[612] 数学分析
考研数学分析详解

考研数学分析详解当然,有的同学不考数学。
不考数学的请跳过这部分。
考数学的请注意,数学对你来说是最重要的科目。
首先大家应该知道,统考的数学包括数学一、数学二、数学三,相同的是满分都是150分,不同的是难度和考试范围以及适用专业。
适用专业请大家参照2018年学术型研究生考试科目(参见附录6),这里就不再赘述了。
考试范围方面,数学一中,高等数学占56%,线性代数占22%,概率论与数理统计占22%;数学二中,高等数学占78%,线性代数占22%,概率论与数理统计不考;数学三中,高等数学(或微积分)占56%,线性代数占22%,概率论与数理统计占22%。
考试内容方面,因篇幅有限,具体的数学一、数学二、数学三大纲及考试内容请自行在网络上搜索。
这里仅介绍大纲中要求的章节范围。
数学一:①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
数学二:①高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型)。
数学三:①高等数学(这里请注意。
上面我为什么在说数学三的时候加了一个括号写上微积分呢?这个就跟我们要看的一些数学复习的经典教材有关了!数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
信阳师范学院研究生招生参考书

信阳师范学院普通全日制硕士研究生招生专业目录
单位代码:10477 地址:河南省信阳市南湖路237号
邮政编码:联系部门:研究生招生办公室
电话、传真:(0376)联系人:杨乐
备注:根据教育部教学〔2012〕9号文件的精神,2014年全日制硕士研究生招生专业目录不指定参考书目和参考资料,考生如需对我校自命题科目的考试范围进行咨询,请与相关招生学院联系;各学院最终招生人数以当年国家下达实际招生计划为准。
普通全日制学术型硕士研究生招生专业目录
普通全日制专业学位硕士研究生招生专业目录。
西安科技大学真题 612 数学分析复习题及答案

,记此级数的
和函数为 s( x ) ,则使 s( x) f ( x ) 成立的范围是
(A) [ , ) ; (B) ( , ) ; (C) [ , ] ; (D) ( , ]
8.
曲线
y
1
x x
2
,y
0, x
0和x
2 所围成的平面图形的面积为
(A) 4;
(B) 1 ln 2 ; 2
(C) 1 ln 5 ; 2
y sin3xdx)
a
0
0
(D) cos
x
sin[(
y sin3tdt)]dy sin(
y sin3tdt)
a
0
0
lim 5.
1
(e x
1)
(D)
n
x
(A) e
(B) e2
(C) e3
(D) e4
二.填空题(每题 2 分,共 10 分)
lim 1. y
n
1
1 xn
(x
0)
的间断点为:
证明:
由3
1
f (u)du 1
知道
1 f (u)du 1 ,所以
1
(
f
(u)
u2
)du
0
。
0
0
3
0
因为 f (u) u2 C[0,1] ,故由积分中值定理知: [0,1] ,使得
1
(f
(u) u2)du
f
( ) 2 (1 0)
0 ,即
[0,1] :
f
( )
2。
0
3. 设 f (x) 在区间[a,b] 上有二阶导数。 f '(a) f '(b) 0 ,证明:在区间 (a,b) 内至少存在一
昆明理工大学考研试题数学分析(2012-2016年)

(2)用上、下确界的定义验证所得两个结果中的一个.
二、(10 分)叙述函数极限 lim f (x) 的归结原则,并运用它证明 lim cos x 不存在.
x
x
三、(15
分)设
f
(x)
x2,
x 3,
ax b, x 3,
试确定 a,b 的值,使 f 在 x 3 处可导.
四、(15 分)求下列极限
证明:(1) F ( x) 2 ; (2)方程 F ( x) 0 在区间 (a, b) 内有且仅有一个根.(15 分)
4、求幂级数 nx n1
n1
的收敛区间及和函数,并利用所得的结果求级数
n1
n 2n1
的和.(15 分)
5、已知函数
f
( x,
y)
x2 (1
x2 ) x2
y2 (1 y2
(3) f (x, y) 在点 (0, 0) 可微.(15 分)
Ñ 9、 计算曲线积分 (x y )ds, 其中 L 为由方程 y x2 与 y x 所围成的闭曲线.(15 分)
L
10、利用高斯公式计算曲面积分
2x3dydz 2 y3dzdx 3(z2 1)dxdy,
其中 是曲面 z 1 x2 y2 (z 0) 的上侧.(15 分)
ln(1 x 3 )
2、设
f
(x)
, x2 1 sin 2x, 2
x0 ,求 f ( x) ,并讨论 f ( x) 的连续性.(15 分)
x0
x
x
3、设 f ( x) 在区间[a, b]上连续,且 f ( x) 0 , F ( x) f (t )dt
dt
, x [a, b].
a
哈尔滨工业大学考研数学专业大纲

