华师版八年级上册数学期末试卷

合集下载

华师版八年级数学上册第一学期期末测试卷(含答案)

华师版八年级数学上册第一学期期末测试卷(含答案)

华师版八年级数学上册第一学期期末测试卷(含答案)第一学期期末测试卷一、选择题(每题3分,共30分)1.9的平方根是(。

)。

A。

±3B。

±1/3C。

3D。

-32.下列运算正确的是(。

)。

A。

x3·x4=x12B。

(x3)4=x7C。

x8÷x2=x6D。

(3b3)2=6b63.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是(。

)。

A。

8、15、17B。

7、24、25C。

3、4、5D。

2、3、74.已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是(。

)。

①作射线OC;②在射线OA和OB上分别截取OD,OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C.A。

①②③B。

②①③C。

②③①D。

③①②5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是(。

)。

A。

汽车尾气约为建筑扬尘的3倍B。

表示建筑扬尘的占7%C。

表示煤炭燃烧对应的扇形圆心角度数为126°D。

煤炭燃烧的影响最大6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为(。

)。

A。

40°B。

30°C。

70°D。

50°7.下列分解因式正确的是(。

)。

A。

-ma-m=-m(a-1)B。

a2-1=(a-1)2C。

a2-6a+9=(a-3)2D。

a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,D是BC的中点,AC 的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是(。

)。

A。

1B。

2C。

3D。

49.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是(。

)。

A。

3B。

5C。

6D。

华师大版八年级数学上册期末测试题含答案

华师大版八年级数学上册期末测试题含答案

华师大版八年级数学上册期末测试题含答案注意:本测试题分为两个部分,第一部分是选择题,共计60分;第二部分是解答题,共计40分。

请同学们认真阅读题目,按要求作答。

第一部分:选择题(共60分,每小题3分)1. 设x为正整数,则下列各数中最大的是:(A)300 (B)3x (C)2x (D)4x2. 若x+5=7,则x的值为:(A)-5 (B)7 (C)0 (D)23. 下列各数中,最大的是:(A)0.3 (B)0.03 (C)0.003 (D)0.00034. 甲、乙两个图书馆,甲馆的藏书量是乙馆的2倍减10本,如果乙馆藏书量为x,写出甲馆藏书量的代数式是:(A)2x-10 (B)2x+10 (C)10-2x (D)x-105. 用三角形的边长表示周长作为x,若三角形的一条边为5cm,另外两条边为(2x-1)cm和x-1cm,则x的值是:(A)12 (B)13 (C)10 (D)11......第二部分:解答题(共40分)1. 计算下列各式的值:(1)5x - 3y,其中x=4,y=2(2)3x^2 - 2x + 1,其中x=2(3)2ab + 3a + 4b,其中a=1/2,b=1/32. 一工人在一天内用10台挖土机挖沟,第一小时挖了1/5的沟,第二小时挖了1/4的沟,如此递增,一共用了多少小时挖完沟?3. 英华山是中国五大名山之一,是世界文化与自然遗产。

山区海拔2800多米,山顶处矗立着仙人石。

某天观测到,海拔在山顶高度的48%的地方。

请计算山顶的实际高度。

......答案:第一部分:选择题1. (B)3x2. (D)23. (A)0.34. (A)2x-105. (B)13......第二部分:解答题1.(1) 5x - 3y = 5 * 4 - 3 * 2 = 20 - 6 = 14(2) 3x^2 - 2x + 1 = 3 * 2^2 - 2 * 2 + 1 = 12 - 4 + 1 = 9(3) 2ab + 3a + 4b = 2 * (1/2) * (1/3) + 3 * (1/2) + 4 * (1/3)= 1/3 + 3/2 + 4/3 = 2/6 + 9/6 + 8/6 = 19/62. 第一小时挖的沟:1/5第二小时挖的沟:1/4第三小时挖的沟:1/3以此类推,可以得到挖完沟所需的时间总和:1/5 + 1/4 + 1/3 + ... + 1/10 = 0.853. 海拔在山顶高度的48%的地方,即0.48 * 2800 = 1344m......通过这样的一份期末测试题,同学们可以巩固和提升对八年级数学知识的理解和应用能力。

