第十三章 质谱和气相色谱-质谱联用_2014分析
气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(GC-MS)一、实验目的1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。
二、实验原理气相色谱法(gas chromatography, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。
气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。
随着质谱(mass spectrometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。
气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。
目前,小型台式GC-MS已成为很多实验室的常规配置。
1. 质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。
质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。
质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。
机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5Pa。
虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。
气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。
接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。
接口一般应满足如下要求:(a)不破坏离子源的高真空,也不影响色谱分离的柱效;(b)使色谱分离后的组分尽可能多的进入离子源,流动相尽可能少进入离子源;(c)不改变色谱分离后各组分的组成和结构。
气相色谱质谱联用法

气相色谱质谱联用法
气相色谱质谱联用法(GC-MS)是一种分析技术,结合了气相色谱(GC)和质谱(MS)两种技术。
GC-MS在分离样品组分并确定它们的结构和相对含量方面具有很高的灵敏度和选择性。
GC-MS的分离原理是利用气相色谱来将混合物中的各种化合物分离出来,并将其分离后的化合物引导到质谱分析器中进行鉴定。
质谱分析器可以对每个分离出的化合物进行分子结构鉴定和化合物含量测定,同时提供化合物的质量谱特征,使得对样品的检测更为准确。
GC-MS通常用于土壤、水、空气和食品等中化学成分和药品残留的分析,以便进行环境监测、食品安全检测和制药工业等领域的研究。
它还可以检测化学物质的组成,如苯、甲醛、甲苯和酚等有机化合物。
色谱-质谱联用

同位素内标法
同位素内标的化学性质与被分析物完全相 同
能够有效的排除提取效率造成的误差 能有效排除
在毛细管气相色谱仪中,同位素内标和化 合物可能保留时间不同,但很接近
GC-MS定性
图谱库检索
商品化质谱库
NIST库
有标准化合物谱图13万
Willey库
近30万张
Pfleger, Maurer, Weber Drug and Pesticide Library
色谱-质谱联用
气相色谱质谱联用
GC-MS
GC/MS 是一种高效的分析技术 该技术利用气相色谱的分离能力让混合物
中的组分分离,并用质谱鉴定分离出来的 组分(定性分析)以及其精确的量(定量 分析)。 气相和质谱控制、数据的记录、分析都由 电脑完成。气质联用具有非常高的灵敏度 (10-15 克),并且可以分析范围非常广 泛,例如农药、环保、药物、兴奋剂等方 面的分析。
将GC-MS联用中的难点
GC-MS 联用是联用技术中困难较少的一种。 在气相色谱和质谱两种技术之间,许多操
作特性比较一致,即在气相、灵敏度、扫 描时间匹配、连续流动、温度匹配等方面 都较适应。 最大的差异在于工作气压。
色谱柱
气质联用一般使用毛细管色谱柱
直径0.1 mm to 0.53 mm 的毛细管柱.
Total ion Chromatograph
提取离子色谱图(RIC)
Reconstructed ion Chromatograph
选择离子(质量)色谱图(SIM)
GC-MS图谱
质谱图
SIM模式下利用质谱定量未分离色谱峰
GC-MS的定量方法
外标法 内标法
一般内标法 同位素内标法
气相色谱—质谱联用原理及应用

