∞)时,h′(x)>0,函数 h(x)单调递增,所以 h(x)min=h(1)=4.所以 a≤h(x)min =4.
7 / 34
【解析】 (1)依题意,知 f(x)的定义域为(0,+∞), 1 1 1 当 a=b=2时,f(x)=ln x-4x2-2x, 1 1 1 -x+2x-1 f′(x)=x-2x-2= , 2x 令 f′(x)=0,解得 x=1(x=-2 舍去). 当 0<x<1 时,f′(x)>0,此时 f(x)单调递增;当 x>1 时,f′(x)<0,此时 f(x)单调递减. 3 所以 f(x)的极大值为 f(1)=-4. 3 又因为 f′(x)=0 在(0,+∞)上有唯一解,所以 f(x)的最大值为-4. a (2)由题意得 F(x)=ln x+ x,x∈(0,3],则 x0 - a 1 k=F′(x0)= x2 ≤2在 x0∈(0,3]上恒成立, 0 1 所以 a≥-2x2 0+x0max,x0∈(0,3]. 1 1 1 当 x0=1 时,-2x2 0+x0 取得最大值 ,所以 a≥ . 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用(2)
一、基础训练:
1.设曲线a x
y e =有点()0,1处的切线与直线210x y ++=垂直,则实数a = . 2.函数2sin y x x =-在()0,2π内的单调增区间为 .
3.若函数f (x )=3
x
+ln x 在区间(m ,m +2)上单调递减,则实数m 的范围是 .
4.将长为72m 铁丝截成12段,搭成一个正四棱柱模型,以此为骨架做成一个容积最大的容器,则最大容积为 . 5.函数()f x (x ∈R )满足(2)3f =,且()f x 在R 上的导数满足01)(<-'x f ,则不等式
2
2
()1f x x <+的解集为 .
6.已知2
(),()(1)x f x xe g x x a ==-++,若12,,x x R ∃∈使得21()()f x g x ≤成立,则实 数a 的取值范围是 . 二、例题分析: 例1.设ax x
x x f 22
131)(2
3
++
-
=.
(1)若)(x f 在),3
2
(+∞上存在单调递增区间,求a 的取值范围;
(2)当20<<a 时,)(x f 在]4,1[上的最小值为3
16-,求)(x f 在该区间上的最大值.
例2.已知函数2
11()22
f x x =
-
与函数()ln g x a x =在点(1,0)处有公共的切线,设()()()F x f x m g x =-(0)
m ≠.
(1) 求a 的值;(2)求()F x 在区间[1,e ]上的最小值.
例3.如图,在边长为2 (单位:m )的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m .
(1)求正四棱锥的体积V (x );
(2)当x 为何值时,正四棱锥的体积V (x )取得最大值?
备用题:已知函数f (x )=ax 3+bx 2
-3x (a ,b ∈R )在点(1,f (1))处的切线方程为y +2=0.
(1)求函数f (x )的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x 1,x 2都有|f (x 1)-f (x 2)|≤c ,求实数c 的最小值;
(3)若过点M (2,m )(m ≠2)可作曲线y =f (x )的三条切线,求实数m 的取值范围.
三、巩固练习: 1.函数()x
x f x e
=
在[]0,2上的最大值是________.
2.已知函数()()3
2
2
10f x x m x m x m =+-+>有极大值9,则实数m 的值为________. 3.若函数f (x )=13x 3-12ax 2
+(a -1)·x +1在区间(1,4)上是减函数,在区间(6,+∞)上是
增函数,则实数a 的取值范围是________.
4.已知函数f (x )=12mx 2
+ln x -2x 在定义域内是增函数,则实数m 的取值范围为______.
5.已知函数f (x )=-12x 2
+4x -3ln x 在[t ,t +1]上不是单调函数,则实数t 的取值范围
是________.
6.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则
称f (x )在D 上为凸函数.以下四个函数在⎝
⎛⎭⎪⎫0,π2上不是凸函数的是__④______.
①f (x )=sin x +cos x ;②f (x )=ln x -2x ;③f (x )=-x 3+2x -1;④f (x )=x e x
.
7.设()32
1f x x a x b x =+++的导数()f x '满足(),()f a f b ''1=22=-,其中常数,a b ∈R .
(1)求曲线()y f x =在点(,())f 11处的切线方程;
(2)设()()x
g x f x e -'=,求函数()g x 的极值.
8.已知函数ax x x a x f ++
-=2
22
1ln 2)()(R a ∈.
(1)当1=a 时,求曲线)(x f y =在点))1(,1(f 的切线方程;(2)讨论函数)(x f 的单调性.
9.已知函数32
11()()3
2
f x x a x a a =
-+
∈R .
(1)若1,a =求函数()[0,2]f x 在上的最大值;
(2)若对任意(0,+)x ∈∞,有()0f x >恒成立,求a 的取值范围.
10.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
803
π立方米,且2l r ≥.假设该容器的建
造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r .。