基于BP神经网络PID整定原理和算法步骤
基于BP神经网络的PID参数自适应整定

基于BP 神经网络的PID 参数自适应整定曾正1,蔡容容2,詹立新21 武汉大学电气工程学院,430072 2 武汉大学动力与机械学院,430072 联系方式:zengerzheng@摘 要:针对简单单入单出(SISO )系统中PID 控制的参数整定问题进行了仿真研究,利用BP 神经网络进行PID 参数自适应整定。
首先,得到了问题的传递函数模型,并建立了对应的离散化传递函数模型作为仿真研究的对象,并对未校正系统进行了相关的理论分析。
然后,利用BP 神经网络算法在线进行PID 参数自适应整定。
同时,为了形成参照,给出了运用模拟退火算法离线整定PID 参数的仿真过程。
建立了3层BP 网络结构,以δ规则为学习规则,控制器算法为有监督的Hebb 算法,教师信号为给定与被控对象的输出间的偏差信号。
最后,针对系统在多工况下的复杂情况,从静态稳定和动态稳定的角度,对系统稳定性进行了仿真分析。
仿真结果表明,所设计的基于BP 神经网络参数自适应PID 控制系统,控制品质高、鲁棒性强。
为了支持更加复杂情况下的仿真,还搭建GUI 仿真界面。
关键字:PID 控制;参数整定;BP 神经网络;稳定分析;GUI ;1 问题背景分析 1.1 准备知识1.1.1 控制系统的性能指标当系统的时间响应()y t 中的瞬态分量较大而不能忽视时,称系统处于动态或过渡过程中,这时系统的特性称为动态特性。
动态特性指标通常根据系统的阶跃响应曲线定义。
设系统的阶跃响应曲线如图1所示,图中()lim ()x y y t →∞∞=称为稳态值。
动态性能指标主要有以下几种[1]。
图1 系统的阶跃响应曲线(1)上升时间r t :阶跃响应曲线从零第一次上升到稳态值所需的时间为上升时间。
若阶跃曲线不超过稳态值(称为过阻尼系统),则定义阶跃响应曲线从稳态值的10%上升到90%所对应的时间为上升时间。
(2)最大超调p σ:设阶跃响应曲线的最大值为()p y t ,则对大超调p σ为()()100%()p p y t y y σ-∞=⨯∞ (1)p σ大,称系统阻尼小。
基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。
传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。
近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。
BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。
在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。
1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。
对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。
2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。
通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。
3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。
在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。
4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。
1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。
2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。
3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。
4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。
基于BP神经网络PID整定原理和算法步骤_精品

基于BP神经网络PID整定原理和算法步骤_精品1.收集实验数据:首先需要收集系统的输入和输出数据,包括输入变量(如温度、压力等)和输出变量(如阀门开度、电机转速等)。
同时,需要记录系统的环境条件,如温度、湿度等。
2.数据预处理:对收集到的数据进行预处理,包括数据清洗、去除异常值等。
确保数据质量的同时,也要注意保持数据的连续性和完整性。
3.构建神经网络:使用BP神经网络构建PID整定模型。
BP神经网络是一种具有前馈和反馈连接的多层感知器,可以用于解决非线性问题。
根据PID控制器的输入和输出关系,设计网络的输入层、隐含层和输出层。
4. 网络训练:使用收集到的实验数据对神经网络进行训练。
训练的目标是使网络的输出尽可能接近实际输出,从而建立输入和输出之间的映射关系。
可以使用误差反向传播算法(Backpropagation)来调整网络的权重和阈值。
5.网络评估:训练完成后,使用预留的一部分数据对网络进行评估。
通过比较网络的输出和实际输出,可以评估网络的准确性和稳定性。
如果评估结果不满意,可以进行网络调整和再训练。
6. PID参数计算:根据已经训练好的神经网络,可以使用PID整定算法计算PID参数值。
常用的PID整定算法包括Ziegler-Nichols方法、Chien-Hrones-Reswick方法等。
根据系统的响应特性和性能指标,选择合适的算法进行参数计算。
7.参数调整和优化:根据实际应用需求,对计算得到的PID参数进行调整和优化。
可以通过仿真和实验验证的方式,不断调整参数,直到满足系统的性能要求。
8.实际应用:将优化后的PID参数应用到实际控制系统中。
根据系统的特点和要求,可以进一步进行参数调整和优化。
同时,需要不断监测和评估系统的性能,并及时调整和优化PID参数。
综上所述,基于BP神经网络的PID整定原理和算法步骤主要包括数据收集、数据预处理、神经网络构建、网络训练、网络评估、PID参数计算、参数调整和优化以及实际应用等步骤。
基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。
然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。
而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。
因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。
BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。
3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。
三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。
对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。
2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。
基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。
