灌砂法使用说明书(英文)
灌砂法试验操作规程

灌砂法试验操作规程灌砂筒选择①当集料的最大粒径小于15mm、测定层的厚度不超过150mm时,宜采用Φ100mm的小型灌砂筒测试。
②当集料的粒径等于或大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用Φ150mm的大型灌砂筒测试。
(1)仪具与材料①灌砂筒:有大小两种,根据需要采用。
储砂筒筒层中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端开口,直径与储砂筒的圆孔相同。
漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。
储砂筒筒底与漏斗之间设有开关,开关铁板上也有一个相同直径的圆孔。
②金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。
⑥天平或台称⑦含水量测定器具:如铝盒、烘箱等。
⑧量砂:粒径0.3-0.6mm清洁干燥的均匀砂,约20-40kg⑨盛砂的容器:塑料桶等。
⑩其他:凿子、改锥、铁锤、长把勺、小簸箕、毛刷等。
(2)标定筒下部圆锥体内砂的质量①在灌砂筒筒口高度上,向灌砂筒内装砂至距筒顶15mm左右为止。
称取装入筒内砂的质量m1,准确至1g。
以后每次标定及试验都应该维持装砂高度与质量不变。
②将开关打开,让砂自由流出,并使流出砂的体积与工地所挖试坑内的体积相当(可等于标定罐的容积),然后关上开关,称灌砂筒内剩余砂质量m5,准确至1g。
③不晃动储砂筒的砂,轻轻地将灌砂筒移至玻璃板上,将开关打开,让砂流出,直到筒内砂不再下流时,将开关关上,并细心地取走灌砂筒。
④收集并称量留在板上的砂或称量筒内的砂,准确至1g。
玻璃板上的砂就是填满锥体的砂m2。
⑤重复上述测量三次,取其平均值。
(3)标定量砂的单位质量①用水确定标定罐的容积V,准确至lmL。
②在储砂筒中装入质量为m1的砂,并将灌砂筒放在标定罐上,将开关打开,让砂流出,在整个流砂过程中,不要碰动灌砂筒,直到砂不再下流时,将开关关闭。
取下灌砂筒,称取筒内剩余砂质量m3,准确至1g③按式(6.5-1)计算填满标定罐所需砂的质量m a m a=m1-m2-m3④重复上述测量三次,取其平均值。
灌砂法中的灌砂桶相关数值确定

灌砂法中的灌砂桶相关数值确定1、灌砂桶标砂:(1)确定灌砂前砂+容器质量(g):根据灌砂筒使用说明书中的要求,在储砂筒装满砂,筒内砂的高度与筒顶距离不超过15mm,称筒内砂的重量准确至1g。
实际测定筒内砂的高度与筒顶距离为13mm,称储砂筒与筒内砂的总重量为10000g。
最终确定确定灌砂前砂+容器质量:10000g(2)确定灌砂筒下部锥体内砂质量(g):将已称重完毕的储砂筒(灌砂筒下部锥体内砂质量)放置在平整的地砖上,打开开关,让储砂筒内砂流出至不再流动,关闭开关,称剩余的储砂筒与筒内砂的重量,并记录,如此共测定三次。
用储砂筒与筒内砂的总重量分别减去三次剩余的储砂筒与筒内砂的重量,并取平均值。
获取灌砂筒下部锥体内砂质量。
第一次测定剩余的储砂筒与筒内砂的重量:9250g;第二次测定剩余的储砂筒与筒内砂的重量:9251g;第三次测定剩余的储砂筒与筒内砂的重量:9250g;计算灌砂筒下部锥体内砂质量:第一次:10000-9250=750g第二次:10000-9251=749g第三次:10000-9250=750g(750+749+750)/3=749.666g最终确定灌砂筒下部锥体内砂质量:750g(3)确定砂堆积密度(g/cm ):1、将已称重完毕的储砂筒(灌砂筒下部锥体内砂质量)放置在盛砂筒上,打开开关,让储砂筒内砂流出至不再流动,关闭开关,称重剩余的储砂筒与筒内砂的质量,并记录,如此共测定三次。
2、用储砂筒与筒内砂的总质量分别减去三次剩余的储砂筒与筒内砂质量和灌砂筒下部锥体内砂质量,并取平均值。
获取盛砂筒内砂质量。
3、测定盛砂筒内体积,并获取砂堆积密度。
第一次测定剩余的储砂筒与筒内砂的重量:5450g;第二次测定剩余的储砂筒与筒内砂的重量:5445g;第三次测定剩余的储砂筒与筒内砂的重量:5440g;计算盛砂筒内砂质量:第一次:10000-5450-750=3800g第二次:10000-5445-750=3805g第三次:10000-5440-750=3810g(3800+3805+3810)/3=3805g盛砂筒内体积:D=14.95cm H=14.95cmV=(πD2/4)×H={(3.14×14.952)/4}×14.95=2622.969cm3测定砂堆积密度:盛砂筒内砂质量/盛砂筒内体积3805g/2622.969cm3=1.4506g/cm最终确定砂堆积密度:1.451g/cm。
灌砂

(2)金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。
(3)基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。
(4)玻璃板:边长约5m~600mm的方形板。
(5)试样盘:小筒挖出的试样可用铝盒存放,大筒挖出的试样可用300mm x 500mm x 40mm的搪瓷盘存放。
(6)天平或台称:称量10 ~15kg,感量不大于1g。用于含水量测定的天平精度,对细粒土、中粒土、粗粒土宜分别为0.01g、0.1g、1.0g。
③取走基板,并将留在试验地点的量砂收回,重新将表面清扫干净。
④将基板放回清扫干净的表面上(尽量放在原处),沿基板中孔凿洞(洞的直径与灌砂筒一致)。在凿洞过程中,应注意勿使凿出的材料丢失,并随时将凿出的材料取出装人塑料袋中,不使水分蒸发,也可放在大试样盒内。试洞的深度应等于测定层厚度,但不得有下层材料混人,最后将洞内的全部凿松材料取出。对土基或基层,为防止试样盘内材料的水分蒸发,可分几次称取材料的质量。全部取出材料的总质量为mw ,准确至1g。
2.试验方法与步骤
(1)标定筒下部圆锥体内砂的质量
①在灌砂筒筒口高度上,向灌砂筒内装砂至距筒顶15mm左右为止。称取装人筒内砂的质量m1 ,准确至1g。以后每次标定及试验都应该维持装砂高度与质量不变。
②将开关打开,让砂自由流出,并使流出砂的体积与工地所挖试坑内的体积相当(可等于标定罐的容积),然后关上开关,称灌砂筒内剩余砂质量 m5 ,准确至1g。
三种常用检测路基压实度检测的方法

路基压实度测定方法及其操作规程灌砂法1 目的和适用范围1.1 本试验法适用于在现场测定基层(或底基层)、砂石路面及路基土的各种材料压实层的密度和压实度检测,但不适用于填石路堤等有大孔洞或大孔隙的材料压实层的压实度检测。