有机质谱的特点
优点: (1)定分子量准确,其它技术无法比。 (2)灵敏度高,常规10-7—10-8g,单离子检测可达
10-12g。 (3)快速,几分甚至几秒。 (4)便于混合物分析,LC/MS,MS/MS对于难分
应,可获得重复性好的方法。 2) 此外,研发在线的衍生化方法,保证代谢物的硅烷化 反应程度的完全,还可利用与代谢物结构/生理相似的标准品 ,模拟出相关代谢物潜在的影响,以提高分析的准确性。 3) 如何获得可参照的内标物实现所有代谢物的绝对定量分析 ,也将成为 GC-MS 应用于代谢组学中的研究重点。
低分辨质谱利用元素的同位素丰度,例:
(3)峰强度与结构的关系
丰度大反映离子结构稳定 在元素周期表中自上而下,从右至左,杂原
子外层未成键电子越易被电离,容纳正电荷 能力越强,含支链的地方易断,这同有机化 学基本一致,总是在分子最薄弱的地方断裂 。
质谱解析的一般步骤
(适于低分辨小分子谱图,若已经是高分辨质 谱图得到元素组成更好)
2020/3/27
30
互联网上有关GC-MS的信息资源
互联网上的搜索引擎和搜索网页 首先,可以使用一些搜索引擎或搜索网页帮助检索,较常用的有 一下几个搜索引擎和搜索网页: / / / / / 美国化学文摘服务中心 / 美国国家医学图书馆medline
(1)核对获得的谱图,扣除本底等因素引起的 失真,考虑操作条件是否适当
(2)综合样品其他知识:例如熔点,沸点,溶 解性等理化性质,样品来源,光谱,波谱数 据等.
(3) 尽可能判断出分子离子。
(4) 假设和排列可能的结构归属:高质量离 子所显示的,在裂解中失去的中性碎片, 如M-1,M-15,M-18,M-20,M-31......意 味着失H,CH3,H2O,HF,OCH3......
气相色谱-质谱联用(gc-ms)

气相色谱-质谱联用(GC-MS)一、实验目的1. 了解质谱检测器的基本组成及功能原理,学习质谱检测器的调谐方法;2. 了解色谱工作站的基本功能,掌握利用气相色谱-质谱联用仪进行定性分析的基本操作。
二、实验原理气相色谱法(gas chromato graphy, GC)是一种应用非常广泛的分离手段,它是以惰性气体作为流动相的柱色谱法,其分离原理是基于样品中的组分在两相间分配上的差异。
气相色谱法虽然可以将复杂混合物中的各个组分分离开,但其定性能力较差,通常只是利用组分的保留特性来定性,这在欲定性的组分完全未知或无法获得组分的标准样品时,对组分定性分析就十分困难了。
随着质谱(mass spect rometry, MS)、红外光谱及核磁共振等定性分析手段的发展,目前主要采用在线的联用技术,即将色谱法与其它定性或结构分析手段直接联机,来解决色谱定性困难的问题。
气相色谱-质谱联用(GC-MS)是最早实现商品化的色谱联用仪器。
目前,小型台式GC-M S已成为很多实验室的常规配置。
1.质谱仪的基本结构和功能质谱系统一般由真空系统、进样系统、离子源、质量分析器、检测器和计算机控制与数据处理系统(工作站)等部分组成。
质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的分子-离子反应。
质谱仪的高真空系统一般由机械泵和扩散泵或涡轮分子泵串联组成。
机械泵作为前级泵将真空抽到10-1-10-2Pa,然后由扩散泵或涡轮分子泵将真空度降至质谱仪工作需要的真空度10-4-10-5P a。
虽然涡轮分子泵可在十几分钟内将真空度降至工作范围,但一般仍然需要继续平衡2小时左右,充分排除真空体系内存在的诸如水分、空气等杂质以保证仪器工作正常。
气相色谱-质谱联用仪的进样系统由接口和气相色谱组成。
接口的作用是使经气相色谱分离出的各组分依次进入质谱仪的离子源。
气相色谱_质谱联用技术

气相色谱-质谱联用技术气相色谱-质谱联用技术,简称质谱联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术,在化工、石油、环境、农业、法医、生物医药等方面,已经成为一种获得广泛应用的成熟的常规分析技术。
1、产生背景色谱法是一种很好的分离手段,可以将复杂混合物中的各种组分分离开,但它的定性、鉴定结构的能力较差,并且气相色谱需要多种检测器来解决不同化合物响应值的差别问题;质谱对未知化合物的结构有很强的鉴别能力,定性专属性高,可提供准确的结构信息,灵敏度高,检测快速,但质谱法的不同离子化方式和质量分析技术有其局限性,且对未知化合物进行鉴定,需要高纯度的样本,否则杂质形成的本底对样品的质谱图产生干扰,不利于质谱图的解析。
气相色谱法对组分复杂的样品能进行有效的分离,可提供纯度高的样品,正好满足了质谱鉴定的要求。
气相色谱-质谱联用(gas chromatography-mass sepetrometry , GC-MS)技术综合了气相色谱和质谱的优点,具有GC的高分辨率和质谱的高灵敏度、强鉴别能力。
GC-MS可同时完成待测组分的分离、鉴定和定量,被广泛应用于复杂组分的分离与鉴定。
2、技术原理与特点气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。
保留时间是气象色谱进行定性的依据,而色谱峰高或峰面积是定量的手段,所以气相色谱对复杂的混合物可以进行有效地定性定量分析。
其特点在于高效的分离能力和良好的灵敏度。
由于一根色谱柱不能完全分离所有化合物,以保留时间作为定性指标的方法往往存在明显的局限性,特别是对于同分异构化合物或者同位素化合物的分离效果较差。
质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。
气相色谱-质谱联用技术

