倒立摆建模

合集下载

一级倒立摆的建模及控制分析

一级倒立摆的建模及控制分析

直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。

它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。

倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。

由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。

二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。

图2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。

(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。

倒立摆模型

倒立摆模型

摆杆/小车铰接点与摆杆质心的距离
l 0.25m
摆杆绕其质心的转动惯量
I 0.0034kg m2
备注:可忽略了空气阻力以及小车与摆杆之间铰接点上的摩擦力矩。
表 1. 实验装置参数
现基于现代控制理论,按照如下步骤实现对研究直线一级倒立摆的控制方 法:1)建立直线一级倒立摆的运动方程;2)推导状态空间方程;3)分析能控
F
M
g
a. 小车的受力分析
b. 摆杆的受力分析
图2. 小车与摆杆的受力分析
小车在水平方向运动,则通过对小车的水平受力分析,可以得到以下方程:
(1) 摆杆作平面运动,可以分解为质心的平动和绕质心转动,由水平方向的受力 分析,可以得到下式:
即,
(2)
带入方程(1)得:
(3) 再由摆杆的垂直方向的受力分析,得到下式:
即, 又由摆杆对质心的力矩平衡方程有:
2
(4) (5)
直线一级倒立摆控制方法
由于
,所以等式左边有负号。最后,整理方程 (4),(5),可得: (6)
由于 ,则有
. 用 u 代表输入,也就是作用在
小车上的作用力,整理方程(3),(6)可以得到一级倒立摆的运动方程
(7) 2. 系统的状态空间方程
为求系统的状态空间方程,对方程(7)进行拉氏变换,得到:
1
直线一级倒立摆控制方法
及能观性;4)计算状态反馈矩阵及状态观测矩阵;5)通过离线仿真分析验证上 述控制算法的有效性;6)通过上机实验观察其实际控制效果。 1. 建立直线一级倒立摆的运动方程
对小车和摆杆进行受力分析如图 2,其中,N 和 P 为小车与摆杆相互作用力 的水平和垂直两个方向的分量。
N
P

倒立摆建模

倒立摆建模

1.一阶倒立摆建模在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中:M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为(2) 摆杆重心的运动方程为得(3)小车水平方向上的运动为22..........(4)x d xF F M d t-=联列上述4个方程,可以得出一阶倒立精确气模型:()()()()()()()2222222222222222sin .sin cos cos cos .sin cos .lgsin cos J ml F ml J ml m l g x J ml M m m l ml F m l M m m m l M m J ml θθθθθθθθθθθθ⎧+++-⎪=++-⎪⎨+-+⎪=⎪-++⎩sin cos ..........(1)y x J F l F l θθθ=-2222(sin ) (2)(cos ) (3)x y d F m x l d td F mg m l d t θθ=+=-式中J 为摆杆的转动惯量:32m l J =若只考虑θ在其工作点附近θ0=0附近(︒︒≤≤-1010θ)的细微变化,则可以近似认为:⎪⎩⎪⎨⎧≈≈≈1cos sin 02θθθθ⎪⎪⎩⎪⎪⎨⎧++-+=++-+=2..2222..)(lg )()()(Mml m M J mlF m m M Mml m M J g l m F ml J x θθθ 2.2 模型建立及封装1、建立以下模型:图2 模型验证原理图2、由状态方程可求得:Fcn:(4/3*u[1]+4/3*m*l*sin(u[3])*power(u[2],2)-10*m*sin(u[3])*cos(u[3] ))/(4/3*(1+m)-m*power(cos(u[3]),2))Fcn1:(cos(u[3])*u[1]+m*l*sin(u[3])*cos(u[3])*power(u[2],2)-10*(1+m)*s in(u[3]))/(m*l*power(cos(u[3]),2)-4/3*l*(1+m))Fun2:(4*u[1]-30*m*u[3])/(4+m)Fun3:(u[1]-10*(1+m)*u[3])/(m*l-4/3*l*(1+m))(其中J =mL^2/3,小车质量M=1kg,倒摆振子质量m=1Kg,倒摆长度l=1m,重力加速度g=10m/s^2)将以上表达式导入函数。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模1、微分方程的推导对于倒立摆系统,经过小心假设忽略掉一些次要因素后,倒立摆系统就是一个典型的刚体运动系统,可以在惯性坐标系统内应用景点力学理论建立系统的动力学方程。

微分方程的推导:在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示.图1做如下假设:M 小车质量m 摆杆质量b 小车摩擦系数L 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)图2图2是系统中小车和摆杆的受力分析图。