1.2 用挖坑灌砂法测定密度和压实度时,应符合下列规定:(1)当集料的最大粒径小于13.2mm、测定层的厚度不超过150mm时,宜采用φ100mm的小型灌砂筒测试。
(2)当集料的最大粒径等于或大于13.2mm,但不大于31.5mm,测定层的厚度不超过200mm时,应用φ150mm的大型灌砂筒测试。
2 仪具与材料技术要求本试验需要下列仪具与材料:(1)灌砂筒:有大小两种,根据需要采用。
型式和主要尺寸见图1及表1。
当尺寸与表中不一致,但不影响使用时,亦可使用。
储砂筒筒底中心有一个圆孔,下部装一倒置的圆锥形漏斗,漏斗上端面开口,直径与储砂筒底中心有一个圆孔,漏斗焊接在一块铁板上,铁板中心有一圆孔与漏斗上开口相接。
在储砂筒筒底与漏斗顶端铁板之间设有开关。
开关为一薄铁板,一端与筒底及漏斗铁板铰接在一起,另一端伸出筒身外,开关铁板上也有一个相同直径的圆孔。
图1 灌砂筒和标定罐(尺寸单位:mm)(2)金属标定罐:用薄铁板制作的金属罐,上端周围有一罐缘。
(3)基板:用薄铁板制作的金属方盘,盘的中心有一圆孔。
(4)玻璃板:边长约500--600mm的方形板。
(5)试样盘:小筒挖出的试样可用饭盒存放。
大筒挖出的试样可用300mm×500mm×400mm的搪瓷盘存放。
(6)天平或台秤:称量10--15kg,感量不大于1g。
用于含水量测定的天平精度,对细粒土、中粒土、粗粒土宜分别为0.01g、0.1g、1.0g。
(7)含水量测定器具:如铝盒、烘箱等。
(8)量砂:粒径0.3~0.6mm清洁干燥的砂,约20-40kg,使用前须洗净、烘干,并放置足够的时间,使其与空气的湿度达到平衡。
(9)盛砂的容器:塑料桶等。
灌砂法操作过程

灌砂法操作过程(共2页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--灌砂法操作过程:1、选定合适的仪器,确定各仪器材料使用状态正常,确定量沙数量够用。
2、向灌沙桶装沙至桶顶15mm左右,称取桶内沙的质量(M1),准确至1g。
3、打开开关让沙自由流出,并使流出沙的体积与试坑内体积或标定罐容积相当。
4、轻轻将灌沙桶移至玻璃板上,打开开关让沙流出,直至沙不再流出时关闭开关。
5、收集称量留在玻璃板上的沙或桶内余沙,准确至1g,玻璃板上的沙就是圆锥体的沙(M2)。
6、重复测量三次取平均值。
7、用水测定标定罐容积V,准确至1mL。
8、在储沙桶内装入M1的沙,打开开关使沙自由流入标定罐至不在流出时关闭开关,去下灌沙桶称取桶内余沙质量M3。
9、量沙的单位质量:p1=(M1-M2-M3)/V。
10、在实验地段选一平地清扫,将基板置上,当表面比较粗糙时,将盛有M5量沙的灌沙桶放在基板中间的圆孔上,让沙流出至停止时,称量桶内沙M6。
11、将基板放回清扫干净的表面(原处)上,沿基板中孔凿洞(洞的直径与灌沙桶一致),在凿洞过程中将凿松的材料取出装入塑料袋中(保持水分),试洞深度等于测定层厚度,不得混入下层材料,称取每次取出的松动材料的质量,将全部取出材料质量总和M8记下。
12、从挖出的全部材料中取出有代表性的去测其含水率W,对于粗粒土、水泥、石灰、粉煤灰等无机结合料稳定材料宜将取出的全部材料烘干,且不少于2000g,记为M9。
13、将基板放在试坑上,将M1沙的储沙桶下口对准基板中孔打开开关,让沙流入试坑内,停止时取走灌沙桶称取余沙M4。
14、在试洞挖好后将灌沙桶直接放在试坑上,中间不放基板,打开开关让沙流入试坑,停止时关闭开关,称取灌沙桶余沙M4。
灌砂法中的灌砂桶相关数值确定

灌砂法中的灌砂桶相关数值确定1、灌砂桶标砂:(1)确定灌砂前砂+容器质量(g):根据灌砂筒使用说明书中的要求,在储砂筒装满砂,筒内砂的高度与筒顶距离不超过15mm,称筒内砂的重量准确至1g。
实际测定筒内砂的高度与筒顶距离为13mm,称储砂筒与筒内砂的总重量为10000g。
最终确定确定灌砂前砂+容器质量:10000g(2)确定灌砂筒下部锥体内砂质量(g):将已称重完毕的储砂筒(灌砂筒下部锥体内砂质量)放置在平整的地砖上,打开开关,让储砂筒内砂流出至不再流动,关闭开关,称剩余的储砂筒与筒内砂的重量,并记录,如此共测定三次。
用储砂筒与筒内砂的总重量分别减去三次剩余的储砂筒与筒内砂的重量,并取平均值。
获取灌砂筒下部锥体内砂质量。
第一次测定剩余的储砂筒与筒内砂的重量:9250g;第二次测定剩余的储砂筒与筒内砂的重量:9251g;第三次测定剩余的储砂筒与筒内砂的重量:9250g;计算灌砂筒下部锥体内砂质量:第一次:10000-9250=750g第二次:10000-9251=749g第三次:10000-9250=750g(750+749+750)/3=749.666g最终确定灌砂筒下部锥体内砂质量:750g(3)确定砂堆积密度(g/cm ):1、将已称重完毕的储砂筒(灌砂筒下部锥体内砂质量)放置在盛砂筒上,打开开关,让储砂筒内砂流出至不再流动,关闭开关,称重剩余的储砂筒与筒内砂的质量,并记录,如此共测定三次。
2、用储砂筒与筒内砂的总质量分别减去三次剩余的储砂筒与筒内砂质量和灌砂筒下部锥体内砂质量,并取平均值。
获取盛砂筒内砂质量。
3、测定盛砂筒内体积,并获取砂堆积密度。
第一次测定剩余的储砂筒与筒内砂的重量:5450g;第二次测定剩余的储砂筒与筒内砂的重量:5445g;第三次测定剩余的储砂筒与筒内砂的重量:5440g;计算盛砂筒内砂质量:第一次:10000-5450-750=3800g第二次:10000-5445-750=3805g第三次:10000-5440-750=3810g(3800+3805+3810)/3=3805g盛砂筒内体积:D=14.95cm H=14.95cmV=(πD2/4)×H={(3.14×14.952)/4}×14.95=2622.969cm3测定砂堆积密度:盛砂筒内砂质量/盛砂筒内体积3805g/2622.969cm3=1.4506g/cm最终确定砂堆积密度:1.451g/cm。
灌砂法与灌水法PPT

VS
灌水法
操作流程包括确定试坑位置、挖出试坑、 灌水、测定水的体积和质量、计算体积密 度等步骤。
应用范围与限制的比较
灌砂法
灌砂法适用于现场测定基层(或底基层) 的压实度和沥青表面层的压实度,但不适 用于填石路堤等具有大孔隙的材料。此外 ,由于操作较复杂,需要专业人员操作, 因此成本较高。
灌水法
灌水法适用于各种材料的现场压实度检测 ,如普通混凝土、沥青混合料等,但不适 用于具有吸水性的材料。此外,由于需要 挖出试坑,可能会对路面造成一定程度的 破坏。