下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。
一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。
在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。
二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。
2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。
3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。
4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。
5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。
6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。
7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。
8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。
9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。
10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。
三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。
2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。
3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。
基于BP_神经网络的PID_控制算法参数优化

- 22 -高 新 技 术从本质上来看,PID 控制算法就是对比例、积分和比例微分间的关系进行控制的一种算法。
PID 控制调节器具有适应性强、鲁棒性良好的特征,因此被广泛应用于工业控制领域。
但是,随着科学技术、控制理论发展,在工业生产中被控对象逐渐向复杂化和抽象化的趋势发展,并呈现滞后性、时变性和非线性的特征,这使传统PID 控制器难以精准调控这种较复杂的控制系统。
为了解决该问题,研究人员将控制理论与其他先进的算法相结合,形成全新的控制理论,包括神经网络控制、遗传算法以及模糊控制等。
对神经网络算法来说,由于其具有较高的鲁棒性和容错性,因此适用于复杂的非线性控制系统中,并且具有广阔的应用前景和较大的发展潜力。
1 BP 神经网络结构及算法BP 神经网络将网络视为一个连续域,在这个网络中,输入层和输出层都是任意时刻、任意数目的样本值,网络输出层值与输入层值间也可以具有任意关系,这个学习过程就称为BP 神经网络学习过程。
作为一种被广泛应用的神经网络模型,BP 神经网络由输入层、输出层和隐含层组成:1) 输入层。
从第i 个输入向量中产生相应的输出值。
2) 输出层。
在输出值的作用下将其转换为输入数据。
3) 隐含层。
在输出值的作用下对数据进行隐含处理,将处理后的结果反馈给输入层,3个输入层构成1个BP 神经网络。
当输入数据在时间域内经过多次的误差传播时,最后被一个误差源作为输出信号,即经过输入单元和输出组的中间信息。
如果该误差源的误差小于输出单元和输出组中各单元间的误差,那么这些单元在计算输出时就会有很大的变化;如果超过了期望值,那么这一单元被认为是输入量存在误差(也就是输入信号存在误差),将不再使用该单元;如果仍然超过期望值,那么输出量又会存在误差[1]。
通过分析输入与输出量间的关系可以得出BP 网络中各个隐藏层上节点数与该输出量间的关系。
BP 神经网络的拓扑结构如图1所示。
为了对BP 神经网络进行运算和优化,该文设定了中间层的加权和结点临界,以便将全部采样的真实输出量与预期的输出量的偏差控制在一个很低的区间,并且通过调节这个区间来保证它的稳定性。
基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的设计简介:PID控制器是一种常用的控制方法,可以使控制系统快速、稳定地对目标进行调节。
然而,传统的PID控制器需要依赖经验的设置参数,很难适用于非线性复杂的系统。
为了改善这一问题,本文提出了一种基于BP神经网络的PID控制器的设计方法。
一、神经网络介绍BP神经网络是一种常用的人工神经网络,通过反向传播算法进行学习和适应。
它可以用来建模非线性关系、解决分类和回归问题等。
BP神经网络由输入层、隐藏层和输出层构成,通过调整权重和偏置项,使得网络的输出接近于期望输出。
二、PID控制器的基本原理PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的,它们分别对应了系统的比例性能、整定性能和微分性能。
PID控制器的输出是由目标值与实际值之间的误差来决定的。
比例作用是根据误差的大小进行调节,积分作用是根据误差的积分值进行调节,微分作用是根据误差的变化率进行调节。
三、BP神经网络的PID控制器设计1.建立神经网络模型:确定输入层节点数、隐藏层节点数和输出层节点数。
2.确定权重和偏置项的初始值:可以使用随机数进行初始化。
3.设置训练样本集:训练样本集包括输入和输出的数据,可以根据实际情况进行设置。
4.确定学习率和训练次数:学习率决定了网络的更新速度,训练次数决定了网络的学习程度。
5.神经网络训练:使用BP算法对神经网络进行训练,通过反向传播算法调整权重和偏置项。
6.测试神经网络性能:使用测试数据对神经网络进行测试,评估其性能是否满足要求。
7.参数调整:根据测试结果对PID控制器的参数进行调整,使得神经网络对系统的控制更加精确。
四、实验结果分析通过对比传统的PID控制器和基于BP神经网络的PID控制器,可以发现基于BP神经网络的PID控制器具有更好的系统控制性能。
因为BP神经网络能够自适应地调整参数,适应非线性复杂系统的控制要求。
总结:基于BP神经网络的PID控制器是一种有效的控制方法,可以提高系统控制的精度和稳定性。
基于BP神经网络PID整定原理和算法步骤_精品

WORD格式整理摘要神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。
它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。
这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。
目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。
本文以BP神经网络作为研究对象。
研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。
其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。
再次将BP神经网络的算法应用于PID 中,介绍了基于BP神经网络PID整定原理和算法步骤。
最后利用 MATLAB/Simulink 对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。
