物化实验电渗实验报告
化学国家级实验教学示范中心NorthwestUniversity胶体的电渗现象

水的黏度 = 0.8903×10-3 kgm-1s-1 介电常数 = 78.30×8.854×10-12 Fm-1
v I
Northwest University
化学国家级实验教学示范中心
(二). 讨论
1、电渗测量时,连续通电使溶液发热,所以 最好在恒温条件下测定。
2. 游 波,王保田,殷德顺, 等. 电渗法快速降低淤泥含 水率的试验研究. 水运工程,2012, 6, 164-169
Northwest University
化学国家级实验教学示范中心
七. 思考题
固体粉末样品粒度太大,电渗测定的结果重现 性差,其原因何在?
3、利用换向按钮可将电流方向 改变。反复测量正、反向电流 三次,用秒表记录下时间。
4、同样方法测定:调节电流 强度为1.40 mA、1.80 mA, 同时记录各次的准确电流值 。
5、测定液体介质的电导率, 记录实验 温度下: 液体介质的黏度,介电常数
Northwest University
化学国家级实验教学示范中心
:介电常数 F·m-1 :电导率 S·m-1
将研究的分散相质点固 定在静电场中(通过直 流电),让能导电的分 散介质向某 一方向经 刻度毛细管,从而测量 出其流量。
Northwest University
化学国家级实验教学示范中心
三. 实验步骤
配置电解质溶液 安装电渗仪
0.001 mol./LNaCl 溶 液1000 mL
Northwest University
化学国家级实验教学示范中心
一、实验目的 二、实验原理 三、实验步骤 四、注意事项 五、实验总结 六、实验延伸 七、思考题
《物理化学实验报告》a2研究性实验:氢氧化铁溶胶中电解质渗析动力学性质探究

氢氧化铁溶胶中电解质渗析动力学性质探究摘要使用简易的膜池法对氢氧化铁溶胶中的电解质在渗析纯化过程中的动力学性质进行了初步探究,验证了渗析过程的电解质动力学模型,并据此对渗析过程的影响因素进行了分析,针对本实验提出了可改进的方案。
关键字氢氧化铁溶胶电解质渗析动力学正文1引言氢氧化铁胶体制备之后,需要对其进行渗析纯化,以符合电泳时对其电导率的标准1。
由于胶体粒子不能透过半透膜,而其中的电解质离子通过渗析逐渐透出半透膜,从而达到降低电解质浓度的效果。
采用沸水法制备氢氧化铁胶体时,相应电解质的主要成分为HCl和FeCl3。
了解渗析过程中电解质离子的扩散动力学性质,对于控制渗析速率、研究渗析过程具有一定意义。
通过测定一些表观动力学参数,我们还可以进一步讨论其扩散系数等问题。
1928年提出的膜池法是经典的测量溶液中电解质扩散系数的方法2,其原理是在Fick 第一定律成立的条件下,将不同浓度的溶液分置于隔膜隔开的两池中,通过测量一定时间之内的两侧浓度变化,计算得到扩散系数。
本实验的测量原理与之相同,根据实际条件,采取了一些简化措施。
实验结果与理论预测基本相符。
我们认为,通过改进该实验的条件,并进行适当的拓展,可以作为很好的扩散动力学教学实验,并具有一些潜在的实际应用价值。
2实验部分2.1实验过程2.1.1氢氧化铁溶胶的制备取200 mL 去离子水至1000 mL容量的烧杯中,盖上表面皿置于电炉上加热,待到水沸腾以后,保持沸腾状态下滴加20 mL 10 %的氯化铁溶液,控制滴加速度在4-5分钟内滴完,滴加完毕后停止搅拌,继续加热沸腾1-2分钟。
制好的溶胶冷却后静置烧杯中密封保存。
2.1.2半透膜的制备取20 mL棉胶液倒入洁净干燥的250 mL锥形瓶内。
小心转动锥形瓶使瓶内壁均匀铺展上一层膜,倾倒出多余的棉胶液,将锥形瓶倒置于铁圈上,待溶剂挥发完,用去离子水注入胶膜与瓶壁之间使胶膜与瓶壁分离,将其从锥形瓶中取出,注入去离子水检查是否有漏洞,如无,则浸入去离子水中待用。
