基于BP神经网络的PID控制系统设计

合集下载

基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的研究与实现课程名称:人工神经网络目录前言 (2)一、BP神经网络 (3)二、模拟PID控制系统 (5)三、基于BP神经网络的PID控制器 (6)四、仿真程序 (10)五、运行结果 (17)六、总结 (18)参考文献 (19)前言人工神经网络是以一种简单神经元为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统。

不仅如此,人工神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。

不同领域的科学家,对人工神经网络有着不同的理解、不同的研究内容,并且采用不同的研究方法。

对于控制领域的研究工作者来说,人工神经网络的魅力在于:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;③所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算。

对于长期困扰控制界的非线性系统和不确定性系统来说,人工神经网络无疑是一种解决问题的有效途径。

正因为如此,把人工神经网络引入传统的 PID 控制,将这两者结合,则可以在一定程度上解决传统 PID 调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。

一、BP神经网络BP神经网络是一种有隐含层的多层前馈网络,其结构如图1-1所示。

如果把具有M个输入节点和L个输出节点的BP神经网络看成是从M 维欧氏空间到L维欧氏空间的非线性映射,则对于具有一定非线性因数的工业过程被控对象,采用BP网络来描述,不失为一种好的选择。

在BP神经网络中的神经元多采用S型函数作为活化函数,利用其连续可导性,便于引入最小二乘学习算法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正加权系数,以期使误差均方值最小。

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID(Proportional-Integral-Derivative)控制器是一种常用的自动控制器,其通过测量系统的输出偏差,根据比例、积分和微分三个因素来控制系统的输出。

然而,传统的PID控制器难以适应复杂、非线性和时变的系统,对于这类系统的控制,神经网络已经被证明是一种有效的方法。

本文将介绍基于BP神经网络的PID控制系统设计。

二、BP神经网络简介BP神经网络(Backpropagation Neural Network)是一种常用的前向反馈型人工神经网络,其通过反向传播算法来训练网络参数,从而实现对输入数据的学习和预测。

BP神经网络拥有多层神经元,每个神经元都与下一层神经元相连,并通过权重和阈值来传递和处理输入信息。

三、PID控制器简介PID控制器由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成,其控制输出的公式为:u(t) = Kp * e(t) + Ki * ∑e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为控制器的三个参数,e(t)为系统的输出偏差,∑e(t)dt为偏差的积分项,de(t)/dt为偏差的微分项。

1.数据采集和预处理:首先需要采集系统的输入和输出数据,并对其进行预处理,包括数据归一化和滤波处理等。

2.神经网络设计和训练:根据系统的输入和输出数据,设计BP神经网络的结构,并使用反向传播算法来训练网络参数。

在训练过程中,根据系统的输出偏差来调整比例、积分和微分三个参数。

3.PID控制器实现:根据训练得到的神经网络参数,实现PID控制器的功能。

在每个控制周期内,根据系统的输出偏差来计算PID控制器的输出,将其作为控制信号发送给被控制系统。

4.参数调优和性能评估:根据控制系统的实际情况,对PID控制器的参数进行调优,以提高系统的控制性能。

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。

传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。

近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。

BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。

在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。

1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。

对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。

2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。

通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。

3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。

在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。

4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。

1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。

2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。

3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。

4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。

基于BP神经网络的自适应PID控制器设计

基于BP神经网络的自适应PID控制器设计

基于BP 神经网络的自适应PID 控制器设计一.基于BP 神经网络的自适应PID 控制器的原理PID 控制是最早发展起来的、 应用领域至今仍然广泛的控制策略之一,它是基于对象数学模型的方法,尤其适用于可建立精确数学模型的确定性控制系统。

其优点是算法简单、 鲁棒性好和可靠性高。

但是,由于实际工业生产过程往往具有非线性,许多非线性系统难以确定精确的数学模型,常规的PID 控制器就不能达到理想的控制效果,由于受到参数整定方法烦杂的困扰,参数往往整定不良、 性能欠佳。

神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID 控制。

基于BP 网络的自适应PID 控制器,通过BP 神经网络调整自身权系数,对PID 控制参数进行调节,以达到某种性能指标的最优。

二.基于BP 神经网络的自适应PID 控制器的控制器结构基于BP 神经网络的PID 控制系统结构图如图1所示:此控制器由两部分组成:(1)经典的PID 控制器,直接对被控对象进行闭环控制,并且三个参数p K ,i K ,d K 为在线调整方式;图1 BP 网络结构p ki kd ki(2)神经网路,根据系统的运行状态,调节PID 控制器的参数,以期达到某种性能指标的最优化,是输出层神经元的输出状态对应于PID 控制器的一个可调参数p K ,i K ,d K 。