华师大版八年级上册数学期末测试卷及含答案

华师大版八年级上册数学期末测试卷及含答案

华师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.a+a=a 2B.a 2·a 3=a 6C.(-a 3) 2=a 5D.a 7÷a 5=a 22、如图,已知,若,,则的度数为()A. B. C. D.3、下列运算正确的是()A.3x 2+4x 2=7x 4B.(﹣x)﹣9÷(﹣x)﹣3=x ﹣6C.x 2﹣x2=1 D.﹣x(x 2﹣x+1)=﹣x 3﹣x 2﹣x4、下列计算结果正确的是()A.﹣2x 2y 3•x 3y 3=﹣2x 6y 9B.12x 6y 4÷2x 3y 3=6x 3yC.3x 3y 2﹣x 2y 3=xyD.(﹣2a﹣3)(2a﹣3)=4a 2﹣95、已知a,b都是正整数,且a> ,b< ,则a-b的最小值是()A.1B.2C.3D.46、关于,下列说法错误的是()A.它是一个无理数B.它可以用数轴上的一个点来表示C.若,则 D.它可以表示体积为6的正方形的棱长7、如图,在中,是的中点,作于点,连接,下列结论:①;②;③;④;其中正确的个数是()A.1B.2C.3D.48、如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80°B.70°C.60°D.45°9、在中,、、的对应边分别是a、b、c,下列条件中不能说明是直角三角形的是()A. B. C.D.10、有理数、在数轴上的对应点的位置如图所示,下列各式正确的是()A.-a<0B.b<0C.a>bD.|a|<|b|11、某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.4012、计算的结果是()A. B. C. D.13、下列计算正确的是()A.a 2+2a 2=3a 4B.(-2x 2) 3=-8x 6C.(m-n) 2=m 2-n 2D.b 10÷b 2=b 514、数5的算术平方根为()A. B.25 C.±25 D.±15、如图,等腰△ABC的周长为17,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.11B.12C.13D.16二、填空题(共10题,共计30分)16、从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为________17、如图,已知△AOC≌△BOC,∠ACB=92°,∠B=98°,则∠1=________度。

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)

2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。

华师大版八年级上册数学期末试卷及答案

华师大版八年级上册数学期末试卷及答案

初二数学上学期期末水平测试一、选择题1,4的平方根是( )A.2B.4C.±2D.±42,下列运算中,结果正确的是( )A.a 4+a 4=a 8B.a 3·a 2=a 5C.a 8÷a 2=a 4D.(-2a 2)3=-6a 6 3,化简:(a +1)2-(a -1)2=( )A.2B.4C.4aD.2a 2+2 4,矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直5,如图1所示的图形中,中心对称图形是( )图16,如图2,已知等腰梯形ABCD 中,AD ∥BC ,∠A =110°,则∠C =( )A.90°B.80°C.70°D.60° 二、填空题7,化简:5a -2a = . 8,9的算术平方根是_______.9,如图8,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F =___°10,如图11,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C ′处,若∠EFC =35°,则∠DEC ′= 度.AD CB图2三、解答题11,化简:a(a-2b)-(a-b)2.12,先化简,再求值. (a-2b)(a+2b)+ab3÷(-ab),其中a=2, b=-1.13,如图13是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图13中黑色部分是一个中心对称图形.14,如图14,在一个10×10的正方形DEFG网格中有一个△ABC.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1.(2)在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C.15,给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法图13图14CBAD GFE运算,并把结果因式分解.16,现有一张矩形纸片ABCD(如图15),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.(1)请用尺规,在图中作出△AEB′.(保留作图痕迹);(2)试求B′、C两点之间的距离.图1517,2008年,举世瞩目的第29届奥运盛会将在北京举行.奥运五环,环环相扣,象征着全世界人民的大团结.五环图中五个圆环均相等,其中上排三个、下排两个,且上排的三个圆心在同一直线上;五环图是一个轴对称图形.(1)请用尺规作图,在图16中补全奥运五环图,心怀奥运.(不写作法,保留作图痕迹)(2)五环图中五个圆心围一个等腰梯形.如图17,在等腰梯形ABCD 中,AD ∥BC .假设BC =4,AD =8,∠A =45°,求梯形的面积.18,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H(如图18).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.DCABGHF E 图18 ABCD45°图17。

华师大版八年级上册数学期末考试题及答案

华师大版八年级上册数学期末考试题及答案

华师大版八年级上册数学期末考试题及答案华师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共24分)1.下列说法中,正确的是()A。