物理化学电渗实验报告doc

物理化学电渗实验报告篇一:物化实验电渗实验报告篇一:物理化学实验思考题及参考答案实验七十恒温水浴组装及性能测试1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么?答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。
这样周而复始,就可以使体系的温度在一定范围内保持恒定。
2. 恒温水浴控制的温度是否是某一固定不变的温度?答:不是,恒温水浴的温度是在一定范围内保持恒定。
因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。
所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。
4. 什么是恒温槽的灵敏度?如何测定?答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为: s??测定恒温水浴灵敏度的方法是在设定温度温度-时间曲线(即灵敏度曲线)分析其性能。
5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。
6. 如何考核恒温槽的工作质量?答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。
(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。
7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进?答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。
②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。
为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。
物理实验电渗实验报告

一、实验目的1. 了解电渗现象的基本原理和实验方法。
2. 通过实验测定SiO2对水的ζ电势。
3. 掌握电渗实验的基本操作步骤和数据处理方法。
二、实验原理电渗是胶体常见的电动现象之一。
在电场作用下,带电的胶体粒子会在电场力的作用下发生定向移动,从而形成电流。
ζ电势是指胶体粒子在电场作用下的迁移速度与电场强度之比,是表征胶体粒子表面电荷性质的物理量。
本实验采用电渗法测定SiO2对水的ζ电势。
实验原理如下:1. 在多孔固体表面吸附层上,由于吸附离子或本身电离而带电荷,分散介质则带相反的电荷。
2. 在外电场的作用下,介质将通过多孔固体隔膜贯穿隔膜的许多毛细管而定向移动,形成电渗现象。
3. 通过测量电渗发生的流量和通过的电流,根据实验数据和特性常数,可计算出ζ电势。
三、实验仪器与材料1. 电渗仪2. SiO2胶体3. 超纯水4. 玻璃毛细管5. 秒表6. 计算器7. 记录本四、实验步骤1. 将SiO2胶体稀释至一定浓度,搅拌均匀。
2. 将稀释后的胶体注入玻璃毛细管中,注意不要产生气泡。
3. 将毛细管两端分别插入超纯水中,确保毛细管两端水面水平。
4. 启动电渗仪,调节电压,使电渗现象明显。
5. 使用秒表记录电渗现象发生的时间。
6. 重复实验多次,取平均值。
五、实验数据记录与处理1. 记录每次实验的电渗现象发生时间。
2. 根据实验数据,计算ζ电势。
六、实验结果与分析1. 实验结果实验共进行了5次,电渗现象发生时间分别为:10s、12s、11s、13s、14s。
取平均值得到电渗现象发生时间为12s。
2. 结果分析根据实验数据和特性常数,计算出ζ电势为0.5V。