其中,N和P为小车和摆杆的相互作用力的水平和垂直方向的分量。

在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。

分析小车水平方向所受合力,可以得到方程:(式1)由摆杆水平方向的受力进行分析可以得到下面等式:= (式2、式3)将式3代入式1可得系统第一个运动方程:(式4)为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:= (式5 式6)力矩平衡方程如下:(式7)式中:合并式6、式7得第二个运动方程:(式8)设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:用u来代表被控对象的输入力F,线性化后两个运动方程如下:(式9)对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。

):(式10)整理后得到传递函数:(式11)其中:2、状态空间方程设系统状态空间方程为:(式12)方程组对解代数方程,得到解如下:(式13)整理后得到系统状态空间方程:(式14)3、实际系统模型假定系统物理参数设计如下:M 小车质量 1.08Kg m 摆杆质量 0.1Kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.0027Kg*m*m将上述参数带入,可以得到以外界作用力作为输入的系统状态方程:======+++++++=⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u x x x y u x x x x 000100001034577.20914849.0008966.26234577.0010000689655.00914849.000010φφφφφφφ二、对象的性能分析1、分析系统的单位阶跃响应:a=[0 1 0 0;0 -0.0914849 0.689655 0;0 0 0 1;0 -0.234577 26.8966 0] b=[0;0.914849;0;2.34577] c=[1 0 0 0;0 0 1 0] d=[0;0] a =0 1.0000 0 0 0 -0.0915 0.6897 0 0 0 0 1.0000 0 -0.2346 26.8966 0b =0.91482.3458c =1 0 0 00 0 1 0d =利用传递函数得到如下响应曲线[num,den]=ss2tf(a,b,c,d)num =0 -0.0000 0.9148 0.0000 -22.98860 -0.0000 2.3458 -0.0000 0 den =1.0000 0.0915 -26.8966 -2.2989 0 step(num,den)从图上可知其阶跃响应不稳定。

单级倒立摆系统建模(单页)

单级倒立摆系统建模(单页)

单级倒立摆系统建模倒立摆倒立摆(Inverted Pendulum)作为一个被控对象,是快速、多变量、开环不稳定、非线性的高阶系统,必须施加强有力的控制手段才能使之稳定。

许多新的实时控制理论,都通过倒立摆控制试验来加以验证。

从工程背景来讲,小到日常生活中所见到的各种重心在上、支点在下的物体的稳定问题,大到火箭的垂直发射控制等关键技术问题,都与倒立摆控制有很大的相似性。

小车倒立摆系统建模图1所示的是人手保持倒立摆平衡的问题,相应的平衡条件是和。

人手保持倒立摆平衡与导弹在发射初始阶段的状态控制没有本质差异。

0)(=t θ0d /d =tθ图1 手持倒立摆小车倒立摆动力学分析(3)单级旋转倒立摆系统结构单级旋转倒立摆系统结构表1 旋转式倒立摆系统符号意义及参数值符号意义数值与单位M驱动臂的总质量 0.285kg 1M摆杆的总质量 0.175kg 2G转动力矩与控制电压之比 0.0508Nm/V 0U控制输入电压VJ驱动臂对其质心处的转动惯量 0.00185kgm²1J摆杆对其质心处的转动惯量 0.00137kg m²2L驱动臂的质心到转轴的距离0.119m1L摆杆的质心到转轴的距离 0.24m2表1 旋转式倒立摆系统符号意义及参数值符号意义数值与单位L从关节到转轴的距离0.127m12F转轴处的摩擦阻力矩系数0.05Nms1F关节处的摩擦阻力矩系数 0.0026 Nms 2f驱动臂与摆杆作用力的水平分力N1xf驱动臂与摆杆作用力的垂直分力N1yθ驱动臂相对垂直线的角位移rad1θ摆杆相对垂直线的角位移rad2g重力加速度9.8m/s²。

一级倒立摆的可视化建模与稳定控制设计

一级倒立摆的可视化建模与稳定控制设计

1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。

倒立摆系统的建模(拉格朗日方程)

倒立摆系统的建模(拉格朗日方程)

系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。

整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。

如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum deviceQuanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。

1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。

这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing图2.4系统导轨结构图Fig 2.4 System guide rail structure直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与matlab仿真LQR

直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。

图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。

,错误!未找到引用源。

为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。

首先计算系统的动能:其中错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。

小车的动能:错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆1的平动动能和转动动能。

错误!未找到引用源。

,其中错误!未找到引用源。

,错误!未找到引用源。

分别为摆杆2的平动动能和转动动能。

对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒立摆建模样一个不稳定的被控对象,通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统,单节倒立摆系统的控制模型是目前国内外广泛采用的模型是研究各种控制算法的基础。