灌砂法是一种通过测定灌入砂筒内的砂的质量和体积来测定压实度的试验方法。它适用于现场测定基 层(或底基层)的压实度,以及沥青表面层的压实度。
灌水法
灌水法是一种通过测定灌入孔隙内的水体积来测定体积密度的试验方法。它适用于各种材料的现场压 实度检测,如普通混凝土、沥青混合料等。
操作流程的比较
灌砂法
操作流程包括选择合适粒径的砂、确定标 准砂的质量和体积、将砂灌入试筒、测定 试筒质量、测定试筒和材料的总质量、计 算压实度等步骤。
比分析,为工程验收和质量控制提供依据。
03
结论
灌砂法在路基填筑和压实度检测中具有较高的准确性和可靠性,能够
客观反映路基的质量状况。同时,该方法操作简便、快速,适合于工
程现场的批量检测。
灌水法实例
工程背景
某港口在进行软土地基处理时,需要确定地基土的含水量和密度等参数。由于该地基土多 为淤泥和粘土,选用灌水法进行取样和测定。
实验过程
在选取的测点位置,按照标准操作规程进行钻探、取样、密封、称重、数据记录等步骤。 根据实验数据,对不同土质的地基进行对比分析,为地基处理和质量控制提供依据。
结论
Pepperl+Fuchs NBB2-12GM60-A2-3G-3D 产品说明书

12Releasedate:216-11-71:12Dateofissue:216-11-7211261_eng.xml Instruction Manual electrical apparatus for hazardous areasDevice category 3G (nA)for use in hazardous areas with gas, vapour and mistCertificate of ComplianceCE markingATEX marking ¬ II 3G Ex nA IIC T6 GcThe Ex-related marking can also be printed on the enclosed label.Standards EN 60079-0:2012+A11:2013, EN 60079-15:2010Ignition protection category "n"Use is restricted to the following stated conditionsG eneral The apparatus has to be operated according to the appropriate data in the data sheetand in this instruction manual.The data stated in the data sheet are restricted by this operating instruction! The specialconditions must be observed!Installation, commissioning Laws and/or regulations and standards governing the use or intended usage goal mustbe observed. If the Ex-related marking is printed only on the supplied label, then thismust be attached in the immediate vicinity of the sensor. The sticking surface for thelabel must be clean and free from grease. The attached label must be legible and indel-ible, including in the event of possible chemical corrosion.Maintenance No changes can be made to apparatus, which are operated in hazardous areas.Repairs to these apparatus are not possible.Special conditionsMaximum operating current I L The maximum permissible load current must be restricted to the values given in the fol-lowing list. High load currents and load short-circuits are not permitted.Maximum operating voltage U Bmax The maximum permissible operating voltage UB max is restricted to the values in thefollowing list. T olerances are not permissible.Maximum permissible ambient temperature T Umax dependant of the load current I L and the max. operating voltage U BmaxInformation can be taken from the following list.at U Bmax=30 V, I L=200 mA 46 °C (114.8 °F)at U Bmax=30 V, I L=100 mA 51 °C (123.8 °F)at U Bmax=30 V, I L=50 mA 53 °C (127.4 °F)Protection from mechanical danger The sensor must not be exposed to ANY FORM of mechanical danger.Protection from UV light The sensor and the connection cable must be protected from damaging UV-radiation.This can be achieved when the sensor is used in internal areas.Protection of the connection cable The