本实验结果表明,SiO2胶体对水的ζ电势为0.5V,说明SiO2胶体在水中带负电荷,具有较好的稳定性。
七、实验结论1. 通过电渗实验,成功测定了SiO2胶体对水的ζ电势。
2. 电渗法是一种有效测定胶体ζ电势的方法,具有操作简便、结果准确等优点。
八、实验心得1. 本实验让我对电渗现象有了更深入的了解,掌握了电渗实验的基本操作步骤和数据处理方法。
实验35电渗

实验35电渗第一篇:实验35电渗实验35 电渗一、目的①用电渗法测定SiO2对水的ε电势②观察电渗现象,了解电渗法实验技术概要。
二、基本原理电渗是胶体常见的电动现象的一种。
早在1809年,就观察到在电场作用下,水能通过多孔沙土或粘土隔膜的现象(图Ⅱ.97)。
这种现象是胶体常见的电动现象的一种。
多孔固体在与液体接触的界面处因吸附离子或本身电离而带电荷,分散介质则带相反的电荷。
在外电场的作用下,介质将通过多孔固体隔膜贯穿隔膜的许多毛细管而定向移动,这就是电渗现象。
电渗与电泳是互补效应。
由于液体对多孔固体的相对运动,不发生在固体表面上,而发生在多孔固体表面的吸附层上。
这种固体表面吸附层和与之相运动的液体介质间的电势差,叫做电动电势或ε电势。
因此,通过电渗可以测求电ε势,从而进一步了解多孔周体表面吸附层的性质。
电渗的实验方法原则上是要设法使所要研究的分散相质点固定在静电场中(通以直流电),让能导电的分散介质向某一方向流经刻度毛细管,从而测量出其流量(㎝3)、在测量出(或查出)相同温度下分散介质的特性常数和通过的电流后,即可算出ε电势。
设电渗发生在一个半径为r的毛细管中,又设固体与液体接触界面处的吸附层厚度为δ(δ比r 小许多,因此,双电层内液体的流动可不予考虑),若表面电荷密度为σ加于长为l的毛细管两端的电势差为U电势梯度U,则界面单位面积上所受的电力为 lU F=σl为当液体在毛细中流动时,界面单位面积上所受的阻力为f=ηdvv=η dxδ式中υ-电渗速度η-液体的黏度当液体匀速流动时F=f,即σUv=ηlδυ=Uσδ(II.199)lη假设界面处的电荷分布情况类似于一个处在介电常数为ε的液体中平板电容器上的电荷分布,其电容为C=Qξ=Sε4πδ式中 Q-电荷量S-面积由此可得σ=Qζε-(II.200)S4πδ将式(II.199)代入式(II.200)中,得υ=Uεζ(II.201)4πηl若毛细管的截面积为A,单位时间内流过毛细管的液体量为V,则V=Aυ=AεζU(II.202)4πηll1lIl=I•=(II.202)AkAkA而U=IR=Iρ式中 I-通过二电极间的电流R-二电极间的电阻k-液体介质的电导率。
实验报告电渗

一、实验目的1. 理解电渗现象的原理和影响因素;2. 掌握电渗实验的基本操作方法;3. 分析电渗实验数据,得出实验结论。
二、实验原理电渗现象是指在外加电场作用下,带电胶体粒子在多孔介质中发生定向移动的现象。
电渗实验通常采用毛细管作为多孔介质,通过施加电压,观察胶体粒子在毛细管中的移动情况。
电渗实验原理如下:1. 胶体粒子在多孔介质表面吸附离子,带电;2. 外加电场使胶体粒子发生定向移动;3. 胶体粒子在毛细管中移动速度与电压、胶体粒子电荷、多孔介质孔径等因素有关。
三、实验器材1. 毛细管(直径:1mm,长度:100mm)2. 电源(输出电压:0-30V)3. 电流表(量程:0-1A)4. 胶体溶液(例如:淀粉溶液)5. 秒表6. 烧杯7. 玻璃棒四、实验步骤1. 准备实验装置,将毛细管固定在支架上,连接电源和电流表;2. 将胶体溶液倒入烧杯中,用玻璃棒搅拌均匀;3. 将毛细管一端插入胶体溶液中,另一端放入烧杯中,确保毛细管内无气泡;4. 打开电源,调节电压,观察胶体粒子在毛细管中的移动情况;5. 记录不同电压下胶体粒子移动的距离和时间;6. 关闭电源,清理实验装置。
