BP神经网络与PID控制的结合

合集下载

bp神经网络在pid控制器参数整定中的应用

bp神经网络在pid控制器参数整定中的应用

bp神经网络在pid控制器参数整定中的应用PID控制器(PID, Proportional-Integral-Derivative)是近几十年来应用最为广泛,最成功的控制系统之一,用于正确、稳定地控制各种过程,是目前工业过程控制领域的主要技术。

目前,PID控制器的参数设置方法以人工方法为主,但由于人工方法的受限性,一般只能获得较为粗糙的参数。

在这种情况下,基于神经网络的自动参数整定方法以其快速和准确的特点得到了广泛的应用。

其中,bp神经网络是一种具有广泛应用前景的神经网络模型,它具有自适应特性,可以用于PID控制器参数整定。

首先,利用bp神经网络对过程模型进行研究,根据实际情况确定合理的PID参数,然后利用bp神经网络进行参数自动整定,构建出较为精确的控制系统,用以让过程回路的稳定性和控制精度达到最优。

此外,bp神经网络还可以应用于复杂的线性和非线性双向控制系统,如液位控制、温度控制等,增强了系统的可控性,并大大提高了控制性能和控制质量。

利用bp神经网络实现PID控制器参数自动整定,可以有效提高控制器在不同情况下的精度和可靠性,解决人工方法难以满足的实际控制需求,具有广泛的应用前景。

同时,bp模型本身也有一定的缺陷,例如计算时间长,精度不够等,因此今后有必要进行深入的研究,以发展更先进的控制方法,使之能够更全面地运用于工业过程中。

综上所述,基于bp神经网络的PID控制器参数整定技术是当今应用技术中的一个热点,具有巨大的应用潜力。

它可以有效改善PID 控制系统的性能,并且能够满足不同应用场合的需求,为工业过程控制技术的发展提供了有力的支持。

未来,将继续围绕bp神经网络模型,进行系统的性能分析及参数设计,以更好地服务工业过程控制的发展。

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID(Proportional-Integral-Derivative)控制器是一种常用的自动控制器,其通过测量系统的输出偏差,根据比例、积分和微分三个因素来控制系统的输出。

然而,传统的PID控制器难以适应复杂、非线性和时变的系统,对于这类系统的控制,神经网络已经被证明是一种有效的方法。

本文将介绍基于BP神经网络的PID控制系统设计。

二、BP神经网络简介BP神经网络(Backpropagation Neural Network)是一种常用的前向反馈型人工神经网络,其通过反向传播算法来训练网络参数,从而实现对输入数据的学习和预测。

BP神经网络拥有多层神经元,每个神经元都与下一层神经元相连,并通过权重和阈值来传递和处理输入信息。

三、PID控制器简介PID控制器由比例(Proportional)、积分(Integral)和微分(Derivative)三个部分组成,其控制输出的公式为:u(t) = Kp * e(t) + Ki * ∑e(t)dt + Kd * de(t)/dt其中,u(t)为控制器的输出,Kp、Ki、Kd为控制器的三个参数,e(t)为系统的输出偏差,∑e(t)dt为偏差的积分项,de(t)/dt为偏差的微分项。

1.数据采集和预处理:首先需要采集系统的输入和输出数据,并对其进行预处理,包括数据归一化和滤波处理等。

2.神经网络设计和训练:根据系统的输入和输出数据,设计BP神经网络的结构,并使用反向传播算法来训练网络参数。

在训练过程中,根据系统的输出偏差来调整比例、积分和微分三个参数。

3.PID控制器实现:根据训练得到的神经网络参数,实现PID控制器的功能。

在每个控制周期内,根据系统的输出偏差来计算PID控制器的输出,将其作为控制信号发送给被控制系统。

4.参数调优和性能评估:根据控制系统的实际情况,对PID控制器的参数进行调优,以提高系统的控制性能。

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计

基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。

传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。

近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。

BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。

在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。

1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。

对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。

2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。

通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。

3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。

在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。

4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。

1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。

2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。

3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。

4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。

BP神经网络PID控制

BP神经网络PID控制

BP 神经网络PID 控制BP 神经网络的原理不再赘述,采用BP 神经控制对PID 进行参数整定的原理框图如下:BP 神经网络可以根据系统运行的状态,对PID 参数Kp,Ki 和Kd 进行调节,使系统达到最优的控制状态。

经典的增量式数字PID 的控制算法为:()(1)()()(()(1))()(()2(1)(2))p I D u k u k u k u k K e k e k K e k K e k e k e k =-+∆⎧⎨∆=--++--+-⎩采用三层BP 神经网络结构。

