一级倒立摆的建模与控制分析

合集下载

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告

一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。

二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。

系统的输入为杆的控制力矩,输出为杆的角度。

系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。

2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。

在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。

三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。

2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。

b. 构建模糊规则:根据经验或系统建模,确定模糊规则。

c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。

d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。

3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。

b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。

c. 执行控制器输出:将控制力矩作用在倒立摆上。

4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。

5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。

四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。

通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。

实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素•例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理•因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性•直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统•小车可以通过传动装置由交流伺服电机驱动•小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1) 倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2) 为保证倒立摆能顺利起立,要求初始偏角小于20 ° ;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。

(完整版)一级倒立摆系统分析

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。

合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。

用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。

一级倒立摆系统

一级倒立摆系统

直线一级倒立摆建模与性能分析直线一级倒立摆建模及性能分析一、数学模型建立在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。

u 为外界作用力;x 为小车位移; 为摆杆与铅垂方向的夹角;O 、G 分别为摆杆与小车的链接点、摆杆质心的位置;M 为小车的质量;m 为摆杆的质量;J 为摆杆绕G 的转动惯量;l 为O 到摆杆质心的距离,L 为摆杆的长度;0f 为小车与导轨间的滑动摩擦系数,1f 为摆杆绕 O 转动的摩擦阻力矩系数。

对于上图的物理模型我们做以下假设: M :小车质量 m :摆杆质量 b :小车摩擦系数l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力 x :小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律。

因此可以通过机理建模得到系统较为精确的数学模型。

应用牛顿力学来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= 由摆杆水平方向的受力进行分析可以得到下面等式:22(sin )d N m x l dtθ=+即:2cos sin N mx ml ml θθθθ=+-把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2(1-1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:22(cos )d P mg m l dtθ-=-即:2sin cos P mg ml ml θθθθ-=+力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2xml mgl ml I -=++ (1-2) 1.1 微分方程模型设φπθ+=,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小,即 1<<φ 时,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dt d θ。

现代控制一级倒立摆

现代控制一级倒立摆

现代控制一级倒立摆倒立摆实验电子工程学院自动化学号:目录1实验设备简介 (4)1.1倒立摆介绍 (4)1.2直线一级倒立摆 (5)2 倒立摆建模 (6)2.1 直线一阶倒立摆数学模型的推导 (6)2.1.1受力分析 (6)2.1.2微分方程建模 (8)2.1.3状态空间数学模型 (9)2.2 实际系统模型建立 (10)3系统定性、定量分析 (11)3.1系统稳定性与可控性分析 (11)3.1.1稳定性分析 (11)3.1.2能控性分析 (13)4极点配置的设计步骤 (13)4.1极点配置的计算 (13)4.2用MATLAB进行极点配置的计算 (15)4.3极点配置的综合分析 (16)5小结 (17)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。

如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。

常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。

1.2直线一级倒立摆根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质的杆组成的系统。

倒立摆系统是典型的机电一体化系统其机械部分遵循牛顿的力学定律其电气部分遵守电磁学的基本定理.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统.小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

2 倒立摆建模2.1 直线一阶倒立摆数学模型的推导对于忽略各种摩擦参数和空气阻力之后,直线一即倒立摆抽象为小车和均质杆组成的系统。

一级倒立摆的模糊控制

一级倒立摆的模糊控制

一、倒立摆模型的研究意义倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

故其研究意义广泛。

一、倒立摆的数学模型质量为m的小球固结于长度为L的细杆(可忽略杆的质量)上,细杆又和质量为M的小车铰接相连。

由经验知:通过控制施加在小车上的力F(包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

在忽略其他零件的质量以及各种摩擦和阻尼的条件下,推导小车倒立摆系统的数学模型。

倒立摆模型如图2-1所示。

图2-2 单机倒立摆模型图小车由电机通过同步带驱动在滑杆上来回运动,保持摆杆平衡。

电机编码器和角编码器向运动卡反馈小车和摆杆位置(线位移和角位移)。

导轨截面成H型,小车在轨道上可以自由滑动,其在轨道上的有效运行长度为1米。

轨道两端装有电气限位开关,以防止因意外失控而撞坏机构。

以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入以摆角θ、角速度θ’、小车位移x、加速度x’为系统状态变量,Y为输出,F为输入。