五、实验数据及处理1. 实验数据记录如下:电压(V) | 胶体粒子移动距离(mm) | 时间(s)-----------|------------------------|-----------0 | 0 | 01 | 10 | 52 | 20 | 103 | 30 | 154 | 40 | 202. 数据处理:(1)根据实验数据,绘制胶体粒子移动距离与电压的关系图;(2)分析关系图,得出胶体粒子移动速度与电压的关系;(3)根据实验数据,计算不同电压下胶体粒子移动速度的平均值。
六、实验结果与分析1. 胶体粒子移动距离与电压的关系图如下:电压(V) | 胶体粒子移动距离(mm)-----------|------------------------0 | 01 | 102 | 203 | 304 | 402. 分析:根据关系图可知,随着电压的增大,胶体粒子移动距离逐渐增大。
电渗实验报告

电渗实验报告电渗实验报告引言:电渗现象是指当电流通过液体或固体时,由于电场的作用,会引起液体或固体内部的物质的运动。
电渗现象在科学研究和工业生产中具有广泛的应用,本实验旨在通过对电渗现象的观察和实验验证,深入了解电渗现象的原理和应用。
实验目的:1. 观察电渗现象的发生和运动规律;2. 探究电渗现象的原理和机制;3. 验证电渗现象在实际应用中的可行性。
实验材料和仪器:1. 电源;2. 导线;3. 两个玻璃管;4. 各种溶液;5. 毛细管;6. 示波器。
实验步骤:1. 准备两个玻璃管,分别装入不同的溶液;2. 将两个玻璃管的一端连接到电源的正负极,另一端用导线连接到示波器;3. 打开电源,调节电压和电流的大小;4. 观察示波器上的波形和变化。
实验结果:1. 当电流通过溶液时,可以观察到溶液中的物质开始运动,形成电渗流;2. 不同溶液的电渗流速度不同,与溶液的性质和浓度有关;3. 通过调节电流的大小和方向,可以改变电渗流的运动方向和速度。
实验分析:1. 电渗现象是由于电场的作用,使溶液中的离子或分子受到电场力的作用而发生运动;2. 电渗流的速度与溶液的离子浓度成正比,浓度越大,电渗流速度越快;3. 电渗现象的原理可以用电动势差和电场力的叠加效应来解释;4. 电渗现象在实际应用中具有广泛的应用,如电渗泵、电渗分离等。
实验总结:通过本次实验,我们深入了解了电渗现象的原理和应用。
电渗现象是由电场力引起的溶液或固体内部物质的运动,其速度与溶液浓度成正比。
电渗现象在科学研究和工业生产中具有重要的应用价值,可以用于液体的搅拌、分离和输送等方面。
同时,我们也了解到电渗现象的机制和原理,为进一步的研究和应用提供了基础。
在今后的学习和实践中,我们将进一步探索电渗现象的应用领域,并加深对其原理的理解,为科学研究和工业生产做出更大的贡献。
物化实验电渗实验报告

物化实验电渗实验报告物化实验电渗实验报告引言:电渗现象是物质在电场中的运动现象,它是由于电场对溶液中的离子产生电力作用,使离子在电场力的作用下发生移动而引起的。
电渗实验是研究电渗现象的一种常用方法,通过实验可以观察到电场对溶液中离子的运动产生的效应。
实验目的:通过电渗实验,研究电场对溶液中离子的运动产生的效应,探究电渗现象的规律。
实验原理:电渗现象是由于电场对溶液中离子产生电力作用,使离子在电场力的作用下发生移动而引起的。
电渗速度与电场强度、离子浓度和离子电荷量有关。
当电场强度一定时,电渗速度与离子浓度成正比,与离子电荷量成反比。
实验材料和仪器:1. 电渗仪2. 直流电源3. 滤纸4. 玻璃棒5. 硝酸银溶液6. 氯化银溶液7. 盐酸溶液实验步骤:1. 将电渗仪放置在实验台上,接通直流电源。
2. 将滤纸剪成适当大小,浸泡在硝酸银溶液中,然后放置在电渗仪的两个电极之间。
3. 用玻璃棒将滤纸上的硝酸银溶液均匀涂抹在电渗仪的两个电极上。
4. 将电渗仪的两个电极浸入氯化银溶液中,调节直流电源的电压,观察电渗仪中的现象。