2011年哈尔滨工业大学数学系硕士研究生入学考试[612] 数学分析考试大纲考试科目名称:数学分析考试科目代码:[612]一、考试要求:1)要求考生熟练撑握数学分析的基本概念、基本理论和基本方法。
2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。
3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。
二、考试内容:1)、极限和连续a.熟练掌握数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。
b.掌握极限的性质及四则运算性质,特别要能够熟练运用两面夹原理和两个特殊极限。
c.熟练掌握实数系的基本定理:区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则;并理解相互关系。
d.熟练掌握函数连续性的概念及相关的不连续点类型。
能够运用函数连续的四则运算与复合运算性质以及相对应的无穷小量的性质;并理解两者的相互关系。
e.熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理和Contor定理。
2)、一元函数微分学a.理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理解函数可导性与连续性之间的关系。
b.熟练掌握函数导数与微分的运算法则,包括高介导数的运算法则,会求分段函数的导数。
c.熟练掌握Rolle中值定理,Lagrange中值定理和平共处Cauchy中值定理以及Taylor公式。
d.能够用导数研究函数的单调性、极值,最值和凸凹性。
e.掌握用L’Hospital法则求不定式极限的方法。
3)、一元函数积分学a.理解不定积分的概念。
掌握不定积分的基本公式,换元积分法和分部积分法,会求有理函数、三角有理函数和简单元理函数的积分。
b.掌握定积分的概念,包括Darboux和,上、下积分及可积条件与可积函数类。
河海大学 参考书目

911 港口、航道工程
912 交通规划
913 海岸动力学
914 土力学
915 岩石力学
916
钢筋混凝土结构和钢 结构
917
污染控制工程及环境 系统规划与管理
918 工程测量学 919 摄影测量与遥感
920 公司法与合同法
922 工程地质学
923
环境生物学、环境地 理学
924 中共党史
925
水力学及河流动力学 综合
013 儿童心理学
015 新闻传播综合业务
018 热力学与统计物理
019 数学物理方程
020 英语口语测试
021 单片机原理及应用
023 行政诉讼法
024 政治学原理(2)
025 生态学
026 编译原理
027 项目管理
028 信息安全管理
030 理论力学
031 自然地理学
032 数字电路与模拟电路
033 人力资源管理 034 货币银行学 035 国际贸易 036 会计学原理 037 市场营销 038 统计学原理 044 普通地质学 047 社会工作概论 050 地球科学概论 051 大陆岩石圈动力学 211 翻译硕士英语 243 日语(二外) 244 德语 245 法语(二外) 246 法语 331 社会工作原理 357 英语翻译基础 431 金融学综合 434 国际商务专业基础 436 资产评估专业基础 437 社会工作实务 448 汉语写作与百科知识 610 法理学 611 马克思主义哲学原理
940 项目管理综合 941 马克思主义哲学史 942 中国传统伦理思想史 943 科学技术学 944 当代中国政治分析 945 社会学综合 946 人口学综合 948 马克思主义原著选读
数学分析610研究生入学考试大纲