如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。

当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别进行隔离受力分析:(1)对小车有: F-F’sinθ=Mx’’(a)(2)对小球有:水平方向上运动为 x+lsinθ故水平方向受力为 F’sinθ= m(x+lsinθ)’’=m(x’+lcosθθ’)’= mx’’+mlcosθθ’’-mlsinθ(θ’)^2 (b)由(a)、(b)两式得 F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2 <1>小球垂直方向上位移为 lcosθ故受力为 F’cosθ -mg=m(lcosθ)’’=-mlθ’’sinθ-mlcosθ(θ’)^2即 F’cosθ=mg-mlθ’’sinθ-mlcosθ(θ’)^2 (c)由(b)、(c)两式得cosθx’’ =gsinθ- lθ’’ <2>故可得以下运动方程组:F= (M+m)x’’ +mlcosθθ’’-mlsinθ(θ’)^2cosθx’’ =gsinθ- lθ’’以上方程组为非线性方程组,故需做如下线性化处理:32 sin,cos13!2!θθθθθ≈-≈-当θ很小时,由cosθ、sinθ的幂级数展开式可知,忽略高次项后,可得cosθ≈1,sinθ≈θ,θ’’≈0故线性化后运动方程组简化为F= (M+m)x’’ +mlθ’’x’’ =gθ- lθ’’下面进行系统状态空间方程的求解:以摆角θ、角速度θ’、小车位移x 、加速度x ’为系统状态变量,Y 为输出,F 为输入即X=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡x'x 'θθ Y=⎥⎦⎤⎢⎣⎡x θ=⎥⎦⎤⎢⎣⎡31x x由线性化后运动方程组得 x1’=θ’=x2 x2’=''θ=()Mlg m M +x1-Ml1 F X3’ =x ’=x4 x4’=x ’’=-M mg x1+M1 F 故空间状态方程如下:X ’=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'4'3'2'1x x x x =()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-+0010000000010Mm gMl g m M ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-M Ml 1010 FY= ⎥⎦⎤⎢⎣⎡31x x =⎥⎦⎤⎢⎣⎡01000001 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4321x x x x + 0⨯F二、 立题方案倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机械系统,它的稳定控制是控制理论应用的一个典型范例。

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析

一级倒立摆系统仿真及分析1.摘要本次课程设计,我们小组选择一级倒立摆系统作为物理模型,首先通过物理分析建立数学模型,得到系统的传递函数,通过对传递函数的极点,根轨迹,单位阶跃响应来分析系统稳定性。

建立状态空间模型,利用matlab进行能控能观性分析,输入阶跃信号,分析系统输出响应。

通过设定初始条件,查看系统稳定性,利用simulink绘制系统状态图。

再对系统进行极点配置,进行状态反馈,使得系统在初始状态下处于稳定状态,并绘制系统状态图。

2.课程设计目的倒立摆系统是一个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。

倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。

因此研究倒立摆系统具有重要的实践意义。

3.课程设计题目描述和要求本次课程设计我们小组选择环节项目三:系统状态响应、输出响应的测量。

环节目的:1.利用MATLAB分析线性定常系统。

2.利用SIMULINK进行系统状态空间控制模型仿真,求取系统的状态响应及输出响应。

环节内容、方法:1.给定系统状态空间方程,对系统进行可控性、可观性分析。

并利用SIMULINK 绘制系统的状态图,求取给定系统输入信号和初始状态时的状态响应及输出响应。

2.给定两个系统的状态空间模型,分别求两个系统的特征值;将两个系统的系统矩阵化为标准型;求出给定系统初始状态时,状态的零输入响应;求两个系统的传递函数并分析仿真结果。

4.课程设计报告内容4.1 数学模型的建立及分析对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。

下面我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。

在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示图l 直线一级倒立摆系统我们不妨做以下假设:M小车质量、m摆杆质量、b小车摩擦系数、l摆杆转动轴心到杆质心的长度、I 摆杆惯、F加在小车上的力、x 小车位置、φ摆杆与垂直向上方向的夹角、θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum deviceQuanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing图2.4系统导轨结构图Fig 2.4 System guide rail structure直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. .