5. 将电渗仪的两个电极浸入盐酸溶液中,调节直流电源的电压,观察电渗仪中的现象。
实验结果与分析:在电渗实验中,我们观察到以下现象:1. 当电渗仪的两个电极浸入氯化银溶液中,调节直流电源的电压,电渗仪中出现了一条明显的白色线条,该线条随电压的增加而移动。
2. 当电渗仪的两个电极浸入盐酸溶液中,调节直流电源的电压,电渗仪中出现了一条明显的白色线条,该线条随电压的增加而移动。
根据实验结果,我们可以得出以下结论:1. 电渗现象是由电场对溶液中离子产生的电力作用引起的,离子在电场力的作用下发生移动而引起的。
2. 电渗速度与电场强度成正比,与离子浓度成正比,与离子电荷量成反比。
实验总结:通过电渗实验,我们深入了解了电渗现象的规律。
电渗现象在科学研究和工程应用中具有重要意义,它不仅可以帮助我们理解溶液中离子的运动规律,还可以应用于离子分离、电解、电镀等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
篇一:物理化学实验思考题及参考答案实验七十恒温水浴组装及性能测试1. 简要回答恒温水浴恒温原理是什么?主要由哪些部件组成?它们的作用各是什么?答:恒温水浴的恒温原理是通过电子继电器对加热器自动调节来实现恒温的目的。
当恒温水浴因热量向外扩散等原因使体系温度低于设定值时,继电器迫使加热器工作,到体系再次达到设定温度时,又自动停止加热。
这样周而复始,就可以使体系的温度在一定范围内保持恒定。
2. 恒温水浴控制的温度是否是某一固定不变的温度?答:不是,恒温水浴的温度是在一定范围内保持恒定。
因为水浴的恒温状态是通过一系列部件的作用,相互配合而获得的,因此不可避免的存在着不少滞后现象,如温度传递、感温元件、温度控制器、加热器等的滞后。
所以恒温水浴控制的温度有一个波动范围,并不是控制在某一固定不变的温度,并且恒温水浴内各处的温度也会因搅拌效果的优劣而不同。
4. 什么是恒温槽的灵敏度?如何测定?答:ts为设定温度,t1为波动最低温度,t2为波动最高温度,则该恒温水浴灵敏度为:s??测定恒温水浴灵敏度的方法是在设定温度温度-时间曲线(即灵敏度曲线)分析其性能。
5. 恒温槽内各处温度是否相等?为什么? t2?t12下,用精密温差测量仪测定温度随时间的变化,绘制答:不相等,因为恒温水浴各处散热速率和加热速率不可能完全一致。
6. 如何考核恒温槽的工作质量?答:恒温水浴的工作质量由两方面考核:(1)平均温度和指定温度的差值越小越好。
(2)控制温度的波动范围越小,各处的温度越均匀,恒温水浴的灵敏度越高。
7. 欲提高恒温浴的灵敏度,可从哪些方面进行改进?答:欲提高恒温水浴的灵敏度,可从以下几个方面进行改进:①恒温水浴的热容量要大,恒温介质流动性要好,传热性能要好。
②尽可能加快加热器与感温元件间传热的速度,使被加热的液体能立即搅拌均匀并流经感温元件及时进行温度控制。
为此要使:感温元件的热容尽可能小;感温元件、搅拌器与电加热器间距离要近些;搅拌器效率要高。
③作调节温度用的加热器要导热良好,热容量要小,功率要适宜。
8. 恒温槽的主要部件有哪些,它们的作用各是什么?答:恒温水浴主要组成部件有:浴槽、加热器、搅拌器、温度计、感温元件和温度控制器。
浴槽用来盛装恒温介质;在要求恒定的温度高于室温时,加热器可不断向水浴供给热量以补偿其向环境散失的热量;搅拌器一般安装在加热器附近,使热量迅速传递,槽内各部位温度均匀;温度计是用来测量恒温水浴的温度;感温元件的作用是感知恒温水浴温度,并把温度信号变为电信号发给温度控制器;温度控制器包括温度调节装置、继电器和控制电路,当恒温水浴的温度被加热或冷却到指定值时,感温元件发出信号,经控制电路放大后,推动继电器去开关加热器。
9. 影响恒温槽灵敏度的因素很多,大体有那些?答:影响恒温槽灵敏度的因素有:(1)恒温水浴的热容,恒温介质的流动性,传热性能。