《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
jm电子科技大学2009年硕士研究生招生参考书目

808 金融学基础 《 Finance 》 Zvi Bodie 高等教育出版社 / 《金融学》 Robertc.Merton 中国人民大学出版社
809 管理学原理 《管理学原理与方法》 ( 第四版 ) 周三多 复旦大学出版社
复试 机械原理 《机械原理》 王春燕 机械工业出版社 / 《机械原理》 ( 第七版 ) 郑文纬 高等教育出版社出版
复试 激光原理与技术 《激光原理》 ( 第五版 ) 周炳琨 国防工业出版社 2004 年 / 《激光技术》 ( 第二版 ) 蓝信钜 科学出版社 2005 年
复试 计算方法 《实用数值计算方法》 电子科技大学应用数学系 高等教育出版社
837 遥感原理 《遥感原理与应用》 孙家炳 武汉大学出版社
838 遗传学 《遗传学》 王亚馥 高等教育出版社出版 2002 年
839 自动控制原理 《自动控制原理》 李友善 国防工业出版社 / 《自动控制原理》 胡寿松 国防工业出版社
840 物理光学 《光学教程》 叶玉堂 清华大学出版社 2005 年
814 电力电子技术 《电力电子技术》 ( 第四版 ) 王兆安 机械工业出版社 2004 年
815 电路分析基础 《电路分析》 胡翔骏 高等教育出版社 2001 年
817 电子测试技术基础 《电子测量》 ( 第二版 ) 蒋焕文 中国计量出版社 / 《现代电子测试技术》 陈光礻禹 国防工业出版社 / 《电子测量原理》 古天祥 机械工业出版社 / 《数字电子技术基础》 ( 第四版 ) 阎石 高等教育出版社 / 《数字设计 -- 原理与实践》 ( 第三版 ) John F.Wackerly 机械工业出版社 2003 年
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年哈尔滨工业大学数学系硕士研究生入学考试考试科目名称:数学分析考试科目代码:[612]
一、考试要求:
1)要求考生熟练撑握数学分析的基本概念、基本理论和基本方法。
2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。
3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,
清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。
二、考试内容:
1)、极限和连续
a.熟练掌握数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。
b.掌握极限的性质及四则运算性质,特别要能够熟练运用两面夹原理和两个特殊极限。
c.熟练掌握实数系的基本定理:区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则;并理解相互关系。
d.熟练掌握函数连续性的概念及相关的不连续点类型。
能够运用函数连续的四则运算与复合运算性质以及相对应的无穷小量的性质;并理解两者的相互关系。
e.熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理和Contor定理。
2)、一元函数微分学
a.理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理解函数可导性与连续性之间的关系。
b.熟练掌握函数导数与微分的运算法则,包括高介导数的运算法则,会求分段函数的导数。
c.熟练掌握Rolle中值定理,Lagrange中值定理和平共处Cauchy中值定理以及Taylor公式。
d.能够用导数研究函数的单调性、极值,最值和凸凹性。
e.掌握用L’Hospital法则求不定式极限的方法。
3)、一元函数积分学
a.理解不定积分的概念。
掌握不定积分的基本公式,换元积分法和分部积分法,会求有理函数、三角有理函数和简单元理函数的积分。
b.掌握定积分的概念,包括Darboux和,上、下积分及可积条件与可积函数类。
c.掌握定积分的性质,熟练掌握微积分基本定理,定积分的换元积分法和分部积分法。
d.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积,平面贡线的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积,变力做功和物体的质量与质心)。
e.理解广义积分的概念。
熟练掌握判断广义积分收敛的比较判别法,Abel判别法和Dirichlet判别法;其中包括积分第二中值定理。
4)、无穷级数
a.理解数项级数敛散性的概念,掌握数项级数的基本性质。
b.熟练掌握正项级数敛散的必要条件,比较判别法,Cauchy判别法,D’Alembert 判别法与积分判别法。
c.熟练掌握任意项级数绝对收敛与条件收敛的概念及其相互关系。
熟练掌握交错级数的Leibnitz判别法。
掌握绝对收敛级数的性质。
d.熟练掌握函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass 判别法。
Abel判别法和Dirichlet判别法。
熟练掌握一致收敛级数的性质。
e.掌握幂级数及其收敛半径的概念,包括Cauchy-Hadamard定理和Abel第一定理。
f.熟练掌握幂级数的性质。
能够将函数展开为幂级数。
了解Weierstrass逼近定理。
g.了解Fourier级数的概念与性质以及敛散性的判别法。
5)、多元函数微分学与积分学
a.理解多元函数极限与连续性,偏导数和全微分的概念,会求多元函数的偏导数与全微分。
b.掌握隐函数存在定理。
c.会求多元函数极值和无条件极值,了解偏导数的几何应用。
d.掌握重积分、曲线积分和曲面积分的概念与计算。
e.熟练掌握Gauss公式、Green公式和Stoks公式及其应用。
6)、含参变量积分
a.了解含参变量常义积分的概念与性质。
b.掌握含参变量广义积分的一致收敛性的概念及其判别法。
掌握一致收敛的含参变量广义积分的性质。
三、试卷结构:
1)考试时间:180分钟,满分:150分
2)题型结构
a: 论证与举反例(105-135分)
b: 基本计算(15-45分)
四、参考书目:
1.《数学分析》(上、下册),复旦大学数学系编,高等教育出版社,2007年,第二版
2.《数学分析习题集》,北京大学数学系编,高等教育出版社。