输入层神经元个数可根据被控系统的复杂程度选取。

可从如下参数中选取,系统输入in r ,系统输出out y ,系统误差e ,和误差变量e ∆,可在系统误差e 的基础之上再加上其他参数输入,使BP 神经网络能够适应更为复杂的系统的PID 参数整定。

隐层神经元的个数视被控系统的复杂程度进行调整,一本系统复杂时,就需选用更多的隐层神经元。

输出层的神经元个数为3个,输出分别为Kp,Ki 和Kd 。

隐层神经元函数一般选取正负对称的sigmoid 函数:(2)()x xsx xe e fx e e ---=+由于Kp,Ki 和Kd 必须为正,则输出层神经元函数的输出值一般可以选取正的sigmoid 函数:(3)1()1s xf x e -=+系统性能指标取:1()(()())2in out E k r k y k =-采用梯度下降法对BP 神经网络的参数进行调整:设输入层的个数为N ,输出向量为(1)O ,隐层个数为H ,输入阵为(2)W ,为H ×N 维向量,输出层的个数为3,输入阵设为(3)W 。

令(1)(1)(1)(1)12[,,,]TN OO O O =设隐层的输入向量为(2)(1)hi W O =,hi 为列向量,第j 个隐层神经元的输入:(2)(1)1Nj ji ii hi w O ==∑,(1,2,j H =)第j 个神经元的输出为(2)()j s j ho f hi =; 输出层的输入(3)(3)I W ho =,输出为(3)(3)(3)()[,,]T s p I D Of I K K K ==按照梯度下降法修正网络权系数,按E(k)的负方向调整系统,并且加一个是搜索加快的收敛全局极小的惯性量:(3)(3)(3)()()(1)oj oj ojE k W k W k W ηα∂∆=-+∆-∂,其中η为学习速率,α为平滑因子; (3)(3)(3)(3)(3)(3)()()()()()()()()()()()oo oj o o oj O k I k E k E k y k u k W y k u k O k I k W k ∂∂∂∂∂∂∆=∂∂∂∆∂∂∂(1,2,3o =,1,2,j H =)其中(3)oj W 为(3)W 的第o 行和第j 列。

基于BP神经网络PID整定原理和算法步骤_精品

基于BP神经网络PID整定原理和算法步骤_精品

基于BP神经网络PID整定原理和算法步骤_精品1.收集实验数据:首先需要收集系统的输入和输出数据,包括输入变量(如温度、压力等)和输出变量(如阀门开度、电机转速等)。

同时,需要记录系统的环境条件,如温度、湿度等。

2.数据预处理:对收集到的数据进行预处理,包括数据清洗、去除异常值等。

确保数据质量的同时,也要注意保持数据的连续性和完整性。

3.构建神经网络:使用BP神经网络构建PID整定模型。

BP神经网络是一种具有前馈和反馈连接的多层感知器,可以用于解决非线性问题。

根据PID控制器的输入和输出关系,设计网络的输入层、隐含层和输出层。

4. 网络训练:使用收集到的实验数据对神经网络进行训练。

训练的目标是使网络的输出尽可能接近实际输出,从而建立输入和输出之间的映射关系。

可以使用误差反向传播算法(Backpropagation)来调整网络的权重和阈值。

5.网络评估:训练完成后,使用预留的一部分数据对网络进行评估。

通过比较网络的输出和实际输出,可以评估网络的准确性和稳定性。

如果评估结果不满意,可以进行网络调整和再训练。

6. PID参数计算:根据已经训练好的神经网络,可以使用PID整定算法计算PID参数值。

常用的PID整定算法包括Ziegler-Nichols方法、Chien-Hrones-Reswick方法等。

根据系统的响应特性和性能指标,选择合适的算法进行参数计算。

7.参数调整和优化:根据实际应用需求,对计算得到的PID参数进行调整和优化。

可以通过仿真和实验验证的方式,不断调整参数,直到满足系统的性能要求。

8.实际应用:将优化后的PID参数应用到实际控制系统中。

根据系统的特点和要求,可以进一步进行参数调整和优化。

同时,需要不断监测和评估系统的性能,并及时调整和优化PID参数。

综上所述,基于BP神经网络的PID整定原理和算法步骤主要包括数据收集、数据预处理、神经网络构建、网络训练、网络评估、PID参数计算、参数调整和优化以及实际应用等步骤。