(√(-6))²=-6B。

带根号的数都是无理数C。

27的立方根是±3D。

立方根等于-1的实数是-12.下列运算正确的是()A。

a³·a²=a⁵B。

(a²b)³=a⁶b³C。

a⁸÷a²=a⁶D。

a+a=a²3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A。

如果∠A-∠B=∠C,那么△ABC是直角三角形B。

如果a²=b²+2c²,那么△ABC是直角三角形且∠C=90°C。

如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D。

如果a²:b²:c²=9:16:25,那么△ABC是直角三角形4.如图,在数轴上表示实数的点可能是()A。

点PB。

点QC。

点MD。

点N5.下列结论正确的是()A。

有两个锐角相等的两个直角三角形全等B。

一条斜边对应相等的两个直角三角形全等C。

顶角和底边对应相等的两个等腰三角形全等D。

两个等边三角形全等6.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是()A。

等边三角形B。

钝角三角形C。

直角三角形D。

锐角三角形7.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上。

其中正确的是()A。

①②③④B。

①②③C。

④D。

②③8.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A。

4.8B。

8C。

华师大版八年级上册数学期末考试试题含答案

华师大版八年级上册数学期末考试试题含答案

华师大版八年级上册数学期末考试试卷一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的.1.(4分)在下列实数中,无理数是()A.B.C.D.0.20200200022.(4分)下列运算正确的是()A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a43.(4分)若一个数的平方根等于它本身,则这个数是()A.0 B.1 C.0或1 D.0或±14.(4分)分解因式3x3﹣12x,结果正确的是()A.3x(x﹣2)2B.3x(x+2)2C.3x(x2﹣4)D.3x(x﹣2)(x+2)5.(4分)以下列各组数为边长,不能组成直角三角形的是()A.3、4、5 B.7、24、25 C.6、8、10 D.3、5、76.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图7.(4分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48 11.(4分)下面给出五个命题:①若x=﹣1,则x3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有()A.4个B.3个C.2个D.1个12.(4分)因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b 分解因式正确的结果为()A.(x+3)(x﹣4)B.(x+4)(x﹣3)C.(x+6)(x﹣2)D.(x+2)(x﹣6)二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上13.(4分)16的平方根是.14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= .15.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为万元.16.(4分)若直角三角形的两小边为5、12,则第三边为.17.(4分)根据(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为.18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= .三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.19.(8分)计算:(π﹣2)0+|﹣3|﹣+(﹣)﹣2.20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题:(1)调查的总人数为;(2)补全条形统计图;(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF 的延长线于点D.(1)求证:AE=CD;(2)若AB=4,求BD的长.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25.(10分)若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)请你写一个最小的三位“丰利数”是,并判断20 “丰利数”.(填是或不是);(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG 的关系.(不要求证明,直接写出结果)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内1.(4分)在下列实数中,无理数是()A.B.C.D.0.2020020002【解答】解:为无理数,,,0.2020020002为有理数.故选:C.2.(4分)下列运算正确的是()A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a4【解答】解:A、a5•a4=a9,故此选项错误;B、(a4)3=a12,正确;C、a12÷a6=a6,故此选项错误;D、(﹣3a2)2=9a4,故此选项错误;故选:B.3.(4分)若一个数的平方根等于它本身,则这个数是()A.0 B.1 C.0或1 D.0或±1【解答】解:若一个数的平方根等于它本身,则这个数是:0.故选:A.4.(4分)分解因式3x3﹣12x,结果正确的是()A.3x(x﹣2)2B.3x(x+2)2C.3x(x2﹣4)D.3x(x﹣2)(x+2)【解答】解:3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).故选:D.5.(4分)以下列各组数为边长,不能组成直角三角形的是()A.3、4、5 B.7、24、25 C.6、8、10 D.3、5、7【解答】解:A、∵32+42=25=52,∴能组成直角三角形,故本选项正确;B、∵72+242=625=252,∴能组成直角三角形,故本选项正确;C、62+82=100=102,∴能组成直角三角形,故本选项正确;D、32+52=34≠72=49,∴不能组成直角三角形,故本选项错误.故选:D.6.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:B.7.(4分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.8.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选:B.9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定【解答】解:∵△ABC的两边BC和AC的垂直平分线分别交AB于D、E,∴AD=CD,BE=CE,∵边AB长为10cm,∴△CDE的周长为:CD+DE+CE=AD+DE+BE=AB=10cm.