高等数学(同济版)第四节_有理函数的积分

合集下载

高数上4.4 有理函数积分法

高数上4.4 有理函数积分法

5 2
d
x
1 2
x 1 2 3
2 4

(
x
x2 2x 1 1)( x2 x
1)
dx
x
2
1
x3 x2 x
1 dx
2
ln
|
x
1
|
1 2
d
( x2 x 1) x2 x 1
5 2
d
x
1 2
x
1 2
2
3 4
2ln | x 1 | 1 ln | x2 x 1 | 2
1
去分母, 得
x2 2x 1 A( x2 x 1) (Bx C )( x 1)
令 x 1, 得 A 2; 令 x 0, 得 1 A C, 所以 C 3;
令 x 2, 得 7 3A 2B C, 所以 B 1.
因此
(x
x2 2x 1 1)( x2 x 1)
4
dx
x
4
2x2 5x2
5
4
dx
1 2
d(x4 5x2 5) x4 5x2 4
(x2 1) (x2 4) (x2 1)(x2 4)
dx
1 ln x4 5x2 4 1 arctan x arctan x C
2
2
2
例 9
求不定积分 I
2
x
3 x4
2x2 5x2
解 根据例5的结果, 有
(
x
x2 2x 1 1)( x2 x
1)
dx
2 x
1
x3 x2 x
1 dx
2 ln
|
x
1
|
1 2
2x x2

D4-4有理函数积分

D4-4有理函数积分

令 x 3,
得 4A 1,
A 1 4
令 x 1,
得 4B 1,
B1 4
所以: x2
1 2x

3

1
4 x3

1 4
x1
机动 目录 上页 下页 返回 结束
例2
将 4 分解为简单分式之和.
x3 4x
解:
x3
4 4x

4 x( x2 4)

A
x
Bx C x2 4
例1

1 x2 2x 3
分解为简单分式之和.

1

1
?A B?
x2 2x 3 ( x 3)( x 1) x 3 x 1
1 A( x 1) B( x 3)
求 A、B 的方法一(比较系数法):
上式化为: 1 ( A B)x ( A 3B)


d(sin sin3
x x
)
ln csc 2x cot 2x
11 2 sin2
C x
真比分如较式所果系的以分数分母::解是原nAA个则 不B14: ,同 0因, 式B的A-乘3积B14
1
, 则真分式可
以分解成 n项之和 , 相应的分子次数比分母低一次.
x2
1

2x 3
A x3

B, x1
1 A(x 1) B(x 3)
求 A、B 的方法二(特殊值代入法):

dtan x tan2 x
2
1 arctan tan x C
2
2
机动 目录 上页 下页 返回 结束

高数讲义第四节有理函数的积分全

高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x

令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式

高数同济§4.4有理函数三角函数及一些无理函数的不定积分

高数同济§4.4有理函数三角函数及一些无理函数的不定积分

1 2 1 2 dt t 1
x x ln | sec | 2 2
x u tan 2
x ln |1 tan | C. 2
优秀课件,精彩无限!
16
1 例8 求积分 dx. 4 sin x x 2u 2 u tan , sin x , dx du, 解(一) 2 2 2 1 u 1 u 2 4 6 1 1 3 u 3 u u du sin4 x dx 4 8u 1 1 3 u3 [ 3 3u ] C 8 3u u 3
有理函数的积分
三角函数有理式的积分
无理函数的积分
sin x dx. 1 sin x cos x
1 1 x x x dx
优秀课件,精彩无限!
1
引例
Px a
1 1 1 1 . 解 由于 2 x a 2 2a x a x a
所以



1 1 1 1 dx dx 2 2 x a 2a x a x a
优秀课件,精彩无限!
2
一、有理函数的积分
有理函数的定义:两个多项式的商表示的函数.
P( x) a0 x n a1 x n1 an1 x an R( x) Q( x) b0 x m b1 x m 1 bm 1 x bm
23内容小结可积函数的特殊类型有理函数分解多项式及部分分式之和三角函数有理式万能代换简单无理函数三角代换根式代换特殊类型的积分按上述方法虽然可以积出但不一定要注意综合使用基本积分法优秀课件精彩无限
§5.4
有理函数、三角函数及一些 无理函数的不定积分
3x 2 (1 2 x)(1 x 2 ) dx.