通过神经网络的自学习、加权系数调整,使神经网络输出对应于某种最优控制率下的PID 控制器参数。

基于BP 神经网络的自适应PID 控制器的控制器如图2所示:该控制器的算法如下:(1)确定BP 神经网络的结构,即确定输入节点数M 和隐含层节点数Q ,并给各层加权系数的初值)0(1ij w 和)0(2ij w ,选定学习速率η和惯性系数α,此时k=1; (2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k);(3)计算神经网络NN 各层神经元的输入、输出,NN 输出层的输出即为PID 控制器的三个可调参数p K ,i K ,d K ;(4)根据经典增量数字PID 的控制算法(见下式)计算PID 控制器的输出u(k); ))2()1(2)(()())1()(()1()(-+--++--+-=k error k error k error K k error K k error k error K k u k u d i p (5)进行神经网络学习,在线调整加权系数)(1k w ij 和)(2k w ij 实现PID 控制参数的自适应调整;(6)置k=k+1,返回到(1)。

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。

然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。

而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。

因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。

BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。

3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。

三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。

对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。

2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。

(完整word版)基于BP神经网络的自整定PID控制仿真

(完整word版)基于BP神经网络的自整定PID控制仿真

基于BP神经网络的自整定PID控制仿真一、实验目的1.熟悉神经网络的特征、结构及学习算法。

2.通过实验掌握神经网络自整定PID的工作原理。

3.了解神经网络的结构对控制效果的影响。

4. 掌握用Matlab实现神经网络控制系统仿真的方法。

二、实验设备及条件1.计算机系统2.Matlab仿真软件三、实验原理在工业控制中,PID控制是工业控制中最常用的方法。

这是因为PID控制器结构简单,实现简单,控制效果良好,已得到广泛应用。

但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。

为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。

利用神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。

基于BP神经网络的PID控制器结构如图4所示。

控制器由两部分组成:一是常规PID控制器,用以直接对对象进行闭环控制,且3个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。

图4中神经网络采用结构为4-5-3型的BP网络。

BP网络是一种单向传播的多层前向网络。

输入节点对应系统的运行状态量,如系统的偏差与偏差变化率,必要时要进行归一化处理。

输入变量的个数取决于被控系统的复杂程度,输出节点对应的是PID的3个可调参数。

由于输出不能为负,所以输出层活化函数取2()(1)()(1)1(1)a k y k y k u k y k -=+-+-非负的Sigmoid 函数,隐含层取正负对称的Sigmoid 函数。

本系统选取的BP 网络结构如图5所示。

网络的学习过程由正向和反向传播两部分组成。

如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得误差信号最小。

输出层节点分别对应3个可调参数K p 、K i 、K d 。

1 基于BP神经网络的PID控制

1 基于BP神经网络的PID控制

1 基于BP神经网络的PID控制BP算法是在导师指导下,适合于多层神经元网络的一种学习,它是建立在梯度下降法的基础上的。

理论证明,含有一个隐含层的BP网络可以实现以任意精度近似任何连续非线性函数。

BP神经网络结构如图1所示,由三层(输人层、隐含层、输出层)网络组成,使输出层的神经元状态对应PID控制器的三个可调参数 Kp、Ki、Kd 。

通过神经网络的自学习、加权系数调整使神经网络输出对应于某种最优控制律下的PID控制器参数。

基于BP(Baekpropgation)网络的PID控制系统结构如图2所示,控制器由常规的PID 控制器和神经网络两部分组成,常规PID控制器直接对被控对象进行闭环控制,并且其控制参数为 Kp、Ki、Kd 在线调整方式;神经网络根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的三个可调参数 Kp、Ki、Kd 。

通过神经网络的自学习、加权系数的调整,使神经网络输出对应于某种最优控制规律下的PID控制器参数。

2 改进型BP神经网络基本BP神经网络主要存在以下两个缺陷:其一,传统BP网络是一个非线形优化问题,不可避免的存在局部极小问题。

网络的权值和阀值沿局部改善的方向不断修正,力图达到使误差函数最小化的全局解,但实际上常得到的是局部最优点;其二,学习过程中,误差函数下降慢,学习速度缓,易出现一个长时间的误差坦区,即出现平台。