connection cable must be prevented from being subjected to tension and torsionalloading.Protection against transients Ensure transient protection is provided and that the maximum value of the transient pro-tection (140% of 85 V) is not exceeded.Electrostatic charge Electrostatic charges must be avoided on the mechanical housing components. Dan-gerous electrostatic charges on the mechanical housing components can be avoided byincorporating these in the equipotential bonding.Material selection accessories When selecting accessories, ensure that the material allows the temperature of theenclosure to rise to up to 70 °C.3R e l e a s e d a t e : 2016-11-07 10:12D a t e o f i s s u e : 2016-11-07211261_e n g .x m lInstructionManual electrical apparatus for hazardous areas Device category 3D for use in hazardous areas with combustible dust Certificate of ComplianceCE marking ATEX marking ¬ II 3D Ex tc IIIC T80°C DcThe Ex-related marking can also be printed on the enclosed label.Standards EN 60079-0:2012+A11:2013, EN 60079-31:2014Protection by enclosure "tc" Some of the information in this instruction manual is more specific than the information provided in the datasheet.G eneralThe corresponding datasheets, declarations of conformity, EC-type examination certifi-cates, certifications, and control drawings, where applicable (see datasheets), form an integral part of this document. These documents can be found at . The maximum surface temperature of the device was determined without a layer of dust on the apparatus. Some of the information in this instruction manual is more specific than the information provided in the datasheet.Installation, commissioningLaws and/or regulations and standards governing the use or intended usage goal must be observed. If the Ex-relevant identification is printed exclusively on the adhesive label provided, this label must be affixed in the immediate vicinity of the sensor! The back-ground surface to which the adhesivelabel is to be applied must be clean and free from grease! The applied label must be durable and remain legible, with due consideration of the possibility of chemical corrosion!MaintenanceNo changes can be made to apparatus, which are operated in hazardous areas.Repairs to these apparatus are not possible.Special conditionsMaximum operating current I L The maximum permissible load current must be restricted to the values given in the fol-lowing list.High load currents and load short-circuits are not permitted.Maximum operating voltage U BmaxThe maximum permissible operating voltage UBmax must be restricted to the values given in the following list. T olerances are not permitted.Maximum permissible ambient temperature T Umax dependant of the load current I L and the max. operating voltage U Bmax Information can