故选:A.10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.11.(4分)下面给出五个命题:①若x=﹣1,则x3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有()A.4个B.3个C.2个D.1个【解答】解:①若x=﹣1,则x3=﹣1,正确;②角平分线上的点到角的两边距离相等,正确;③相等的角是对顶角,错误;④若x2=4,则x=±2,故此选项错误;⑤面积相等的两个三角形全等,错误.故选:C.12.(4分)因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b 分解因式正确的结果为()A.(x+3)(x﹣4)B.(x+4)(x﹣3)C.(x+6)(x﹣2)D.(x+2)(x﹣6)【解答】解:甲看错了a的值:x2+ax+b=(x+6)(x﹣2)=x2+4x﹣12,∴b=﹣12乙看错了b的值:x2+ax+b=(x﹣8)(x+4)=x2﹣4x﹣32,∴a=﹣4∴x2+ax+b分解因式正确的结果:x2﹣4x﹣12=(x﹣6)(x+2)故选:D.二、填空题:(本大题共6小题,每小题4分,共24分)13.(4分)16的平方根是±4 .【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= 80 .【解答】解:∵(a+b)(a﹣b)=a2﹣b2,∴a2﹣b2=10×8=80,故答案为:8015.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 2 万元.【解答】解:他家用于教育的支出的费用=×6=2(万元).故答案为2.16.(4分)若直角三角形的两小边为5、12,则第三边为13 .【解答】解:∵直角三角形的两小边为5、12,∴第三边==13,故答案为:13.17.(4分)根据(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为22018﹣1 .【解答】解:22017+22016+22015+…+23+22+2+1=(2﹣1)(22017+22016+22015+…+23+22+2+1)=22018﹣1.故答案为:22018﹣1.18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= 4 .【解答】解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.19.(8分)计算:(π﹣2)0+|﹣3|﹣+(﹣)﹣2.【解答】解:原式=1+3﹣﹣8+4=﹣.20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.【解答】证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∵,∴△ABE≌△DCF(ASA),∴AE=DF.四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.【解答】解:∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x=(9x2﹣4y2+4y2﹣6xy+2xy﹣3x2)÷4x=(6x2﹣4xy)÷4x=1.5x﹣y=1.5×2﹣(﹣1)=3+1=4.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题:(1)调查的总人数为80 ;(2)补全条形统计图;(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?【解答】解:(1)调查的总人数为:36÷45%=80人,故答案为:80;(2)开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”所占的百分比为:1﹣10%﹣25%﹣45%=20%,则骑自行车的人数为80×20%=16人,补全统计图如图所示;(3)现在骑自行车的人数约为2000×=900人.23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?【解答】解:由题意可得:设AE=xkm,则EB=(2.5﹣x)km,∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,∴AC2+AE2=BE2+DB2,∴1.52+x2=(2.5﹣x)2+12,解得:x=1.答:图书室E应该建在距点A1km处,才能使它到两所学校的距离相等.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF 的延长线于点D.(1)求证:AE=CD;(2)若AB=4,求BD的长.【解答】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC与△ECA中∴△DBC≌△ECA(A AS).∴AE=CD.(2)由(1)得AE=CD,AC=BC,∴Rt△CDB≌Rt△AEC(HL)∵AB=4.∴AC=4∴BD=EC=BC=AC,∴BD=2.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25.(10分)若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)请你写一个最小的三位“丰利数”是100 ,并判断20 是“丰利数”.(填是或不是);(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.【解答】解:(1)∵62=36,82=64,∴最小的三位“丰利数”是:62+82=100,∵20=42+22,∴20是“丰利数”故答案为:101;是;…4分(各2分)(2)S=x2+y2+2x﹣6y+k,…6分=(x2+2x+1)+(y2﹣6y+9)+(k﹣10),=(x+1)2+(y﹣3)2+(k﹣10),…8分当(x+1)2、(y﹣3)2是正整数的平方时,k﹣10为零时,S是“丰利数”,故k的一个值可以是10…10分备注:k的值可以有其它值:0+4+1,得k=11;9+0+4,得k=14.26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG 的关系.(不要求证明,直接写出结果)【解答】解:(1)结论:DE+DF=BG.理由:连结AD.则△ABC的面积=△ABD的面积+△ACD的面积,即AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG,(2)证明:如图2,连结AD.则△ABC的面积=△ABD的面积+△ACD的面积,即AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG;(3)DE﹣DF=BG,证明:如图3,连接AD,则△ABC的面积=△ABD的面积﹣△ACD的面积,即AB•DE﹣AC•DF=AC•BG,∵AB=AC,∴D E﹣DF=BG.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。