目前已有不少人对此提出改进的方法。

如在修改权值中加入“动量项”,采用Catchy误差估计器代替传统的LMS误差估计器等。

本文在此探讨通过变换梯度来加快网络训练的收敛速度的共轭梯度算法,利用这种算法改善收敛速度与收敛性能。

改进共轭梯度算法在不增加算法复杂性的前提下可以提高收敛速度,并且可以沿共轭方向达到全局最优即全局极值点。

它要求在算法进行过程中采用线性搜索,本文采用Fletc her-Reeves线性搜索方法,以保证算法的收敛速度。

基于BP_神经网络的PID_控制算法参数优化

基于BP_神经网络的PID_控制算法参数优化

- 22 -高 新 技 术从本质上来看,PID 控制算法就是对比例、积分和比例微分间的关系进行控制的一种算法。

PID 控制调节器具有适应性强、鲁棒性良好的特征,因此被广泛应用于工业控制领域。

但是,随着科学技术、控制理论发展,在工业生产中被控对象逐渐向复杂化和抽象化的趋势发展,并呈现滞后性、时变性和非线性的特征,这使传统PID 控制器难以精准调控这种较复杂的控制系统。

为了解决该问题,研究人员将控制理论与其他先进的算法相结合,形成全新的控制理论,包括神经网络控制、遗传算法以及模糊控制等。

对神经网络算法来说,由于其具有较高的鲁棒性和容错性,因此适用于复杂的非线性控制系统中,并且具有广阔的应用前景和较大的发展潜力。

1 BP 神经网络结构及算法BP 神经网络将网络视为一个连续域,在这个网络中,输入层和输出层都是任意时刻、任意数目的样本值,网络输出层值与输入层值间也可以具有任意关系,这个学习过程就称为BP 神经网络学习过程。

作为一种被广泛应用的神经网络模型,BP 神经网络由输入层、输出层和隐含层组成:1) 输入层。

从第i 个输入向量中产生相应的输出值。

2) 输出层。

在输出值的作用下将其转换为输入数据。

3) 隐含层。

在输出值的作用下对数据进行隐含处理,将处理后的结果反馈给输入层,3个输入层构成1个BP 神经网络。

当输入数据在时间域内经过多次的误差传播时,最后被一个误差源作为输出信号,即经过输入单元和输出组的中间信息。

如果该误差源的误差小于输出单元和输出组中各单元间的误差,那么这些单元在计算输出时就会有很大的变化;如果超过了期望值,那么这一单元被认为是输入量存在误差(也就是输入信号存在误差),将不再使用该单元;如果仍然超过期望值,那么输出量又会存在误差[1]。

通过分析输入与输出量间的关系可以得出BP 网络中各个隐藏层上节点数与该输出量间的关系。

BP 神经网络的拓扑结构如图1所示。

为了对BP 神经网络进行运算和优化,该文设定了中间层的加权和结点临界,以便将全部采样的真实输出量与预期的输出量的偏差控制在一个很低的区间,并且通过调节这个区间来保证它的稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于BP神经网络的PID控制系统设计摘要本文主要研究一个基于神经网络的自适应PID控制系统的设计方法,利用BP神经网络对被控对象进行在线辨识和控制。

基于BP神经网络学习算法设计出两个神经网络模型:一个利用神经网络(NNM)对非线性映射的逼近能力,对被控对象进行辨识,另一个构成具有PID结构的控制器(NNC)。

通过神经网络NNM的在线学习和修正,产生对被控对象输出的预测作用,然后由网络NNC实施控制作用,从而实现对辨识对象的PID控制。

在利用神经网络对系统进行辨识时,选用白噪声信号作为系统的输入信号,以提高系统的辨识精度;另外,为了得到神经网络控制器的初始化权值,本文在自整定过程中采用常规PID控制器整定方法之一的稳定边界法。

在设计过程中运用MATLAB语言工具箱进行编程,并通过SIMULINK动态仿真工具对一阶非线性对象进行了仿真。

仿真结果表明了利用神经网络对系统进行辨识的有效性,并用经辨识所得到的输出值取代系统的实际输出值,利用神经网络NNC对系统进行控制,获得了满意的控制效果。

关键词:神经网络,BP学习算法,自适应,参数优化,辨识1 综述PID调节器从问世至今已历经了半个多世纪,在这几十年中,人们为它的发展和推广做出了巨大的努力,使之成为工业过程控制中主要的和可靠的技术工具。

