一级倒立摆的建模及控制分析

合集下载

(完整版)一级倒立摆系统分析

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。

合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。

用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。

一级倒立摆的建模及控制分析

一级倒立摆的建模及控制分析

直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。

它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。

倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。

由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。

二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。

图2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。

(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。

一级倒立摆的建模与控制分析

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文一级倒立摆的建模与控制分析学院:机械工程学院班级:机研131姓名:尹润丰学号: 2013212020162014年6月2日目录1. 问题描述及状态空间表达式建立............................ - 1 -1.1问题描述................................................................. - 1 -1.2状态空间表达式的建立..................................................... - 1 -1.2.1直线一级倒立摆的数学模型........................................... - 1 -1.2.2 直线一级倒立摆系统的状态方程 ...................................... - 5 -2.应用MATLAB分析系统性能.................................. - 6 -2.1直线一级倒立摆闭环系统稳定性分析......................................... - 6 -2.2 系统可控性分析.......................................................... - 7 -2.3 系统可观测性分析........................................................ - 8 -3. 应用matlab进行综合设计................................. - 8 -3.1状态反馈原理............................................................. - 8 -3.2全维状态反馈观测器和simulink仿真........................................ - 9 -4.应用Matlab进行系统最优控制设计......................... - 11 -5.总结.................................................... - 13 -1.问题描述及状态空间表达式建立1.1问题描述倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。

数学模型是分析、设计、预测以及控制一个系统的理论基础。

因此,对于实际系统的数学模型的建立就显得尤为重要。

系统数学模型的构建可以分为两种:实验建模和机理建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。

为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。

将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。

我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。

对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。

为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。

一级倒立摆的可视化建模与稳定控制设计

一级倒立摆的可视化建模与稳定控制设计

1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。

直线一级倒立摆建模与控制

直线一级倒立摆建模与控制

期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。

以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。

一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。

在进行线性化之前,首先需要确定系统的状态变量和输入变量。

对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。

在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。

A、B、C和D是系统的矩阵参数。

二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。

在设计状态反馈控制器之前,首先需要确定系统的可控性。

对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。

如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。

在确定系统可控性之后,可以通过状态反馈控制器来实现控制。

状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。

具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。

状态反馈控制器的输入是状态变量,输出是控制输入变量。

然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。

三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。

在设计观测器之前,首先需要确定系统的可观性。

对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。

如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。

在确定系统可观性之后,可以通过观测器来实现状态估计。

观测器的设计可以通过选择适当的观测增益矩阵L来实现。

具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。

一级倒立摆模型的机理建模

一级倒立摆模型的机理建模

一级倒立摆模型的建模问题提出:质量为m 的小球固结于长度为L 的细杆(可忽略杆的质量)上,细杆又和质量为M 的小车铰接相连。

由经验知:通过控制施加在小车上的力F (包括大小和方向)能够使细杆处于θ=0的稳定倒立状态。

(忽略其他零件的质量以及各种摩擦和阻尼的条件)分析过程:如图所示,设细杆摆沿顺时针方向转动为正方向,水平向右方向为水平方向上的正方向。

当细杆摆顺时针往右运动时水平方向施加的力应该为水平向右。

现对小车和细杆摆分别受力分析:水平受力分析:对小车有: 'sin ''F F M x θ-=(a ) 对小球有: F'sin (x sin )''m l θθ=+=2''''(')m x m lcos m lsin θθθθ+⨯+⨯(b )由(a )、(b )两式得 2()'('''')F M m x m lcos m lsin θθθθ+⨯=++(c)垂直受力分析:对小球有:'cos (cos )''F mg m l θθ-=即 2'()'('')F cos m g m l sin cos θθθθθ⨯+⨯=-(d ) 由(a )、(d )两式得2''sin (tan ''('))cos m g F M x m l θθθθθ=+-⨯+(e)以上方程组为非线性方程组,做如下线性化处理:32sin ,cos 13!2!θθθθθ≈-≈-当θ很小时,认为可以忽略高次项,得2cos 1sin 0θθθθ≈≈=,,(') 故线性化后(c )式可简化为()''''F M m x ml θ=++ (f) (e )式可简化为''F Mx mg =+(g )传递函数:(由廖斐完成)由(g )式可得:F m g x Mθ-˝=(h )将(h )式代入式(f ),有:()"M m F F m g m l Mθθ+=-+()化简得:()"F M m g Ml θθ=+- (i ) 经拉氏变换得:()()()()F s M m g s Ms l s θθ=+-² (j ) 故其传递函数为:()1()()()s G s F s M m g M s lθ==+-² (k )模型建立完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线一级倒立摆的建模及控制分析
摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