华师大版八年级上册数学期末考试试题及答案

华师大版八年级上册数学期末考试试题及答案

华师大版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1 )A .7B .﹣1C .1D .﹣72.下列计算不正确的是( )A .(-a)3 • (-a)4 • (-a)=a 8B .(x 3)5 = (x 5)3C .(x+3y) (x-3y) =x 2-3y 2D .m 4÷m = m 33.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 24.()()22a b a b --+是下列哪一个多项式因式分解的结果( )A .4a 2—b 2B .4a 2+b 2C .-4a 2-b 2D .-4a 2+b 25.老师对本班80名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )A .32 人B .28 人C .8 人D .12 人6.若a + b = 3,a 2-b 2=6,则a - b 等于( )A .1B .2C .-2D .-17.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )A .B .C .D . 8.如图,AD 平分∠BAC ,AB =AC ,则图中全等三角形的对数是( )A.2对B.3对C.4对D.5对9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.如图,四边形ABCD是长方形,把ΔACD沿AC翻折到ΔACD',AD'与BC交于点E,若AD=4,DC=3,则BE的长是()A.58B.23C.78D.1?二、填空题11.-5是________的立方根.12.已知BD丄AN于点B,交AE于点O,OC丄AM于点C,且OB= OC,如果∠OAB=25°,则∠ADB=________.13.在一个边长为12.75?cm的正方形内挖去一个边长为7.25?cm的正方形,则剩下部分的面积为______2cm.BC的14.如图,在已知的ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连结CD,若CD= AC,∠A=50°,则∠B=________.15.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,连结AC.若AC=8,则四边形ABCD的面积为_________.三、解答题16.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.17.已知a+b=3,ab = 2,求代数式a3b+2a2b2+ab3的值.18.已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.19.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.20.为了绿化环境,北京临川学校七年级部分同学积极参加植树活动,今年植树节时,该年级同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)七年级参加植树的共有多少名同学?(2)条形统计图中,m=,n=.(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.21.用尺规作图:任意画一个锐角∠AOB,如图.在OB上任取一点C.过点C作CM//OA,CN OA于乂(不必写出作法,但要保留作图痕迹)22.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1) 观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2) 若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.23.如图,在RtΔABC 中,∠ABC=90°,AB=20,BC=15,A D为AC边上的动点,点D 从点C出发,沿边CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,速度为每秒2个单位长度.(1)当t为何值时,ΔCBD是直角三角形;(2)若ΔCBD是等腰三角形,求t的值.参考答案1.A【解析】根据算术平方根的计算即可得到结论.【详解】,故选A .【点睛】本题主要考查算术平方根,比较基础.2.C【分析】根据同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式求出每个式子的值,再得出选项即可.【详解】解:A 、(-a)3 • (-a)4 • (-a)=a 8,计算正确,故本选项不符合题意;B 、(-x 2)5=-a 10,计算正确,故本选项不符合题意;C 、(x+3y) (x-3y) =x 2-9y 2,计算错误,故本选项符合题意;D 、m 4÷m = m 3,计算正确,故本选项不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式等知识点,能求出每个式子的值是解此题的关键.3.C【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2.又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )2-4mn=(m-n )2.故选C .4.D【分析】把每个能分解因式的选项分解因式,即可得到答案.【详解】解:()()22422,a b a b a b -=+- 故A 错误;224a b +不能分解因式,故B 错误;224a b --不能分解因式,故C 错误;()()()22224422.a b a b a b a b -+=--=-+- 故D 正确;故选D .【点睛】本题考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.5.A【分析】根据频数和频率的定义求解即可.【详解】解:本班A 型血的人数是800.4=32⨯(人)故选:A .【点睛】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键. 6.B【分析】根据平方差公式将a 2-b 2=6进行变形,再把a+b=3代入求值即可.【详解】解:∵a+b=3,∴a 2-b 2=(a+b )(a-b )=3(a-b )=6,∴a-b=2,故选:B .【点睛】此题主要考查了因式分解的应用,熟练掌握平方差公式是解答此题的关键.7.C【分析】求证是否为直角三角形,这里给出三边的长,根据两小边的平方和等于最长边的平方逐一验证即可得到答案.【详解】解:A 、22222222272425,152024,222025,+=+≠+≠故A 不正确;B 、22222272425,152024,+=+≠故B 不正确;C、222222+=+=故C正确;72425,152025,D、22222272025,152425,+≠+≠故D不正确.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足222a b c,那么这个三角形是直角三角形.+=8.B【分析】根据角平分线的性质及全等三角形的判定可求得图中的全等三角形有3对,分别是:△ABD≌△ACD,△BED≌△CED,△ABE≌△ACE.【详解】∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB=AC,AD=AD,AE=AE,∴△ABD≌△ACD,△ACE≌△ABE(SAS),∴BD=CD,∠BDE=∠CDE,∵DE=DE,∴△CED≌△BED(SAS),所以共有3对全等三角形,故选B.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9.C【详解】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.10.C【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理建立方程可计算出BE 的长度.【详解】解:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC ,∵AD ∥BC ,∴∠DAC=∠ACB ,∴∠D′AC=∠ACB ,∴AE=EC ,设BE x =,则4EC x =-,=4AE x -,在Rt ABE ∆中,由勾股定理得:222AB BE AE +=,即:()22234x x +=-, 解得:78x =,即:BE 的长度为78, 故选:C .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;也考查了矩形的性质和勾股定理;牢记折叠的性质是解决本题的关键.11.125.-【分析】由立方与立方根互为逆运算,所以由()35-可的答案.