近几十年来,现代控制理论迅速发展,出现了许多先进的控制算法,但到目前为止,即使在微处理技术迅速发展的今天,过程控制中大部分控制规律都未能离开PID,这充分说明PID控制仍具有很强的生命力。

过程工业控制中实际应用最多的仍是常规的PID控制算法,这是因为PID控制具有结构简单、容易实现、控制效果好和鲁棒性强等特点,且PID算法原理简明,参数物理意义明确,理论分析体系完整,为广大控制工程师所熟悉。

但在生产现场往往由于参数整定不好而使PID控制器控制效果欠佳,整定的好坏不但会影响到控制质量,而且还会影响到控制器的性能。

PID控制中一个至关重要的问题,就是控制器三参数(比例系数、积分时间、微分时间)的整定。

在工业控制中,传统的PID控制至今仍处于主导地位,尤其适用于能建立数学模型的确定性控制系统,然而大量的工业过程往往具有非线性、时变不确定性等因素,难以建立其精确的数学模型,而且,在实际生产现场,由于条件常常受到限制,比如缺乏有关仪器、不允许附加扰动和调试时间短等,因此,PID参数的整定往往难以达到最优状态。

并且即使针对某一工作点获得了PID控制的最优参数,由于工业过程对象一般具有时变性,仍存在整个工作范围和保持长期工作最优的问题。

PID控制是工业控制中最常用的方法,但用其对具有复杂非线性特性的对象或过程进行控制难以达到满意的效果。

针对上述问题,已提出过多种自适应PID控制方法,但由于自适应控制是在被控对象为线性对象的前提下进行研究的,面对工业过程的非线性对象,仍存在不尽人意之处。

由于神经网络可在一定条件下逼近非线性,人们自然地将神经网络的方法与PID 控制的结构相结合,产生了基于神经网络的PID控制方法。

人工神经网络(Artificial Neural Network—ANN)是近十几年来迅速地发展起来的一门新兴交叉学科[1]。

所谓“人工神经网络”实际上是以一种简单计算—处理单元(即神经元)为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统;不仅如此,ANN还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。

神经网络具有许多优异的性能,它的可塑性、自适应性和自组织性使它具有很强的学习能力;它的并行处理机制使它求解问题的时间很短,具有满足实时性要求的潜力;它的分布存储方式使它的鲁棒性和容错性都相当好。

不同领域的科学家,对ANN有着不同的理解、不同的研究内容,并且采用不同的研究方法。

对于控制领域的研究工作者来说,ANN 的魅力在于:1、能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某些被控对象的模型或控制器模型;2、能够学习和适应不确定性系统的动态特性;3、所有定量或定性的信息都分布存储于网络内的各神经单元,从而具有很强的容错性和鲁棒性;4、采用信息的分布式并行处理,可以进行快速大量计算。

神经网络能够充分逼近任意复杂的非线性关系,具有高度的自适应和自组织性,能够学习和适应严重不确定性系统的动态特性,在解决高度非线性和严重不确定系统的控制方面具有巨大的潜力。

正因为如此,近年来在控制理论的所有分支几乎都能看到ANN的引入及应用,对于传统的PID控制当然也不例外,以各种方式应用于PID控制的新算法大量涌现,其中有一些取得了明显的效果。

系统建模与辨识是进行控制系统设计的基本前提[2],传统的系统建模方法是在理论分析的基础上,建立对象的机理模型,而对复杂系统,要得到这样的模型是非常困难的。

因此,人们常依靠实验的方法,从实验观测数据中建立能够反映系统输入—输出关系的模型,用这种方法得到的模型,其参数可能不具有明确的物理意义,然而这并不影响利用该模型进行控制系统的设计。

系统辨识实际上是一个最优化问题,优化准则的选择依赖于辨识的目的与辨识算法的复杂性等因素,传统辨识算法的基本原理就是通过建立系统的依赖于参数的模型,把辨识问题转化为对模型参数的估计问题,这类算法能较为成功地应用于线性系统或本质线性系统,但是对于本质非线性,上述辨识算法已难以付诸应用。

由于神经网络在逼近任意非线性连续函数方面具有巨大的优越性,考虑将神经网络作为一种崭新的非线性模型引入复杂系统的辨识中,利用神经网络所具有的对任意非线性映射的任意逼近能力,来模拟实际系统的输入—输出关系;而利用神经网络的自学习、自适应能力,可以方便地给出工程上易于实现的学习算法,经过训练得到动态系统的模型。