气相色谱-质谱联用技术本章目录(查看详细信息,请点击左侧目录导航)第一节气相色谱质谱联用仪器系统一、GC-MS系统的组成二、GC-MS联用中主要的技术问题三、GC-MS联用仪和气相色谱仪的主要区别四、GC-MS联用仪器的分类五、一些主要的国外GC-MS 联用仪产品简介第二节气相色谱质谱联用的接口技术一、GC-MS联用接口技术评介二、目前常用的GC-MS接口第三节气相色谱质谱联用中常用的衍生化方法一、一般介绍二、硅烷化衍生化三、酰化衍生化四、烷基化衍生化第四节气相色谱质谱联用质谱谱库和计算机检索一、常用的质谱谱库二、NIST/EPA/NIH库及其检索简介三、使用谱库检索时应注意的问题四、互联网上有关GC-MS和的信息资源第五节气相色谱质谱联用技术的应用一、GC-MS检测环境样品中的二噁英二、GC-MS在兴奋剂检测中的应用三、GC-MS区分空间异构体四、常用于GC-MS 检测提高信噪比的方法五、GC-MS(TOF)的应用气质联用仪是分析仪器中较早实现联用技术的仪器。
自1957年霍姆斯和莫雷尔首次实现GC-MS系统的组成气相色谱和质谱联用以后,这一技术得到长足的发展。
在所有联用技术中气质联用,即GC-MS发展最完善,应用最广泛。
目前从事有机物分析的实验室几乎都把GC-MS作为主要的定性确认手段之一,在很多情况下又用GC-MS进行定量分析。
另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅里叶变换质谱(FTMS)等均能和气相色谱联用。
还有一些其他的气相色谱和质谱联接的方式,如气相色谱! 燃烧炉! 同位素比质谱等。
GC-MS逐步成为分析复杂混合物最为有效的手段之一。
GC-MS联用仪系统一般由图11-3-1所示的各部分组成。
气相色谱仪分离样品中各组分,起着样品制备的作用;接口把气相色谱流出的各组分送入质谱仪进行检测,起着气相色谱和质谱之间适配器的作用,由于接口技术的不断发展,接口在形式上越来越小,也越来越简单;质谱仪对接口依次引入的各组分进行分析,成为气相色谱仪的检测器;计算机系统交互式地控制气相色谱、接口和质谱仪,进行数据采集和处理,是GC-MS的中央控制单元。
气相色谱串联质谱法

气相色谱串联质谱法
气相色谱串联质谱(GC-MS)是一种在有机物质中常用的分析方法,依赖于色谱分离和质谱检测,可以快速、准确地识别出有机物质中构成它们的细微组件及其相对含量。
GC-MS可以同时进行快速分离及检测,使得分析结果更加准确可靠。
GC-MS的基本原理是将样品中的有机物质分离出来,如烃类,然后用质谱仪进行检测,以精确测定其化学特征和结构。
具体来说,主要包括3个步骤:样品预处理、气相色谱(GC)和质谱(MS)。
首先,样品经过预处理,以增强其能够与柱表面的疏水性,使有机物质能够从样品中分离出来。
然后,将样品放入气相色谱仪,有机物将被吸入柱内,经过一段时间,有机物被分开并从柱顶端吐出,通过特定的温度和加压条件来提高速度。
最后,有机物质分离出来之后就可以使用质谱仪对其进行结构测定和组成成分分析,进而求出其相对含量,完成分析任务。
GC-MS是非常有用的有机分析技术,它运用简单及高效的方式,可以快速、准确的识别出有机物质中构成它们的细微组件及含量,在化学和分析造纸、食品、石油、药物和有机合成等领域中广泛应用。