一、问题描述
倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。

它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。

倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。

由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。

二、方法简述
本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系
统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

三、模型的建立及分析
3.1 微分方程的推导
在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统
假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。

图2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。

(a) (b)
图2 小车和摆杆的受力分析图
分析小车水平方向所受的合力,可以得到以下方程:
N x b F x M --= (1)
由摆杆水平方向的受力进行分析可以得到下面等式:
θθθθs i n c o s 2
ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:
()F ml ml x b x m M =-+++θθθθsin cos 2 (3)
为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:
θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:
θθθ
I Nl Pl =--cos sin (5)
合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:
()
θθθ
c o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:
0d d s i n 1c o s 2
=⎪⎭
⎫ ⎝⎛-=-=t θφθθ
,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:
()
()⎩
⎨⎧=-++=-+u ml x b x m M x
ml mgl ml I φφφ 2 (8) 3.2 状态空间方程
方程组(8)对φ
,x 解代数方程,整理后的系统状态空间方程为: ()
()()()()()()()u Mm l m M I m l Mm l m M I m l
I x x Mm l m M I m M m gl Mm l m M I m lb
Mm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥
⎥⎥⎥⎦

⎢⎢⎢⎢⎢
⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2
222
2
2
2
2
2
20000
10
0000001
0φφφφ u x x x y ⎥⎦
⎤⎢⎣⎡+⎥⎥⎥⎥


⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:
()
x ml mgl ml ml =-+φφ
223/ 化简得:x
l
l g 43
43+=φφ
设}
{x u x x X ==1
,,,,φφ ,则有:
1
430100430
0100
00000001
0u l x x l g x x
⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣
⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ
10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型
实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。

以小车加速度作为输入的系统状态方程:
1301004
.2900
100000000010u x x x x
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ 10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.4 状态空间极点的配置
对于直线一级倒立摆的极点配置转化来说: 要按上述系统设计控制器, 则要求具有较短,约3 s 的调整时间和合适的阻尼比ζ=0.5。

要使系统具备能控、能观且易验证。

步骤为:计算特征值。

根据要求,设调整时间为3 s, 并留有一定的余量, 选择期望的闭环极点:()4321,,,==i s i
μ,其中:,
,10-10
-21==μμ ,,j j 32232243--=+-=μμ其中43μμ,
是一对具有ζ=0.5,4=n w 的主导闭环极点。

21μμ,位于主导闭环极点的左边,其影响较小,因此期望的特征根方程
为: 0160072019624234=++++s s
s s 由此得到:1600,720,196,244321====a a a a 系统的特征方程为:
244.294.29001000
000
01s s s s s s A sI -=---=-,
因此:4.2902431-====b b b b ,。

系统的反馈增益矩阵为:[]1-112
2314
4T b a b a b a b a K ----=
确定使状态方程变为可空标准型的变换矩阵T =MW ,于是可得:
[
]


⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡==02.8803
2.88030000100103
2B A B
A A
B B
M ⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000
101100104.2910
4
.29000
010********
123b b b b b b W 则有:
⎥⎥⎥⎥⎦⎤⎢
⎢⎢⎢⎣⎡--=
=30
00
0300104.29001
04
.29MW T ,⎥⎥
⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡--=-333.00000333.000011.00034.000011.00034
.01T 则反馈增益矩阵为:[]1633.162739.934898.244218.54--=K
控制量为:φφμ 1633.162739.934898.244218.54--+=-=x x KX 3.5 MATLAB 仿真分析
利用MATLAB 软件对直线一级倒立摆进行了仿真,仿真绘制的曲线图,如图3,4所示。

图3 小车位置随时间变化图
图4 摆角随时间变化图
采用极点配置法设计的用于直线型一级倒立摆系统的控制器, 可使系统在很小的振动范围内保持平衡, 小车振动幅值约为3-
5 m, 摆杆振动幅值约0.05
10
rad,系统稳定时间约3 s。

四、参考文献
[1] 固高倒立摆系统与实验指导书,2004,固高科技有限公司
[2] 胡寿松,自动控制原理(第三版),1994,国防工业出版社
[3] 崔怡,Matlab5.3实例详解,2000,航空工业出版社
[4] 李新,何传江,矩阵理论及其应用,2008,重庆大学出版社。

相关文档
最新文档