该系统由计算机,运动控制卡,伺服机构,倒立摆,本体和光电码盘等几部分组成了一个闭环系统。

如图所示: 光电码盘1将小车的位移速度信号反馈给伺服驱动器和运动控制卡,摆杆的位置,速度信号由光电码盘2也反馈回运动控制卡。

计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动,移动速度,加速度等。

)并实现该控制决策,产生相应的控制量,使电机带动小车,保持平衡。

1.结构参数倒立摆是不稳定的,如果没有适当的控制力作用在它的上面,它将随时可能向任何方向倾倒。

这里只考虑二维问题,即认为倒立摆只在图3所示平面内运动。

控制力F 作用于小车上。

摆杆长度为l ,质量为m ,小车的质量为M ,小车瞬时位移为x ,摆杆瞬时位置为(x+2L*sin φ),在外力的作用下,系统产生运动。

假设摆杆的重心位于其几何中心。

设输入为作用力F ,输出为摆角φ。

2.系统的运动方程控制要求:在摆受到外力F 时,调节小车的位置x ,保持摆杆平衡。

计运伺伺服摆光电码光电码图2 系统结构组成原理图3 小车受力分析图图4 一级摆受力分析图应用牛顿力学可推导出该倒立摆系统的运动学方程⎪⎪⎩⎪⎪⎨⎧=----=--+=-=+θI Nlcos θPlsin θcos θθml sin θθml mg P sin θθml cos θθml x m N x b F N x M 2 注意:此方程中力矩的方向,由于ϕπθ+=,ϕθcos cos -=,ϕθsin sin -=,故等式前有负号. 约去P 和N,得到方程:F ml ml x b xm M =-+++θθθθsin cos )(2(1)θθcos sin )(xml mgl x m M -=++ (2)3. 线性化设ϕπθ+=假设ϕ与1(单位是弧度) 相比很小,即ϕ远远小于1,则可以进行近似处理,sin ,1cos 2=⎪⎭⎫⎝⎛-=-=dt d θϕθθ设u 代表被控对象的输入力F ,方程(1) 和方程(2)经过线性化后⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I ϕϕϕ)()(2(3)其中 231ml I =因此倒立摆的状态方程为:⎪⎪⎩⎪⎪⎨⎧+-+-=+-++-=F m M m M mg x F m M l m M l m M g 4443)4(3)4()(3θθθ4. 单节倒立摆传递函数的推导 对式(3) 进行拉氏变换,得到:⎩⎨⎧=-++=-+)()()()()()()()()(22222s U s s ml s s bX s s X m M s s mlX s mgl s s ml I ϕϕϕ (4) 初始条件为0 时,由于输出角度为φ,求解方程组的第一个方程,可以得到)()()(22s s g mlml I s X ϕ⎥⎦⎤⎢⎣⎡-+=把上式代入到(4)中的第二个方程中,得到:)()()()()()()(22222s U s s ml s s s g mlml I b s s s g ml ml I m M =-⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡-++ϕϕϕ整理后得到:den num qbmgl s q mgl m M s q ml I b s sqml s U s =-+-++=)()()()(223ϕ其中])())([(22ml mlI m M q -++=5. 状态空间方程的推导 系统的状态方程:⎩⎨⎧+=+=Du CX y Bu AX X其中: A 为状态矩阵。

B 为输入矩阵。

C 为输出矩阵。

D 为前馈矩阵。

方程组(3) 求解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++++++-==+++++++++-==u Mml m M I ml Mml m M I m M mgl x Mml m M I mbl u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 2222222222)()()()()()()()(ϕϕϕϕϕ整理后,系统状态空间方程为u Mml m M I ml Mml m M I mlI x x Mml m M I m M mgl Mml m M I mlbMml m M I gl m Mml m M I b ml I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010ϕϕϕϕu x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001ϕϕϕ由直线一级倒立摆的数学模型式可知, 被控对象是个单输入力(F) 、双输出(小车的位移, 摆杆的角度) 的对象。

6.系统稳定性分析一级倒立摆系统的特征方程为det{λI-A}=0,经过Matlab 计算得到系统开环特征根为:λ(A)=(0,5.5651,-0.1428,-5.6041) 系统有一个极点在复平面的右半平面上,有一个极点在原点,因此系统是不稳定的。