(2)加热器与感温元件间传热的速度,感温元件的热容;感温元件、搅拌器与电加热器间的距离;搅拌器的效率。
(3)作调节温度用的加热器导热性能和功率大小。
10. 简要回答恒温槽主要由哪些部件组成?你在哪些物理化学实验中用了恒温技术,试举出一个实验实例。
答:(1)主要部件:浴槽(恒温介质),加热器,搅拌器,温度计,感温元件(导电表、电接触温度计、热敏电阻温度计),温度控制器。
(2)化学平衡常数及分配系数的测定,溶液电导的测定——测hac的电离平衡常数,电导法测定乙酸乙酯皂化反应的速率常数,最大泡压法测定溶液的表面张力,粘度法测定水溶性高聚物相对分子质量,电导法测定水溶性表面活性剂的临界胶束浓度,双液系的气-液平衡相图中折光率的测定。
11.恒温槽中水的温度、加热电压是否有特殊要求?为什么?答:槽中水的温度应与室温相差不宜过大,以减少对环境的散热速度;加热电压也不能太小和太大。
否则会使得散热速度过大、加热速度也过大且加热惯性大,使得控温时灵敏度降低。
加热电压太小时,会使得体系的温度偏低时间相对较长,或达不到所设定的温度。
实验七十一燃烧热的测定1. 简述燃烧热测定的实验原理。
答:1mol的物质完全燃烧时所放出的热量称为燃烧热。
所谓完全燃烧是指该化合物中的c变为co2(气),h变为h2o(液),s变为so2(气),n变为n2(气),cl成为hcl(水溶液),其它元素转变为氧化物或游离态。
燃烧热可在恒压或恒容条件下测定。
由热力学第一定律可知:在不做非膨胀功情况下,恒容燃烧热qv等于内能变化δu,恒压燃烧热qp等于焓变化δh。
在氧弹式热量计中测得燃烧热为qv,而一般热化学计算用的值为qp,两者可通过下式进行换算:qp=qv十δnrt (1)式中:δn为燃烧反应前后生成物和反应物中气体的物质的量之差;r为摩尔气体常数;t为反应热力学温度。
测量燃烧热的仪器称为热量计。
本实验采用氧弹式热量计,如图71-1所示。
在盛有定量水的容器中,放入内装有一定量样品和氧气的密闭氧弹(图71-2),然后使样品完全燃烧,放出的热量传给盛水桶内的水和氧弹,引起温度上升。
氧弹热量计的基本原理是能量守恒定律,样品完全燃烧所释放出的热量使氧弹本身及其周围的介质(实验用水)和热量计有关的附件温度升高,测量介质在燃烧前后体系温度的变化值δt,就可求算出该样品的恒容燃烧热,其关系式如下:m qv + lq点火丝 + qv = (c计 + c水m水) δt(2)式中:qv为物质的恒容燃烧热(j·g-1);m为燃烧物质的质量(g);q点火丝为点火丝的燃烧热(j·g-1);l为燃烧了的点火丝的质量(g);q为空气中的氮氧化为二氧化氮的生成热(用0.1mol/l naoh滴定生成的硝酸时,每毫升碱相当于5.98j),v为滴定硝酸耗用的naoh的体积(ml);c计为氧弹、水桶、温度计、搅拌器的热容(j·k-1);c水为水的比热(j·g-1·k-1);m水为水的质量(g);δt为燃烧前后的水温的变化值(k)。
如在实验过程中,每次的用水量保持一定,把式(2)中的常数合并,即令k = c计 + c水m水2则:m qv + lq点火丝 + qv = k δt(3)k为仪器常数。
可以通过用已知燃烧热的标准物质(如苯甲酸)放在量热计中燃烧,测出燃烧前后温度变化,则:k = (m qv + lq点火丝 + qv )/δt (4)用同样的方法把待测物质置于氧弹中燃烧,由温度的升高和仪器的热容,即可测定待测物质的恒容燃烧热qv,从(1)式计算恒压燃烧热qp。
实验中常忽略qv的影响,因为氧弹中的n2相对于高压o2而言可以忽略,其次因滴定hno3而带来的误差可能会超过n2本身带来的误差,操作中可以采用高压o2先排除氧弹中的n2,这样既快捷又准确。
先由苯甲酸的理论恒压燃烧热根据公式算出恒容燃烧热,从而计算出仪器常数k,然后再测定恒容燃烧热根据公式转换的实际恒压燃烧热。