be taken from the following list. at U Bmax =30 V , I L =200 mA 46 °C (114.8 °F) at U Bmax =30 V , I L =100 mA 51 °C (123.8 °F) at U Bmax =30 V , I L =50 mA53 °C (127.4 °F)Protection from mechanical danger The sensor must not be exposed to ANY FORM of mechanical danger.Protection from UV lightThe sensor and the connection cable must be protected from damaging UV-radiation. This can be achieved when the sensor is used in internal areas.Protection of the connection cable The connection cable must be prevented from being subjected to tension and torsional loading.Electrostatic chargeElectrostatic charges must be avoided on the mechanical housing components. Dan-gerous electrostatic charges on the mechanical housing components can be avoided by incorporating these in the equipotential bonding. Do not attach the nameplate provided in areas where electrostatic charge can build up.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INSTRUCTION MANUAL FOR SAND-CONE METHOD DENSITY TEST (SAND-CONE METHOD)1.Purpose and Range of ApplicationThe test is applied to the foundation course (or subbase course) of field measurement, density and compactness of compacted layer of various materials in foundation earth layer of the sand-gravel surface road. It is also applied to the density and compactness of asphaltic surface treatment and asphalt-injected surfacing. But it’s not allowed to apply to the compactness of macroscopic void or macrovoid. It shall be in accordance with the following requirements:(1)When the maximum particle diameter of base material is less than 15 mm and thethickness of measured course is not exceed 150 mm, it’s prefer to use 100 mm in diameter small-sized sand-cone barrel to test.(2)When the maximum particle diameter of base material is equal to or greater than15 mm but less than 40 mm and the thickness of measured course is exceed 150mm but not exceed 200 mm,it shall use 150 mm in diameter macro-sized sand-cone barrel to test.2.Instruments and MaterialsSand-cone barrel, metal calibration can, base plate, sand (0.30~0.60mm or 0.25~0.50 mm in diameter of clean and dry uniform sand)20~40g.3.Method and Procedures(1)Demarcate the mass of sands in cone bottomed of the sand-cone barrel(2)Demarcate the unit mass of quantitative sands(3)Put the sand-cone barrel filled with quantitative sands (M5) on the circular hole ofbase plate, and turn on a switch of sand-cone barrel so as to not make the sands flow into the hollow space until the sands stop flowing. Then take sand-cone barrel down and weigh (M6) 1g sands accurately.(4)Weigh the quality (Mw) of all materials in experimental hole.