【详解】-=-解:()35125,-的立方根,∴-是1255-故答案为:125.【点睛】本题考查的是立方根的含义,掌握立方根及求一个数的立方根是解题的关键.12.40°【分析】先根据DB⊥AN于B,OC⊥AM于点C,且OB=OC,得出AE平分∠MAN,再根据∠OAB=25°,得出∠MAN=50°,最后根据DB⊥AN于B,求得∠ADB即可.【详解】解:∵DB⊥AN于B,OC⊥AM于点C,且OB=OC,∴AE平分∠MAN,∵∠OAB=25°,∴∠MAN=50°,∵DB⊥AN于B,∴Rt△ABD中,∠ADB=40°.故答案为:40°【点睛】本题主要考查了角平分线的性质定理的逆定理,解决问题的关键是掌握:角的平分线上的点到角的两边的距离相等.13.110cm2【详解】根据题意可得:剩下的面积=2212.757.25-=(12.75+7.25)×(12.75-7.25)=20×5.5=110.考点:平方差公式的应用14.25︒【分析】先根据等腰三角形的性质可得50ADC A ∠=∠=︒,再根据三角形的外角性质可得B BCD ADC ∠+∠=∠,然后根据垂直平分线的性质可得CD BD =,最后根据等腰三角形的性质可得B BCD ∠=∠,由此即可得出答案.【详解】CD AC =,50A ∠=︒,50ADC A ∴∠=∠=︒,50B BCD ADC ∴∠+∠=∠=︒,由作图过程可知,直线MN 是BC 的垂直平分线,CD BD ∴=,B BCD ∴∠=∠,250B ∴∠=︒,解得25B ∠=︒,故答案为:25︒.【点睛】本题考查了等腰三角形的性质、垂直平分线的作图与性质等知识点,掌握垂直平分线的作图与性质是解题关键.15.32【分析】作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,先证明△ABM ≌△ADN (AAS ),得到AM=AN ,△ABM 与△ADN 的面积相等,求出正方形AMCN 的面积即可解决问题.【详解】解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,∵∠BAD=∠BCD=90°,∴四边形AMCN 为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN ,在△ABM 与△ADN 中,BAM DAN AMB AND AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ADN (AAS ),∴AM=AN ,∴△ABM 与△ADN 的面积相等,∴四边形ABCD 的面积=正方形AMCN 的面积,设AM=a ,由勾股定理得:222AC AM MC =+,∵AC=8,∴2264a =,∴232a =,故答案为:32.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,正方形的判定及性质,解题的关键是作辅助线,构造全等三角形.16.5【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab 的值代入化简后的式子计算即可求出值.试题解析:解:原式=4﹣a 2+a 2﹣5ab+3ab=4﹣2ab ,当ab=﹣12时,原式=4+1=5.考点:整式的混合运算—化简求值..17.2()ab a b +,18【分析】先把32232a b a b ab ++分解因式,再整体代入求值即可.【详解】解:32232a b a b ab ++()222ab a ab b =++2()ab a b =+.将3a b +=,2ab =代入得,原式22318=⨯=.【点睛】本题考查的是利用因式分解求代数式的值,掌握因式分解的方法:提公因式法,公式法是解题的关键.18.证明见解析.【分析】要证明∠B=∠ANM ,只要证明△BAD ≌△NAM 即可,根据∠BAC=∠DAM ,可以得到∠BAD=∠NAM ,然后再根据题目中的条件即可证明△BAD ≌△NAM ,本题得以解决.【详解】证明:∵∠BAC=∠DAM ,∠BAC=∠BAD+∠DAC ,∠DAM=∠DAC+∠NAM , ∴∠BAD=∠NAM .在△BAD 和△NAM 中,∵AB=AN ,∠BAD=∠NAM ,AD=AM ,∴△BAD ≌△NAM (SAS ),∴∠B=∠ANM .【点睛】本题考查全等三角形的判定和性质,根据题目条件选择适当的判定定理是关键.19.(1) AP=13cm ,OA=5cm (2) OP=12cm【分析】(1)、设AP=a ,OA=b ,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt △OAP 的勾股定理得出答案.【详解】(1)设AP=a ,OA=b ,由题意818a b a b -=⎛ +=⎝, 解得135a b =⎛ =⎝, ∴AP=13cm ,OA=5cm .(2)当OA ⊥OP 时,在Rt △PAO 中,,∴OP=12cm .点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.20.(1)50;(2)10,7;(3)72°.【解析】试题分析:(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n 的值;用总人数减去其他植树的人数,就是m 的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数. 试题解析:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50. (2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).(3)所求扇形圆心角的度数为:360×1050=72°. 点睛:此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.21.详见解析【分析】利用尺规作图作∠MCB=∠O ,利用尺规作图过C 作AO 的垂线.【详解】如图所示,直线CM 和CN 即为所求..【点睛】本题考查了作图-基本作图,熟悉尺规作图是解题的关键.22.(1)AP=CQ,证明见解析(2)△PQC是直角三角形,证明见解析【分析】根据等边三角形的性质利用SAS判定△ABP≌△CBQ,从而得到AP=CQ;设PA=3a,PB=4a,PC=5a,由已知可判定△PBQ为正三角形从而可得到PQ=4a,再根据勾股定理判定△PQC 是直角三角形.【详解】(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC 中∵PQ 2+QC 2=16a 2+9a 2=25a 2=PC 2∴△PQC 是直角三角形.【点睛】此题考查勾股定理的逆定理,等边三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线23.(1) 4.5t =或12.5秒时,CBD 是直角三角形;(2)7.5t =或6.25或9秒时,CBD 是等腰三角形.【分析】(1)根据CD=速度×时间,得到CD ,利用勾股定理列式求出AC ,再分①∠CDB=90°时,利用△ABC 的面积列式计算即可求出BD ,然后利用勾股定理列式求解得到CD ,再根据时间=路程÷速度计算;②∠CBD=90°时,点D 和点A 重合,然后根据时间=路程÷速度计算即可得解;(2)分①CD=BC 时,CD=15;②CD=BD 时,根据等腰三角形的性质、直角三角形的性质可求CD ;③BD=BC 时,过点B 作BF ⊥AC 于F ,根据等腰三角形三线合一的性质可得CD=2CF ;依此解答.【详解】解:(1)由题意知2CD t =,90ABC ∠=︒,20AB =,15BC =,∴25AC =,252AD AC CD t =-=-.①90CDB ∠=︒时,1122ABC SAC BD AB BC =⋅=⋅,即1125201522BD ⨯⨯=⨯⨯, 解得12BD =,∴9CD ,则92 4.5t =÷=;②90CBD ∠=︒时,点D 和点A 重合,25212.5t =÷=. 综上所述, 4.5t =或12.5秒时,CBD 是直角三角形.(2)①CD BC =时,15CD =,∴1527.5t =÷=;②CD BD =时,C DBC ∠=∠.∵90C A DBC DBA ︒∠+∠=∠+∠=,∴D A BA ∠=∠,∴BD AD=,∴112.52CD AD AC===,∴12.52 6.25t=÷=;③BD BC=时,如图,过点B作BF AC⊥于F.根据等腰三角形三线合一的性质可知2CD CF=.则CF DF=,∵12BF=,∴9CF=,∴29218CD CF==⨯=,∴1829t=÷=.综上所述,7.5t=或6.25或9秒时,CBD是等腰三角形.【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,难点在于要分情况讨论,作出图形更形象直观.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