第四节有理函数的积分

第四节有理函数的积分

第四节 有理数函数的积分本节我们还要介绍一些比较简单的特殊类型函数的不定积分,包括有理函数的积分以及可化为有理函数的积分,如三角函数有理式、简单无理函数的积分等.分布图示★ 有理函数的积分 ★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 有理函数的原函数★ 三角函数有理式的积分★ 例 11 ★ 例 12 ★ 例 13 ★ 例 14★ 简单无理函数的积分★ 例 15 ★ 例 16 ★ 例 17 ★ 例 18★ 例 19 ★ 例 20 ★ 例 21 ★ 例 22★ 内容小结 ★ 课堂练习★ 习题4-4★ 返回内容要点一、有理函数的积分1.最简分式的积分下列四类分式称为最简分式,其中n 为大于等于2的正整数.,A 、M 、N 、a 、p 、q 均为常数,且042<-q p . (1) a x A -; (2) na x A )(-; (3) qpx x N Mx +++2; (4) n q px x N Mx )(2+++. 2.有理分式化为最简分式的和二、可化为有理函数的积分1.三角函数有理式的积分: 由x sin 、x cos 和常数经过有限次四则运算构成的函数称为三角有理函数,记为).cos ,(sin x x R2.简单无理函数的积分求简单无理函数的积分,其基本思想是利用适当的变换将其有理化,转化为有理函数的积分. 下面我们通过例子来说明.三、总结本章我们介绍了不定积分的概念及计算方法. 必须指出的是:初等函数在它有定义的区间上的不定积分一定存在,但不定积分存在与不定积分能否用初等函数表示出来不是一回事. 事实上,有很多初等函数,它的不定积分是存在的,但它们的不定积分却无法用初等函数表示出来,如dx e x ⎰-2,⎰dx x x sin ,⎰+31x dx.同时我们还应了解,求函数的不定积分与求函数的导数的区别,求一个函数的导数总可以循着一定的规则和方法去做,而求一个函数的不定积分并无统一的规则可循,需要具体问题具体分析,灵活应用各类积分方法和技巧.例题选讲有理式的分解例1(E01) 分解有理分式6532+-+x x x . 解 ,)3)(2(36532--+=+-+x x x x x x ∴设,326532-+-=+-+x B x A x x x ),2()3(3-+-=+x B x A x )23()(3B A x B A x +-+=+∴⇒⎩⎨⎧=+-=+3)23(1B A B A ⇒⎩⎨⎧=-=,65B A .36256532-+--=+-+∴x x x x x 例2 分解有理式 .2424x x +解 ⎥⎦⎤⎢⎣⎡++++=+=+24)2(424222224x D Cx x B x A x x x x 两边同乘以2x 得:⎥⎦⎤⎢⎣⎡⋅++++=+2222424x x D Cx B Ax x 令,0=x 得.2/1=B 再将上式两边求导:⎥⎥⎦⎤⎢⎢⎣⎡'⎪⎭⎫ ⎝⎛+++++⋅+=+-2224)2(822222x D Cx x x D Cx x A x x 令,0=x 得.0=A同理,两边同乘以,22+x 令,2C x =得,0=C ,2/1-=D 所以)2(4242224+=+x x x x ⎥⎦⎤⎢⎣⎡+-=)2(2121422x x .22222+-=x x例3 分解有理分式 2)1(1-x x .解 设1)1()1(122-+-+=-x C x B x A x x ⇒),1()1(12-++-=x Cx Bx x A (*) 代入特殊值来确定系数,,,C B A 取0=x ⇒;1=A 取1=x ⇒;1=B取,2=x 并将B A ,值代入(*)⇒;1-=C.11)1(11)1(122---+=-∴x x x x x例4 分解有理分式 )1)(21(12x x ++. 解 设22121)1)(21(1xC Bx x A x x ++++=++⇒),21)(()1(12x C Bx x A ++++= 整理得 ,)2()2(12A C x C B x B A +++++=即1,02,02=+=+=+C A C B B A ⇒,51,52,54=-==C B A .151522154)1)(21(122x x x x x ++-++=++∴例5 将 )1)(1(1222+---+x x x x x 分解为部分分式. 解 设11)1)(1(12222+-++-=+---+x x C Bx x A x x x x x 去分母,得)1)(()1(1222-+++-=-+x C Bx x x A x x令,1=x 得;2=A 令,0=x 得,1C A -=-所以;3=C令,2=x 得,237C B A ++=所以.1-=B因此 .1312)1)(1(12222+----=+---+x x x x x x x x x有理式的积分例6 (E02) 求不定积分⎰-dx x x 2)1(1. 解 根据例3的结果,11)1(11)1(122---+=-x x x x x ∴原式dx x x x ⎰⎥⎦⎤⎢⎣⎡---+=11)1(112dx x dx x dx x ⎰⎰⎰---+=11)1(112 .|1|ln 11||ln C x x x +----= 例7 (E03) 求不定积分⎰++dx x x )1)(21(12.