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计

基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。

然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。

而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。

因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。

2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。

BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。

3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。

三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。

对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。

2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。

(完整word版)基于BP神经网络的自整定PID控制仿真

(完整word版)基于BP神经网络的自整定PID控制仿真

基于BP神经网络的自整定PID控制仿真一、实验目的1.熟悉神经网络的特征、结构及学习算法。

2.通过实验掌握神经网络自整定PID的工作原理。

3.了解神经网络的结构对控制效果的影响。

4. 掌握用Matlab实现神经网络控制系统仿真的方法。

二、实验设备及条件1.计算机系统2.Matlab仿真软件三、实验原理在工业控制中,PID控制是工业控制中最常用的方法。

这是因为PID控制器结构简单,实现简单,控制效果良好,已得到广泛应用。

但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。

为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。

利用神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。

基于BP神经网络的PID控制器结构如图4所示。

控制器由两部分组成:一是常规PID控制器,用以直接对对象进行闭环控制,且3个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。

图4中神经网络采用结构为4-5-3型的BP网络。

BP网络是一种单向传播的多层前向网络。

输入节点对应系统的运行状态量,如系统的偏差与偏差变化率,必要时要进行归一化处理。

输入变量的个数取决于被控系统的复杂程度,输出节点对应的是PID的3个可调参数。

由于输出不能为负,所以输出层活化函数取2()(1)()(1)1(1)a k y k y k u k y k -=+-+-非负的Sigmoid 函数,隐含层取正负对称的Sigmoid 函数。