关键词:BP算法,PID控制,自整定ABSTRACTAs a kind of emerging information processing science,the neural network can simulate some basic characteristic of human brain. It is an information-processed method which takes person's cerebrum working pattern as a foundation and studies the model of adaptive and non- program. The characteristics of this kind of work mechanism are that it can show its processing function through the massive neurons function in the network. Then, it starts with simulating the human brain structure and the single neuron function to achieve the goal that simulates the human brain to process information.Nowadays, the neural network has wide application fields and prospects in the national economy and modernization of national defense science. It mainly applies in information, automation, economical and so on.This article takes the BP neural network as the research object. The content of the research mainly contain: firstly, it introduces the concept of neural network, control structure and mode of study and so on. Secondly, it introduces the artificial neuron model, the basic principles of BP neural network and the derivation process in detail. Then, it applies BP neural network in the PID, and introduces the tuning principles of PID based the BP neural network and steps of the algorithm. Finally, Matlab/Simulink is used to simulate the BP neural network PID control system. In the consequence, the performance of BP neutral network control significantly good. BP neural network control system has a strongself-tuning, adaptive function.KEY WORDS: BP algorithm, PID control, self-tuning目录摘要 (I)ABSTRACT (II)第1章绪论 (3)1.1选题背景和意义 (3)1.2神经网络技术国内外发展现状 (4)第2章神经网络的原理和应用 (7)2.1神经网络的基本概念 (7)2.2神经网络的控制结构 (7)2.2.1 前馈网络 (7)2.2.2 反馈网络 (7)2.3神经网络的功能 (8)2.4神经网络的学习 (8)2.4.1神经网络的学习方式 (8)2.4.2神经网络的学习算法 (9)2.5人工神经元(MP)模型 (9)2.6BP算法原理 (11)2.7BP网络的前馈计算 (12)2.8BP网络权系数的调整规则 (13)2.9BP网络学习算法的计算步骤 (15)2.10本章小结 (15)第3章 BP神经网络PID控制方法研究 (16)3.1引言 (16)3.2基于BP神经网络的PID整定原理 (16)3.3本章小结 (21)第4章仿真研究 (22)4.1BP神经网络自整定PID控制系统 (22)4.2仿真结果分析 (27)4.3本章小结 (29)第5章结论与展望 (28)参考文献 (32)附录 (33)致谢.......................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。
它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。
这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。
目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。
本文以BP神经网络作为研究对象。
研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。
其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。
再次将BP神经网络的算法应用于PID 中,介绍了基于BP神经网络PID整定原理和算法步骤。
最后利用 MATLAB/Simulink 对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。
关键词:BP算法,PID控制,自整定ABSTRACTAs a kind of emerging information processing science,the neural network can simulate some basic characteristic of human brain. It is an information-processed method which takes person's cerebrum working pattern as a foundation and studies the model of adaptive and non- program. The characteristics of this kind of work mechanism are that it can show its processing function through the massive neurons function in the network. Then, it starts with simulating the human brain structure and the single neuron function to achieve the goal that simulates the human brain to process information.Nowadays, the neural network has wide application fields and prospects in the national economy and modernization of