解 根据例4的结果,151522154)1)(21(122x x x x x ++-++=++ ∴原式⎰⎰++-++=dx x x dx x 2151522154⎰⎰+++-+=dx x dx x x x 2211511251|21|ln 52 .arctan 51)1ln(51|21|ln 522C x x x +++-+=例8 求不定积分.)1)(1(1222dx x x x x x ⎰+---+ 解 根据例5的结果,有dx x x x x dx x x x x x ⎰⎰⎪⎭⎫ ⎝⎛+----=+---+1312)1)(1(12222⎰⎰+----=dx x x x x dx 13122 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+----=⎰⎰4341511221|1|ln 222x x dx dx x x x x ⎰⎰+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+-+---=432121251)1(21|1|ln 2222x x d x x x x d x |1|ln 21|1|ln 22+---=x x x C x +-⋅+2/32/1arctan 3225 .312arctan 351)1(ln 22C x x x x +-++--=例9 (E04) 求不定积分⎰+++++4555222423x x x x x . 解法1⎰⎰+++++++=dx x x x dx x x x x I 45524552242243⎰⎰++++++++++=dx x x x x x x x x d )4)(1(4145)45(212222424 ⎰⎰++++++=14|45|ln 212224x dx x dx x x .2arctan 21arctan |45|ln 2124C x x x x +++++= 解法241)4)(1(5522222223+++++=+++++x D Cx x B Ax x x x x x)4)((5522223++=+++x B Ax x x x )1)((2+++x D Cx比较x 同次幂的系数得54,54,2,2=+=+=+=+D B C A D B C A解得.1,1,1,1====D C B A 故⎰⎰+++++=dx x x dx x x I 411122 |4|ln 21|1|ln 2122+++=x x C x x +++2arctan arctan .2arctan 21arctan |45|ln 2124C x x x x +++++= 解法3 由)1(5)1(25522223+++=+++x x x x x x )52)(1(2++=x x ,则有)4)(1()52)(1()4)(1(55222222223++++=+++++x x x x x x x x x )4)(1()41)(1(2222++++++=x x x x x .411122+++++=x x x x 所以.2arctan 21arctan |45|ln 2124C x x x x I +++++=例10 求不定积分.116/3/2/dx e e e x x x ⎰+++ 解 令6xe t =⇒,6,ln 6dt t dx t x ==原式dt t t t dt t t t t ⎰⎰++=⋅+++=)1)(1(6611223dt t t t t ⎰⎪⎭⎫ ⎝++-+-=213313 ⎰⎰+-++-+-=dt tt t d t t 2221131)1(23)1ln(3ln 6 C t t t t +-+-+-=arctan 3)1ln(23)1ln(3ln 62 .arctan 3)1ln(23)1ln(3636C e e e x xx x+-+-+-=例11 (E05) 求不定积分.cos sin 1sin dx xx x ⎰++ 解 由万能置换公式,12,11cos ,12sin 2222du u dx u u x u u x +=+-=+= 原式⎰⎰++--++=++=du u u u u u du u u u )1)(1(112)1)(1(22222 ⎰⎰⎰+-++=+++-+=du u du u u du u u u u 1111)1)(1()1()1(2222C u u u ++-++=|1|ln )1ln(21arctan 2 ↓2tan xu =.2tan 1ln 2sec ln 2C x x x ++-=例12 (E06) 求不定积分⎰dx x4sin 1. 解一 利用万能置换公式,12,11cos ,12sin 2222du u dx u u x u u x +=+-=+= 原式⎰+++=du u u u u 46428331C u u u u +⎥⎦⎤⎢⎣⎡++--=333318133 .2tan 2412tan 832tan 832tan 24133C x x x x +⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛-= 解二 修改万能置换公式 ,令x u tan =,11,11cos ,1sin 222du u dx u x u ux +=+=+= 原式du u u du u u u ⎰⎰+=+⋅⎪⎪⎭⎫ ⎝⎛+=422211111C u u +--=1313.cot cot 313C x x +--= 解三 不用万能置换公式原式dx x x )cot 1(csc 22+=⎰dx x x xdx ⎰⎰+=222csc cot csc .cot cot 313C x x +--= 结论:比较以上三种解法,便知万能置换不一定是最佳方法,故三角有理式的计算中先考虑其他手段,不得已才用万能置换.