取算术平方根 输出y
是有理数
是无理数 输入x
图4
八年级数学上期期末水平测试
一、选择题
1、有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( ) A 、8 B 、22 C 、32 D 、23
2、下列运算中,结果正确的是( )
A.a 4+a 4=a 8
B.a 3·a 2=a 5
C.a 8÷a 2=a 4
D.(-2a 2)3=-6a 6 3、化简:(a +1)2-(a -1)2=( )
A.2
B.4
C.4a
D.2a 2+2 4、下列说法中,正确的是( )
.A 直角三角形中,已知两边长为3和4,则第三边长为 5;
B 三角形是直角三角形,三角形的三边 为a ,b ,c 则满足 a 2-b 2=c 2;
C 以三个连续自然数为三边长能构成直角三角形;
D ⊿ABC 中,若 ∠A ∶∠B ∶∠C=1∶5∶6,则⊿ABC 是直角三角形. 5、矩形、菱形、正方形都具有的性质是( )
A.每一条对角线平分一组对角
B.对角线相等
C.对角线互相平分
D.对角线互相垂直
6、如图1所示的图形中,中心对称图形是( )
A B 图1 C D
7、如图4,在平面四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =125°,则∠BCE =( ) A.55°
B.35°
C.25°
D. 30°
图5
图6
A E
B C
D
图4
8、如图5所示,将长为20cm,宽为2cm的长方形白纸条,折成图6所示的图形并在
其一面着色,则着色部分的面积为()
A.34cm2
B.36cm2
C.38cm2
D.40cm2
二、填空题
9、9的算术平方根是_______.
10、在数轴上与表示3的点的距离最近的整数点所表示的数是.
11、如图8,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,则∠F =__。