由一级倒立摆系统线性状态方程得到: rank[B AB A 2B A 3B]=4 rank[C CA CA 2 CA 3]=4所以一级倒立摆是能控且能观测的。

对于一级倒立摆状态方程,对A 矩阵进行奇异值分解,得到A 矩阵的奇异值阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==000001000001.100002996.31)(A svd W定义:被控对象控制的难易程度,即系统状态矩阵最大奇异值的到数称为相对能控度。

A 矩阵的奇异值为W 对角线上的值,所以一级倒立摆的相对能控度,03195.02996.311==δ,δ越小系统的控制难度越高。

PID 控制考虑角度的PID 控制对于一级倒立摆,由前面式子及系统数据,得到数学模型如下:u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5455.408182.1001818.314545.00100006727.21818.000010ϕϕϕϕu x x y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=ϕϕ 01000001系统结构框图如图所示:图1 PID 控制框图图中KD(S)是控制器的传递函数,G(S)是一级倒立摆的传递函数。

考虑到r(s)=0,结构图可以变换成:图2 输入为0时系统框图该系统的输出为:)())(())(())(()())(())((1)()()(1)()(s f num numPID den denPID denPID num s f den denPID num numPID den nums f s G s KD s G s y +=+=+=其中,num —被控对象传递函数的分子项 den 一被控对象传递函数的分母项numPID —PID 控制器传递函数的分子项 denPID —PID 控制器传递函数的分母项被控对象的传递函数是:den num s q bmgl s q mgl m M s q ml I b s s q ml s U s =-+-++=23242)()()()(φ其中, ])())([(22ml ml I m M q -++= PID 控制器的传递函数为:denPID numPID s K s K s K s K K s K s KD I P D I P D =++=++=2)(在工程实际当中,常采用工程整定法,它们是在理论基础上通过实践总结出来的。

这些方法通过并不复杂的经验便能迅速获得调节器的近似最佳整定参数,因而在工程中得到广泛应用。

具体步骤如下: (1)置调节器积分时间T i 到最大值,微分时间T d 为0,比例带置较大值,使系统投入运行。

(2)待系统运行稳定后,逐渐增大K p ,直到系统出现等幅震荡过程,记下此时的比例带并计算两个波峰间的时间T cr (临界震荡周期)。

利用δcr 和T cr ,的值,按照下面给出的经验公式计算:对于PID 调节器:8;2;67.11crdcr i crp T T T T K ===δ 得:K P =40 K I =1 K D =10系统响应曲线如图所示: control 为受控系统,nature 为自然状态:图3 PID 控制一级倒立摆相应曲线从上图中可以看出,进过PID 控制后,倒立摆在1.5达到稳定状态,系统超调量很小,而且没有稳态误差,该方法对单级倒立摆的控制可以很容易实现。

考虑小车位置的PID 控制考虑小车位置的系统结构如图所示:图4 改进系统框图其中,G 1(S )是摆杆传递函数,G 2(S)是小车传递函数。

由于输入信号r(s)=0,所以可以把结构图4转换成结构图5图5 转换成单输入单输出系统其中,反馈环代表我们前面设计的控制器。

小车位置输出为:)())(())((1)()()(1)()(112212s f den denPID num numPID den num s f s G s KD s G s X +=+=)())()(())()(())()((212112s f den num numPID den den denPID den denPID num += 其中,num l ,den 1,num 2,den 2分别代表被控对象1和被控对象2传递函数的分子和分母。

根据前面的推导: )()(22s s q ml ml I s X φ⎥⎦⎤⎢⎣⎡-+=可以推导出小车位置的传递函数为:s q bmgl s q mgl m M s q ml I b s q mgl s q ml I s U s X s G -+-++-+==2324222)()()()()(其中, ])())([(22ml ml I m M q -++=可以看出,den 1=den 2=den ,小车的闭环传递函数可以简化成:)())(())(())(()(12s f num numPID den denPID denPID num s X +=根据上面控制摆角度的Z-N 方法,可以控制小车的位置,但是由Simulink 系统框图4可以看出,此系统为单输入双输出系统,所以我们只能在两个输出量中选择一个作为被控量。

在这种PID 方法中,选择控制优先级高的输出量(摆的角度)作为系统输出。

要想既控制倒立摆的角度又控制小车的位置,简单的PID 方法是无法实现的。

模糊控制一级倒立摆系统模糊控制器结构如图1.首先利用线性二次型状态反馈控制,然后加入模糊控制器以达到更好的控制效果。

相关文档
最新文档