(5)Take the typical sample out of all materials dug up, and test the moisture content(ω%). As the test used by small sand-cone barrel, fine grained soils shall not be light than 100g and medium grained soil shall not be light than 500g. As the test used by small sand-cone barrel, fine grained soils shall not be light than 200g and medium grained soil shall not be light than1000g, then weigh the quality of coarse-grained soil or inorganic binding stable material which shall not be light than 2000g.(6)Put the base plate on the experimental holeand sand-cone barrel shall be placed inthe middle of base plate. Turn on the switch of sand-cone barrel so as to not make the sands flow into the hollow space until the sands stop flowing. Weigh the quality of sands (M4) in the barrel.(7)If the rough part of cleaned flat surface is not large, it could omit the step 3. Whenthe experimental hole is finished, we put it on the experimental hole directly and don't need to add base plate. Turn on the switch of sand-cone barrel. Ultimately, weigh the quality(M4') of the rest sands.4.Calculation(1)the quality of sands used to fill the experimental hole:When put the base plate on the experimental hole as filling the sands,Mb=M1-M4-(M5-M6)When not put the base plate on the experimental hole as filling the sands,Mb=M1-M4'-M2Mb--the quality(g) of sands as filling the experimental holeM1--the quality(g) of sands in the barrel before filling the barrel.M2--the quality(g) of sands in the cone bottomed of the sand-cone barrel(2)Wet unit weight of the materials in the experimental hole:ρw=Mw*γs/MbMw--the quality(g) of all materials taken out of the experimental hole,ys--the unit quality(g/cm^)of sands(3) Dry density (ρd)of the materials in the experimental hole:ρd=ρw/(1+0.01ω)ω--the moisture content of the materials in the experimental holeWhen the material in the experimental hole is the inorganic binding stable material, 5.The dry density shall be corrected to 0.1g/cm^3Relative density: procedures(1)Take one sample into clean enamelled plate, add water into it. The water surface shall be higher than sample 2 cm. Stir the soil sample carefully so as to expel bubble from soil sample.(2)Hold the basket by lifting hook of the balance and immerse it into overflow launder. Then don't inject water in the overflow launder until the water surface reach the height of the overflow hole. Calibrate balance to zero graduation.(3)Adjust the water temperature between 15℃-25℃. Shift the sample into basket. Keep the water surface of overflow launder by overflow hole. Weigh the water-in quality of sands(mw).(4)Lift the basket and then drain the water slightly. Pour the sample into low-cut enamelled plate, or pour the soil sample into wrung-out wet towel directly.(5)As kept in dry surface, weigh the quality(mf) of dry surface of sample in negative temperature immediately.