例13 求不定积分.sin 3sin sin 1dx xx x ⎰++ 解 ,2cos 2sin 2sin sin B A B A B A -+=+ 原式⎰⎰+=+=dx x x x dx x x x 2cos sin 4sin 1cos 2sin 2sin 1⎰⎰+=dx x dx x x 22cos 141cos sin 141 ⎰⎰+=dx xdx x x x x 2222cos 141cos sin cos sin 41 ⎰⎰⎰++=dx xdx x dx x x 22cos 141sin 141cos sin 41 ⎰⎰⎰++-=dx x dx x x d x 22cos 141sin 141)(cos cos 141.tan 412tan ln 41cos 41C x x x +++=例14 求不定积分.cos 4sin 3⎰+xx dx 解一 作代换.2tan x t = 原式⎰⎰-+=+-+++=22222464211412312t t dt t t t t dt t dt t t t t dt ⎰⎰⎪⎭⎫ ⎝⎛-++=-+=2112251)2)(12( .2tan 212tan2ln 51212ln 51C xx C t t +-+=+-+= 解二 原式⎰+=x x dx cos 54sin 5351⎰++=)sin()(51θθx x d .2tan ln 51C x +⎪⎭⎫ ⎝⎛+=θ 其中.54sin ,53cos ==θθ简单无理函数的积分例15 求不定积分.1213dx x x x ⎰+++解 先对分母进行有理化 原式=dx x x x x x x x ⎰+-+++++-+)1213)(1213()1213(⎰+-+=dx x x )1213( ⎰⎰++-++=)12(1221)13(13(31x d x x d x .)12(31)13(922323C x x ++-+=例16 (E07) 求不定积分⎰+dx x x 1.解 令x t =,即作变量代换)0(2>=t t x ,从而tdt dx 2=,所以不定积分C x C t dt t tdt t t dx x x ++=++=+=⋅+=+⎰⎰⎰)1ln(21ln 21122112.例17 (E08) 求不定积分 ⎰+dx x x 313. 解 令,133+=x t 则,,3123dt t dx t x =-=从而 ⎰⎰⎰-=-=+dt t t dt t t t dx x x )(3131134233C t t +⎪⎪⎭⎫ ⎝⎛-=253125.)13(61)13(1513/23/5C x x ++-+=例18 (E09) 求不定积分dx x x ⎰+)1(13.方法: 当被积函数含有两种或两种以上的根式,k x …,l x 时,可令n t x =(n 为各根指数的最小公倍数).解 令6t x =⇒,65dt t dx =dt t t t dx x x ⎰⎰+=+)1(6)1(12353⎰⎰+-+=+=dt t t dt t t 2222111616 ⎰+-=⎪⎭⎫ ⎝⎛+-=C t t dt t ]arctan [611162.]arctan [666C x x +-= 例19 求不定积分.1113dx x x ⎰+++解 令16+=x t ⇒dx dt t =56 原式dt t t t 52361⋅+=⎰dt t t t t ⎰⎰+-+=+=11161633C t t t t ++++-=|1|ln 663223 63131312+++-+=x x x .)11ln(66C x ++++例20 求不定积分⎰+dx xx x 11. 解 令t x x =+1⇒,)1(2,11,12222--=-==+t tdt dx t x t x x 原式⎰⎰--=---=12)1(2)1(2222t dt t dt t t t t C t t t dt t ++---=⎪⎭⎫ ⎝⎛-+-=⎰11ln 211122 .11ln 122C x x x x x +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-+-=例21 (E10) 求不定积分.111dx x x x -+⎰ 解 令,11-+=x x t 则.)1(4,112222--=-+=t tdt dx t t x 原式dt t t t t t dt t ⎰⎰⎪⎭⎫ ⎝⎛+---+=-+-=121111)1)(1(42222C t t t +--+=arctan 211ln 111ln 111ln --+-⎪⎪⎭⎫ ⎝⎛+-+=x x x x .11arctan 2C x x +-+-例22 求不定积分⎰+++12x x x dx . 解 令,12t x x x =+++则,2112tt x +-=且 ,)21()1(222dt t t t dx +++=,211122t t t x x +++=++ 于是⎰⎰+++=+++dt t t t t x x x dx )2/1(121122⎰⎥⎦⎤⎢⎣⎡+-+-=dt t t t 2)2/1(232/13421 C t t t +⎥⎦⎤⎢⎣⎡+++-=)2/1(2321ln 3||ln 421.)12(23|2/1|ln 2134C t t t ++++= 注: 上式最后一步只需将变量t 回代为变量x 即可.课堂练习求下列不定积分.4cos 5)2(;)1)(1(1)1(224⎰⎰-+-+x dx dx x x x。