神经网络辨识不受非线性模型的限制,它依据被控系统的输入输出数据对,通过学习得到一个描述系统输入与输出关系的非线性映射,给定一个输入,即可得到一个输出,而不需要确切地知道输入与输出之间存在着怎样的数学关系。

神经网络用于系统辨识的一个优点就是不需要预先建立实际系统的辨识格式,它对系统的辨识过程就是直接学习系统的输入输出数据的过程。

神经网络学习的目的是使所要求的误差准则函数达到最小,从而归纳出隐含在系统输入输出数据中的映射关系,这个关系就是描述系统动态或静态特性的算子)(⋅f隐含在神经网络f。

当学习完成后,)(⋅内部,其表现形式如何,对外界而言是不可知的,这一点与神经网络辨识的目的是一致的。

因为所关心的并不是神经网络以什么样的形式去逼近实际系统,而只要神经网络的输出能够逼近系统在同样输入信号激励下的输出,则认为神经网络已充分描述了实际系统的特性并完成了对原系统的辨识。

神经网络具有的自学习、自组织功能和联想记忆、并行处理等优点,使其在复杂的工业控制中得到了广泛应用[3,4],对于长期困扰控制界的非线性系统和不确定性系统来说,ANN无疑是一种解决问题的有效途径。

神经网络控制是智能控制的重要方法之一,是为了处理实际系统中的不确定性、不精确性等引起的用传统控制方法难以解决的问题。

神经网络PID控制不仅包含有常规PID的控制思想,而且具有神经网络的非线性映射能力、学习能力和自适应性,使之成为不依赖模型的控制方式[5],随着控制系统的日益复杂,基于神经网络的智能PID控制算法日益受到关注。

神经网络技术和PID控制器的结合,实际上属于智能PID控制器的一类,可以通过对系统性能的学习来实现具有最佳组合的PID控制,其基本思想主要是利用神经网络的自学习功能和非线性函数的表示能力,遵从一定的最优指标,在线智能式地调整PID控制器的参数,使之适应被控对象参数以及结构的变化和输入参考信号的变化,并抵御外来扰动的影响。

由于神经网络形式的多样性,应用于PID控制器的形式也就千变万化,目前应用较多的神经网络是基于BP算法的多层前馈神经网络,这种网络反映的是系统静态的输入、输出映射关系。

近年来,采用BP神经网络的控制方法已日益引起人们的重视,由于BP 网络可以表示任意非线性函数[6],并具有自适应学习、并行分布处理和有较强的鲁棒性及容错性等特点,因此适用于对复杂非线性系统进行建模和控制。

BP网络即误差反向传播(Back Propagation—BP)神经网络,是一种有隐含层的多层前馈网络,当参数适当时,此网络能够收敛到较小的均方差,是目前被广泛应用的网络之一。

BP神经网络所用反向传播训练算法是一种迭代梯度算法,用于求解前馈网络的实际输出与期望输出间的最小均方差值,在BP神经网络中的神经元多采用S型函数作为活化函数,在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正连接强度(加权系数),以期使其误差均方值最小。

基于BP神经网络的PID控制器根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化。

BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确,通过神经网络自身的学习,可以找到某一最优控制律下的P 、I 、D 参数,即使输出层神经元的状态对应于PID 控制器的三个可调参数P K 、I K 、D K ,通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制律下的PID 控制器参数。

PID 控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用,形成控制量间相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,从变化无穷的非线性组合中可以找出最佳的关系[7]。

神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID 控制,采用BP 网络,通过调整自身加权系数,可以建立参数P K 、I K 、D K 自学习的PID 控制器。

将神经网络用于控制器的设计或直接学习计算控制器的输出(控制量),一般都要用到系统的预测输出值或其变化量来计算加权系数的修正量,但实际上,系统的预测输出值是不易直接测得的,采用BP 网络对系统进行辨识,建立被控对象的预测数学模型,用该模型所计算的预测输出来取代预测输出的实测值,以提高控制效果。

设计过程中参考了文献[8]中自适应控制实现的有关思想,在此基础上进行了部分变化。

本设计的主要设计任务是设计一个自适应神经网络PID 控制系统,通过辨识系统来辨识被控对象,由被控对象参数来设计神经网络PID 控制器,从而控制系统的输出,在辨识系统和PID 控制器中灵活运用了BP 神经网络。

采用BP 学习算法,对神经网络PID 控制器中的权值进行修正,即得到满意的P K 、I K 、D K ,从而使得输入信号经过被控对象后,能使整个闭环系统具有良好的性能指标,实现有效的控制目的。

相关文档
最新文档