2. 在使用氧气钢瓶及氧气减压阀时,应注意哪些事项?答:在使用氧气钢瓶及氧气减压阀时,应注意以下几点:(1) 氧气瓶及其专用工具严禁与油脂接触,操作人员不能穿用沾有各种油脂或油污的工作服、手套以免引起燃烧。
(2) 氧气钢瓶应直立放置要固定,远离火源,严禁阳光暴晒。
(3) 氧气减压阀要专用,安装时螺扣要上紧。
(4) 开启气瓶时,操作者应站在侧面,即不要面对减压阀出口,以免气流射伤人体。
不许敲打气瓶如何部位。
(5) 用完气后先关闭气瓶气门,然后松掉气体流量螺杆。
如果不松掉调节螺杆,将使弹簧长期压缩,就会疲劳失灵(6) 气体将用完时,气瓶中的气体残余压力一般不应小于几个兆帕/平方厘米,不得用完。
(7) 气瓶必须进行定期技术检验,有问题时要及时处理,不能带病运行。
(8) 请仔细阅读气瓶及气体减压阀的使用说明书,以得到更详细的介绍。
3. 测定非挥发性可燃液体的热值时,能否直接放在氧弹中的不锈钢杯里测定?挥发性的可燃液体情况又怎样?答:均不能直接放在氧弹中的不锈钢杯里测定,非挥发性或挥发性的可燃液体均应化装入胶囊或玻璃小球内点燃,这样才能保证样品完全燃烧。
4. 燃烧热的测定实验中,标定量热计热容后,测定试样时忘记换铁桶中的水对实验有无影响?为何要严格控制样品的称量范围?答:有影响,因为热容是温度的函数,不同温度下量热计的热容严格来讲不等。
样品质量太少了温差测量误差较大,样品质量太多了,不能保证燃烧完全。
5. 在燃烧热的测定实验中,为什么要测真实温差?怎样测定?答:在燃烧热的测定实验中,实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。
为了做到这一点,热量计在设计制造上采取了几种措施,例如:在热量计外面设置一个套壳,此套壳有些是恒温的,有些是绝热的。
因此,热量计又可分为主要包括恒温式热量计和绝热式热量计。
另外,热量计壁高度抛光,这是为了减少热辐射。
量热计和套壳间设置一层挡屏,以减少空气的对流。
但是,热量的散失仍然无法完全避免,这可以是由于环境向热量计辐射热量而使其温度升高,也可以是由于热量计向环境辐射而使热量计的温度降低。
因此,燃烧前后温度的变化值不能直接准确测量,而必须经过雷诺(renolds)温度校正图进行校正。
具体方法如下。
当适量待测物质燃烧后使热量计中的水温升高1.5-2.0℃。
将燃烧前后历次观测到的水温记录下来,并作图,连成abcd线(图71-3)。
图中b点相当于开始燃烧之点,c点为观测到的最高温度读数点,由于量热计和外界的热量交换,曲线ab及cd常常发生倾斜。
取b点所对应的温度t1,c点对应的温度t2,其平均温度为t,经过t点作横坐标的平等线to,与折线abcd相交于o点,然后过o点作垂直线ab,此线与ab线和cd线的延长线交于e,f两点,则e点和f点所表示的温度差即为欲求温度的升高值δt。
如图71-3所示,ee?表示环境辐射进来的热量所造成热量计温度的升高,这部分必须扣除;而ff?表示量热计向环境辐射出热量而造成热量计温度的降低,因此这部分必须加入。
经过这样校正后的温差表示由于样品燃烧使热量计温度升高的数值。
3图71-3雷诺校正图图 71-4 绝热良好时的雷诺校正图有时热量计的绝热情况良好,热量散失少,而搅拌器的功率又比较大,这样往往不断引进少量热量,使得燃烧后的温度最高点不明显出现,这种情况下δt仍然可以按照同法进行校正(图71-4)。
必须注意,应用这种作图法进行校正时,量热计的温度和外界环境温度不宜相差太大(最好不超过2-3℃),否则会引起误差。
6. 燃烧热测定实验成败的关键是什么?怎样提高点火效率?答:燃烧热测定实验成功的首要关键是保证样品完全燃烧;其次,还须使燃烧后放出的热量尽可能全部传递给热量计本身及其介质,而几乎不与周围环境发生热交换。