第四节有理函数的积分(1)

第四节有理函数的积分(1)

第三步: 待定系数的确定: (1)解线性方程组法; (2)特殊值法;
四种典型部分分式的积分:
1.

x
A
a
dx


x
A
a
d(
x

a)

A ln
xa
C
2.
(
x
A a)n
dx

1
A

( n
x

a )1 n

C
(n 1)
3.
A
(Mx x a)Nn x2 px
例7. 求
(练习册P76 7)
解: 方法一 万能代换. 令 t tan x , 则
2
sin
x

2t 1 t2
, cos x
1t2 1 t2
,
dx

2 1 t2
dt
原式
1 dt 1t 2 1 t 2
2t 3 1 t 2
2 1t 2
1
4ቤተ መጻሕፍቲ ባይዱ
(1 t 2 )3 (1 t 2 ) t 3
R(x
,n
a xb c xd
)dx
,

tn
a xb c xd
R( x , n ax b , m ax b)dx ,
Qm ( x)
n m时, 为假分式; n m 时, 为真分式
有理函数 相除 多项式 + 真分 式
例如:
有理函数
多项式 + 真分 式
根据代数学的一个重要结论 —分—解 任一有理真分式在
在实数域内,均可唯一分解成下面四种部分分式之和:

高等数学第四章有理函数的积分

高等数学第四章有理函数的积分

x2 1
-
1)
dx
1
2
1+
1 x2
x2
+
1 x2
dx
-1 2
1
-
1 x2
x2
+
1 x2
dx
技巧
1 2
d( x - 1 ) x
-1
( x - 1 )2 + 2 2
d( x + 1 ) x
( x + 1 )2 - 2
x
x

1
arctan
x
-
1 x
-
1
1
ln
22
2 22 2
x+ 1 x
A 1 ( x - a)1-n + C 1- n
16
( x2 + px + q) 2x + p
Ax + B
(3) x2 + px + q dx
Ax + A p- A p + B
22
x2 + px + q
dx


Ax + A p
x2
+
2 px +
dx q
+
(B
-
A 2
p)
Q( x) 部分分式的和. 如果分母多项式Q( x)在实数域 上的质因式分解式为:
Q( x) b0 ( x - a) ( x2 + px + q) ,( p2 - 4q 0)
, 为正整数, 则 P( x) 可唯一的分解为:
Q( x)
5
Q( x) b0 ( x - a) ( x2 + px + q) ,( p2 - 4q 0)

高等数学I(电子)(同济大学)高等数学课件D4_4有理函数积分544 44有理函数积分

高等数学I(电子)(同济大学)高等数学课件D4_4有理函数积分544 44有理函数积分


t
tan
x 2
万能代换
t 的有理函数的积分
机动 目录 上页 下页 返回 结束
例7.