(6)Put the sample on the low-cut plate and then place them into the baking chamber set 105℃±5℃to dry in constant weight. Take out the low-cut plate and put it into container with cover to cool at room temperature. Weigh the dry quality of soil sample.(7)Test on same standard soil sample twice in parallel way. Use the average value as the result.ⅰγb=ma/(mf-mw)γb-relative density of bulk volume of the soil samplemf-the surface dry quality of the samplemw-the water-in quality of the samplema-the oven dry quality of the sampleρb=γb*ρT or ρb=(γb-αT)*ρwρb-the density (g/cm^3)of bulk volume of the soil sampleρT -the water density at the experimental temperature TαT -the coefficient for temperature correction at the experimental temperature TⅱGrain grouping and engineering classification of soilKnow:granularity, material composition and its presentation;Stokes Lawthe size of soil grain is called granularitythe material composition of soil is the relative quality of all kinds of different grain group(present by percentage of the dry soil quality ). It can be used to describe the distribution character of different diameter of grain. Presentation in following method : schedule method, summation curve method, triangular coordinate method Similar:grading index of soil grain, Cu Cc; size of grain and grain grouping nonconformity coefficient Cu=d10/d60coefficient of curvature (or called grading coefficient) Cc=d302/d10×d60 Master:classification and naming of soil engineering(current Test Specifications of Highway and Construction); assaying of grain(1)Highway Bridge Groundwork and Basic DesignSpecifications (JTJ024-85)Basic design Specifications of construction groundwork (GB-500007-2002)Engineering classification from S pecifications of Geotechnical Engineering Investigation(GB-50021-2001)(2) Soil sorts in roadbed foundation from Design Specifications of Highway and Groundwork(JTJ 013-95)(3) Engineering classification of soil from Test Specifications of Construction(SL 237-1999) of the Ministry of Water Resources and Power(4) Engineering classification of soil from Test Specifications of Highway and Construction(JTJ 051-93)Current engineering classification of soil from Test Specifications of Highway and Construction("classification" for short) is suitable to identification, naming and description of soil for highway construction so as to proceed the qualitative evaluation of soil; soil Classification shall be in accordance with soil grain characteristic, soil plasticity index including limit of liquid and plastic and situation of organic matter in soil; the "classification" shall be confirm each grain content according to sieving method(T 0115-93); it confirms the limit of liquid and plastic by liquid-plastic limit combined method(T 0118-93); the situation of organic matter shall be distinguished in accordance with the Specification2.4.8.。