national defense science. It mainly applies in information, automation, economical and so on.This article takes the BP neural network as the research object. The content of the research mainly contain: firstly, it introduces the concept of neural network, control structure and mode of study and so on. Secondly, it introduces the artificial neuron model, the basic principles of BP neural network and the derivation process in detail. Then, it applies BP neural network in the PID, and introduces the tuning principles of PID based the BP neural network and steps of the algorithm. Finally, Matlab/Simulink is used to simulate the BP neural network PID control system. In the consequence, the performance of BP neutral network control significantly good. BP neural network control system has a strong self-tuning, adaptive function.KEY WORDS: BP algorithm, PID control, self-tuning目录摘要 (I)ABSTRACT (II)第1章绪论 (2)1.1选题背景和意义 (2)1.2神经网络技术国内外发展现状 (3)第2章神经网络的原理和应用 (6)2.1神经网络的基本概念 (6)2.2神经网络的控制结构 (6)2.2.1 前馈网络 (6)2.2.2 反馈网络 (6)2.3神经网络的功能 (7)2.4神经网络的学习 (7)2.4.1神经网络的学习方式 (7)2.4.2神经网络的学习算法 (8)2.5人工神经元(MP)模型 (8)2.6BP算法原理 (10)2.7BP网络的前馈计算 (11)2.8BP网络权系数的调整规则 (12)2.9BP网络学习算法的计算步骤 (14)2.10本章小结 (14)第3章 BP神经网络PID控制方法研究 (15)3.1引言 (15)3.2基于BP神经网络的PID整定原理 (15)3.3本章小结 (19)第4章仿真研究 (20)4.1BP神经网络自整定PID控制系统 (20)4.2仿真结果分析 (27)4.3本章小结 (27)第5章结论与展望 (28)参考文献 (30)附录 (31)致谢............................................ 错误!未定义书签。
第1章绪论1.1选题背景和意义在计算机技术没有发展的条件下,大量需求的控制对象是一些较为简单的单输入单输出线性系统,而且对这些对象的自动控制要求是保持输出变量为要求的恒值,消除或减少输出变量与给定值之误差、误差速度等。
而PID控制的结构,正是适合于这种对象的控制要求。
因此PID控制是最早发展起来的控制策略之一,由于其算法简单,鲁棒性好和可靠性高,被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。
然而实际工业生产过程往往具有非线性,时变不确定性,难以建立精确地数学模型,应用常规PID控制器不能达到理想的控制效果,而且在实际生产现场中,由于受到参数整定方法繁杂的困扰,常规PID控制器往往整定不良,性能欠佳,对运行工况的适应性很差。
所以人们从工业生产过程需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进,形成所谓智能PID控制[1]。
而其中神经网络所具有的大规模的并行处理和分布式的信息存储;极强的自学、联想额容错能力;良好的自适应和自组织性;多输入、多输出的非线性系统都基本符合工程的要求。
人工神经网络作为生物控制论的一个成果,其触角几乎延伸到各个工程领域,并且在这些领域中形成新的生长点。
以神经网络研究为开端,整个学术界对计算的概念和作用有了新的认识和提高。
计算不仅仅局限于数学中,更不仅采取逻辑的、离散的形式,在大量的物理现象以至生物学对象中,进行各种各样的计算,而且大量的运算表现在对模糊低精度模拟量的并行计算,对于这一类计算,传统的计算机是无能为力的。
神经网络的数学理论本质是非线性的数学理论,因此,现代非线性科学方面的进展必将推动神经网络的研究,同时,神经网络理论也会对非线性科学提出新课题。
神经网络研究的对象是神经系统,这是高度进化的复杂系统,也是系统科学中一个重要的具体的领域。
神经网络的研究不仅重视系统的动态特性,而且强调事件和信息在系统内部的表达和产生。
神经网络应用时不需考虑过程或现象的内在机理,一些高度非线性和高度复杂的问题能较好地得到处理,因此神经网络在控制领域取得了较大的发展,特别在模型辨识、控制器设计、优化操作、故障分析与诊断等领域迅速得到应用。
神经网络控制作为二十一世纪的自动化控制技术,国内外理论与实践均充分证明,其在工业复杂过程控制方面大有用武之地。
而工业现场需要先进的控制方法,迫切需要工程化实用化的神经网络控制方法,所以研究神经网络在控制中的应用,对提高我国的自动化水平和企业的经济效益具有重大意义[2]。
神经网络具有很强的非线性逼近能力和自学习能力,所以将BP神经网络算法与PID 控制相结合产生的间接自校正控制策略,能自动整定控制器的参数,使系统在较好的性能下运行。
虽然人工神经网络存在着以上的许多优点及广泛的应用,但同时也存在着一些不足,由于神经网络的不足阻碍了神经网络的发展,在现实应用中BP神经网络是最为广泛的神经网络模型,BP神经网络是在1986年被提出的,因其系统地解决了多层网络中隐含单元连接权的学习问题,它同样具有人工神经网络所具有的特点。
本课题是以BP神经网络模型研究为主。
BP神经网络的缺点主要表现在以下几个方面:(1)学习过程收敛速度慢,训练易陷入瘫痪;(2)训练过程中易陷入局部极小值;(3)网络泛化能力差;(4)隐节点数及权重和阈值初始值的选取缺乏理论指导:(5)未考虑样本选择对系统的影响;(6)未考虑传递函数对神经网络系统的影响;另外,网络结构的确定:包括隐含层数及各隐含层节点数的确定:以及学习率的选取等问题的存在严重阻碍了BP神经网络的发展,致使其理论发展缓慢。
同时也因为BP网络的这些缺点限制了其应用领域的拓宽及应用程度的深入,不利于国民经济的健康发展。
因此,研究BP神经网络显然具有重要理论意义和重要的应用价值。
1.2神经网络技术国内外发展现状当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
PID (比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
在实际生产过程中,由于受到参数整定方法繁杂的困扰,因此常规PID控制的应用受到很大的限制和挑战。
人们对PID应用的同时,也对其进行各种改进,主要体现在两个方面:一是对常规PID本身结构的改进,即变结构PID控制。