本系统选取的BP 网络结构如图5所示。

网络的学习过程由正向和反向传播两部分组成。

如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得误差信号最小。

输出层节点分别对应3个可调参数K p 、K i 、K d 。

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。

下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。

一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。

在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。

二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。

2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。

3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。

4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。

5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。

6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。

7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。

8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。

9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。

10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。

三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。

2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。

3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络与PID控制的结合
BP神经网络具有逼近任意非线性函数的能力, 而且结构和学习算法简单明了。通过神经网络自学 习的能力,可以找到某一最优控制规律下的P、I、D 参数。 BP神经网络与PID控制结合后的控制器有两 部分组成: (1)经典的PID控制器,直接对被控对象过程闭 环控制,并且三个参数Kp,Ki,Kd为在线整定式。 (2)神经网络:根据系统的运行状态,调节PID 控制的参数,以期望达到某种性能指标的最优化。 即使输出层神经元的输出状态对应于PID控制器的三 个参数Kp,Ki,Kd,通过神经网络的自身学习、
BP神经网络与PID控制结合的算法可归纳为: (1) 确定BP网络的结构,给出各层加权系数的初 值,选定学习速率和惯性系数,此时神经元的比例 系数为1;采样得到r(k)和y(k),计算该时刻误差 e(k)=r(k)-y(k)。 (2) 计算神经网络各层神经元的输入、输出,输 出为PID控制器的三个可调参数Kp、Ki、Kd;根据 增量式数字PID控制算法计算PID控制器的输出u(k); 进行神经网络学习,在线调整权值,实现PID控制参 数的自适应调整。 (3) 置k=k+1,返回到(1)。
BP神经网络与PID控 制的结合
神经网络
神经网络可以指向两种,一个是生物神经网络,一 个是人工神经网络。 生物神经网络主要是指人脑的神经网络。人脑是人 类思维的物质基础,思维的功能定位在大脑皮层, 后者含有大约1011个神经元,每个神经元又通过神 经突触与大约103个其它神经元相连,形成一个高度 复杂高度灵活的动态网络。作为一门学科,生物神 经网络主要研究人脑神经网络的结构、功能及其工 作机制,意在探索人脑思维和智能活动的规律。
其输入e(t)与输出u(t)的关系为:
de(t ) u (t ) K P e(t ) K i e(t ) K d o dt
t
式中:Kp为比例系数;Ki为积分时间系数;Kd为微 分时间系数。 用途:当被控对象结构和参数不能完全掌握,或不 到精确数学模型时,控制理论其它技术难以采用时, 系统控制器结构和参数必须依靠经验和现场调试来 确定。即当我们不完全了解一个系统和被控对象﹐ 或不能有效测量手段来获系统参数时,最适合用PID 控制技术。
BP神经网络
BP(Back Propagation)神经网络是1986年由 Rumelhart和McCelland为首的科学家小组提出,是 一种按误差逆传播算法训练的多层前馈网络,是目 前应用最广泛的神经网络模型之一。 BP网络能学习和存贮大量的输入-输出模式映射 关系,而无需事前揭示描述这种映射关系的数学方 程。它的学习规则是使用梯度下降法,通过反向传 播来不断调整网络的权值和阈值,使网络的误差平 方和最小。
人工神经网络(Artificial Neural Network, 即ANN ),是20世纪80年代以来人工智能领域兴起 的研究热点。它从信息处理角度对人脑神经元网络 进行抽象,建立某种简单模型,按不同的连接方式 组成不同的网络。所以它的技术原型就是自然神经 网络。在工程与学术界也常直接简称为神经网络或 类神经网络。人工神经网络是一种运算模型,由大 量的节点(或称神经元)之间相互联接构成。 最近主要应用于模式识别、智能机器人、自动 控制、预测估计、生物、医学、经济等领域,解决 了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
周而复始的信息正向传播和误差反向传播过程,是 各层权值不断调整的过程,也是神经网络学习训练 的过程,此过程一直进行到网络输出的误差减少到 可以接受的程度,或者预先设定的学习次数为止。
PID控制
PID控制器(比例-积分-微分控制器)是一个在 工业控制应用中常见的反馈回路部件,由比例单元 P 、积分单元I 和微分单元D 组成。PID 控制的基础 是比例控制;积分控制可消除稳态误差,但可能增 加超调;微分控制可加快大惯性系统响应速度以及 减弱超调趋势。 PID控制器作为最早实用化的控制器已有近百年 历史,现在仍然是应用最广泛的工业控制器。它以 其结构简单、稳定性好、工作可靠、调整方便而成 为工业控制主要技术之一。PID控制算法分位置式和 增量式两种,工程上常用的为增量式PID控制算法。
人工神经网络中处理单元的类型分为三类:输 入单元、输出单元和隐单元。输入单元接受外部世 界的信号与数据;输出单元实现系统处理结果的输 出;隐单元是处在输入和输出单元之间,不能由系 统外部观察的单元。
输入层 隐含层 输出层
典型神经网络结构
人工神经网络具有四个基本特征: (1)非线性:非线性关系是自然界的普遍特性。大 脑的智慧就是一种非线性现象。 (2)非局限性:一个神经网络通常由多个神经元广 泛连接而成。通过单元之间的大量连接模拟大脑的 非局限性。 (3)非常定性:人工神经网络具有自适应、自组织、 自学习能力。在处理信息的同时,本身也在不断变 化。 (4)非凸性:一个系统的演化方向,在一定条件下 将取决于某个特定的状态函数。这将导致系统演化 的多样性。
调整权值,从而使其稳定状态对应于某种最优控制 规律下的PID控制参数。
学习算法
BPNN
Kp Ki Kd
r -
e
数字PID控制器
u
y
被控对象
BP神经网络与PID控制结合后的控制器结构
其中,BPNN为BP神经网络。
设控制器中的BP神经网络是一个3层BP网络,有M个 输入节点,Q个隐层节点、3个输出节点。输入节点 对应系统运行的状态,如系统不同时刻的输入量和 输出量等,必要时进行归一化处理。输出节点分别 对应PID控制器的3个可调参数KP、Ki、Kd。
总结
将神经网络与PID控制相结合,利用神经网络的 自学习能力和逼近任意函数的能力,可在线进行PID 参数调整,有效地控制较复杂的被控对象,大大改 善了常规PID控制器的性能,同时也显示了神经网络 在解决高度非线性和严重不确定系统方面的潜能。 所以BP神经网络PID控制比传统的PID控制具有更好 的控制特性。
误差反向传播
信息正向传播
3层BP神经网络结构图ห้องสมุดไป่ตู้
权值是这条路径的实现概率。在每层神经元和相邻 层的连接路径。 阀值是临界值,当外界刺激达到一定的阀值时,神 经元才会受刺激,影响下一个神经元。在每个神经 元上。(输入层神经元没有) BP神经网络权值与阈值的初值一般是随机产生的。
BP神经网络要用到BP算法。BP算法由数据流的 前向计算(正向传播)和误差信号的反向传播两个 过程构成。 BP算法的思想:输入层各神经元负责接收来自 外界的输入信息,并传递给中间层各神经元;中间 层是内部信息处理层,负责信息变换,根据信息变 化能力的需求,中间层可以设计为单隐层或者多隐 层结构;最后一个隐层传递到输出层各神经元的信 息,经进一步处理后,完成一次学习的正向传播处 理过程,由输出层向外界输出信息处理结果。当实 际输出与期望输出不符时,进入误差的反向传播阶 段。误差通过输出层,按误差梯度下降的方式修正 各层权值,向隐层、输入层逐层反传。
相关文档
最新文档