研究生《现代控制理论及其应用》课程小论文

一级倒立摆的建模与控制分析 学院: 机械工程学院 班级: 机研131 姓名: 尹润丰 学号: 201321202016

2014年6月2日 .

. 目录 1. 问题描述及状态空间表达式建立 ..............................................................- 1 - 1.1问题描述 .......................................................................................................................................- 1 - 1.2状态空间表达式的建立 ...............................................................................................................- 1 - 1.2.1直线一级倒立摆的数学模型 ..........................................................................................- 1 - 1.2.2 直线一级倒立摆系统的状态方程 .................................................................................- 5 -

2.应用MATLAB分析系统性能 .....................................................................- 6 - 2.1直线一级倒立摆闭环系统稳定性分析 ......................................................................................- 6 - 2.2 系统可控性分析 .........................................................................................................................- 7 - 2.3 系统可观测性分析 .....................................................................................................................- 8 -

3. 应用matlab进行综合设计 .........................................................................- 8 - 3.1状态反馈原理 ...............................................................................................................................- 8 - 3.2全维状态反馈观测器和simulink仿真 .......................................................................................- 9 -

4.应用Matlab进行系统最优控制设计 ........................................................ - 11 -

5.总结 ............................................................................................................. - 13 - .

. 1.问题描述及状态空间表达式建立 1.1问题描述 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。 下对于倒立摆系统,经过小心的假设忽略掉一些次要的因素后,它就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面采用其中的牛顿—欧拉方法建立直线一级倒立摆系统的数学模型。

1.2状态空间表达式的建立

1.2.1直线一级倒立摆的数学模型 .

. 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。 .

. 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。Fs是摆杆受到的水平方向的干扰力, Fh是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力Fg。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程:

11 设摆杆受到与垂直方向夹角为α 的干扰力Fg,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS、垂直干扰力Fh产生的力矩。

21

对摆杆水平方向的受力进行分析可以得到下面等式: sin22lxdtdmFNS 31

NxfFxMsingSFF

cosghFF.

. 即: sinsincos2fFmlmlxmN 41 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程:

cos22lldtdmFmgPh 51 即 cossincos2mlmlFmgPg 61

力矩平衡方程如下: 0cossinsincoscossinINlPllFlFgg 71 代入P和N,得到方程: 0cos2sinsin2cossincos2cossin2222xmlmlmglmlIlFlFgg

 

81

设,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理:

2sin,12cos,0,sin,1cos

2

dtd

由于:231mlI 方程化为: xmmgmlFg34cossin2 91

令:cossingfFF,则91可化为: xmmgmlFf342 101 101即是化简后的直线一级倒立摆系统微分方程。带入实际数据后,微分方程为:

mFxf234.29 111 当忽略了Ff时,系统的微分方程如式(1-12)所示 x34.29 121 忽略干扰力后,直线一级倒立摆系统是单输入二输出的四阶系统,考虑干扰力后,. . 直线一级倒立摆系统是二输入二输出的四阶系统。其内部的4个状态量分别是小车的位移x、小车的速度x、摆杆的角度θ、摆杆的角速度。系统输出的观测量为小车

的位移x、摆杆的角度θ。其控制量为小车的加速度 将微分方程(1-12)化为关于加速度输入量和角度输出量的传递函数:

4.2932ssRs 131

1.2.2 直线一级倒立摆系统的状态方程 实验所使用的直线一级倒立摆系系统是加速度x作为系统的控制输入,所以根据式(1-12)建立系统的状态方程为:

xllgxxxx4343



整理后得到系统状态方程: 

xxxxyxlgxxlgxx





00010000014301004300

1000

00000010



将实际参数代入得到一级倒立摆系统的状态空间方程为:

相关文档
最新文档