sin
1 sin x x(1 cos
dx . x)
解: 令 t tan x , 则 2
sin
x
2
sin
x 2
cos
x 2
sin 2
x 2
cos2
x 2
2 1
tan
x 2
tan 2
x 2
2t 1 t
2
cos
x
cos2 sin 2
m n时, 为假分式; m n 时, 为真分式
有理函数 相除 多项式 + 真分 式
分解
其中部分分式的形式为
若干部分分式之和
(
x
A a)k
;
MxN (x2 p x q)k
( k N , p2 4q 0)
机动 目录 上页 下页 返回 结束
例1. 将下列真分式分解为部分分式 :
解: (1) 用拼凑法
机动 目录 上页 下页 返回 结束
例2. 求
解: 已知
1 (1 2x)(1 x2 )
1 5
1
4 2
x
1
2x x
2
1
1 x2
原式
2 5
d(1 2x) 1 2x
1 5
d(1 x2 1 x2
)
1 5
1
dx x
2
2 ln 1 2x 1 ln (1 x2 ) 1 arctan x C
5
5
5
例1(3) 目录 上页 下页 返回 结束
d(x2 2x 2) (x2 2x 2)2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A A 1 = (x−a1 n +C (n≠ ) )− 2 ∫ . d x n 1 n − (x−a )
M +N x 3 ∫ 2 . d x x +p +q x M +N x 4 ∫ 2 . d x n x ) (x +p +q

变分子为
p M( x+p +N−M 2 ) 2 2
再分项积分
例2. 求
d x 例4. 求 ∫ 4 x + 1
例3. 求
思考: 思考 求
说明: 说明 例5. 求
具体问题具体分析!!
例6. 求
二 、可化为有理函数的积分举例
1. 三角函数有理式的积分 (万能代换) 万能代换)
( s ∫Rsinx, co x)dx

u=ta 2 nx
万能代换
u 的有理函数的积分
2 u snx= i 1 u +2 1 u −2 c sx= o 1 u +2 2 d= x d u 2 1 u +
用代换 t =ta x 往往更方便 . n 例9. 求
1 d (a ≠0 . x b ) 例10. 求 ∫ 2 (as x+bc sx in o )
2. 简单无理函数的积分 (根式代换) 根式代换)
R x,n a +b)d , ( x x ∫

t =n a +b x

+ n ax b)d , R x, cx+d x (
1 s x + in c s x−2 o x o3 cs d . 例8. 求 ∫ x x d. 例7. 求 ∫ 2 4 s x1 c sx in ( + o ) 1 s x+s x + in in
说明: 具体问题具体分析!! 说明 具体问题具体分析!!
in o2 s o 有理分式含 s 2x, c s x及inxc sx 时,
真分式 假分式
有理函数
相除
多项式 + 真分 式
分解
部分分式之和 部分分式的形式为
A M +N x ; 2 (k∈ +, p −4 <0 N 2 q ) (x−a k (x +px+q k ) )
例1. 将下列真分式分解为部分分式 :
四种典型部分分式的积分: 四种典型部分分式的积分
A 1 ∫ . d =A x−a+C x ln x−a
ax b + 令 t =n cx d +
R x,n a +b,ma +b d , x ) x ∫( x
令 t =pa +b, p mn 最 公 数 x 为, 的 小 倍 .
d x . 例11. 求 ∫ 3 1 x+2 +
例12. 求
1 1 x + 例13. 求 ∫ d. x x x
内容小结
1. 可积函数的特殊类型
万能代换
有理函数
分解 根式代换
三角函数有理式
三角代换
多项式及部分分式之和
简单无理函数
2. 具体问题据悉分析,综合利用基本积分法
作业
3 15 5 17
P218
8 20 9 21 13 24
思考与练习
如何求下列积分更简便 ?
3. 求不定积分
4. 求不定积分
第四节 有理函数的积分
第四章 四
• 基本积分法 : 直接积分法 ; 换元积分法 ; 分部积分法 求导 • 初等函数 积分 初等函数
本节内容: 一、有理函数的积分 二、可化为有理函数的积分举例
一、 有理函数的积分
有理函数:
Px () Rx = () = Qx ()
n n1 a x +ax − + +a L n 0 1
相关文档
最新文档