12、如图9,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M,N,在MN
上任取两点P,Q,那么图中阴影部分的面积是.
13、如图10,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点
P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F.则阴影部分的面
积是_______.
14、如图11,将矩形纸片ABCD的一角沿EF折叠,使点C落在矩形ABCD的内部C′
处,若∠EFC=35°,则∠DEC′=度.
15、如图12,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方
向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那
么此三角板向右平移的距离是cm.
三、解答题
16、计算: 32
8)23(|32|16
1
)2
1(+---+--
17、先化简,再求值. (a -2b )(a +2b )+ab 3÷(-ab ),其中,a=2 ,b =-1.
18、□ABCD 中,AE 平分∠BAD ,DE=4cm ,CE=2cm ,求□ABCD 的周长。

19、如图所示的一块地∠ADC=90°
AD=12m CD=9m AB=39m BC=36m
求这块地的面积。

20、给出三个多项式:
12x 2+x -1,12x 2+3x +1,1
2
x 2-x ,请你选择其中两个进行加法运算,并把结果因式分解.
21、如图14,在一个10×10的正方形DEFG 网格中有一个△ABC . (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1. (2)在网格中画出△ABC 绕C 点逆时针方向旋转90°得到的△A 2B 2C .
图14
C
B
A
D
G
F
E
22、如图,在矩形ABCD中, AE平分∠BAD,∠1=15°.
(1)求∠2的度数 (2)求证:BO=BE
23把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H (如图18).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
D C
G
H
F
A B
E
图18
参考答案:
一、1,C;2,B;3,C;4,D;5,C;6,B;7,B;8,B;
二、3.
三、21,原式=2-3+1=0.
22,原式=a2-2ab-(a2-2ab+b2)=a2-2ab-a2+2ab-b2=-b2.
23,原式=a2-4b2+(-b2)=a2-5b2,当a=2,b=-1时,原式=22-5(-1)2=-1.
25,(1)和(2)如图:
26,答案不惟一.如,选择多项式:1
2x2+x-1,1
2
x2+3x+1.作加
法运算:(1
2x2+x-1)+(1
2
x2+3x+1)=x2+4x=x(x+4).
1、有一个数值转换器,原理如下:当输入的x为64时,输出的y是()
取算术平方根 输出y
是有理数
是无理数 输入x
图4
A 、8
B 、
22
C 、32
D 、23。

相关文档
最新文档