《相似三角形的性质》教案
人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。
本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。
但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。
三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。
2.培养学生的几何思维和解决问题的能力。
3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。
四. 教学重难点1.掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
通过案例教学,让学生直观地理解和掌握相似三角形的性质。
通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。
同时,教师结合性质给出相应的例题,让学生进一步理解和运用。
3.操练(15分钟)教师给出一些练习题,让学生独立完成。
教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。
(完整版)《相似三角形的性质》教案

《相似三角形的性质》教案课标要求了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.教学目标知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.教学重点相似三角形性质定理的理解与运用.教学难点探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.教学流程一、情境引入三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.二、探究归纳回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?相似三角形的对应角相等,对应边成比例.问题:相似三角形的其他几何量可能具有哪些性质?探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.图1图2问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?追问:对应高在哪两个三角形中,它们相似吗?如何证明?解:∵△ABC ∽△A ′B ′C ′∴∠B =∠B ′∵△ABD 和△A ′B ′D ′都是直角三角形∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?推广:相似三角形对应线段的比等于相似比.问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?结论:相似三角形的周长比等于相似比.思考:相似三角形面积比与相似比有什么关系?如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.21212ABCA B C BC AD S BC AD k k k S B C A DB C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.三、应用提高例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积.解:在△ABC 和△DEF 中,∵AB =2DE ,AC =2DF ,1.2DE DF AB AC ∴== ∵∠A =∠D ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2∵△ABC 的边 BC 上的高是6,面积为125,∴△DEF 的边 EF 上的高为163,2⨯= 面积为211253 5.2⨯=()应用:1.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例是多少?这个三角形的面积发生了怎样的变化?四、体验收获说一说你的收获.相似三角形的性质:1.对应角相等,对应边成比例(对应边的比等于相似比)2.对应高线、对应中线、对应角平分线的比等于相似比3.对应周长比等于相似比4.对应面积比等于相似比的平方五、拓展提升1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?3cm2cm3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.六、课内检测1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()A.5倍B.15倍C.25倍D.30倍2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()A.1:1 B.1:2 C.1:4 D.23.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()A.40cm B.50 cm C.60 cm D.70 cm4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为_______.七、布置作业必做题:教材42页习题27.2第6题.选做题:教材43页习题27.2第12题.附:板书设计教学反思:。
相似三角形的性质教案

相似三角形的性质教案相似三角形的性质教案一、教学目标:1. 理解相似三角形的概念;2. 掌握相似三角形的判定方法;3. 掌握相似三角形的性质;4. 运用相似三角形的知识解决实际问题。
二、教学重点和难点:1. 相似三角形的判定方法;2. 相似三角形的性质。
三、教学内容和教学过程:1. 引入新课教师用两个相似的三角形拼接成一个平行四边形的图形,让学生通过观察推测相似三角形的特点。
2. 概念解释教师向学生解释相似三角形的概念:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
3. 判定方法让学生尝试找出判定相似三角形的方法,并与同桌分享。
教师引导学生总结出判定相似三角形的方法:考察两个三角形的对应角是否相等以及对应边是否成比例。
4. 性质解释让学生想象两个相似三角形的比例关系,观察和分析两个相似三角形之间的性质差异。
教师引导学生总结出相似三角形的性质:(1)对应角相等性质:相似三角形的三个对应角都相等。
(2)对应边成比例性质:相似三角形的三个对应边都成比例。
(3)相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
5. 实际应用教师给出一些实际问题,让学生运用相似三角形的知识解决问题,如计算高塔的高度、测量不可直接测量的距离等。
四、课堂练习在黑板上列出一些相似三角形的题目,让学生在课堂上解答,并让他们互相交流讨论解题思路。
五、板书设计相似三角形定义:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形相似。
性质:1. 对应角相等性质:相似三角形的三个对应角都相等。
2. 对应边成比例性质:相似三角形的三个对应边都成比例。
3. 相似三角形的比例性质:如果两个三角形相似,那么它们的相似比等于任意两个对应边的比。
六、教学反思通过本节课的教学,学生能够理解并掌握相似三角形的概念、判定方法和性质。
通过实际应用的练习,学生也能够灵活运用相似三角形的知识解决问题。
相似三角形的性质优秀教案

相似三角形的性质
【课时安排】
2课时
【第一课时】
【教学目标】
(一)知识目标:经历探索相似三角形中对应线段比值与相似比的关系的过程,理解相似三角形的性质。
利用相似三角形的性质解决一些实际问题。
(二)能力目标:培养学生的探索精神和合作意识;通过运用相似三角形的性质,增强学生的应用意识。
在探索过程中发展学生类比的数学思想及全面思考的思维品质。
(三)情感与价值观目标:在探索过程中发展学生积极的情感、态度、价值观,体现解决问题策略的多样。
【教学重难点】
1.相似三角形性质定理的探索及应用。
2.相似三角形的性质,有条理的表达与推理。
【教学过程】
(一)探究相似三角形对应高的比。
引入语:
在前面我们学习了相似三角形的定义和判定条件,知道相似三角形的对应角相等,对应边成比例。
那么,在两个相似三角形中是否只有对应角相等、对应边成比例这个性质呢?本节课我们将研究相似三角形的其他性质。
探究活动一:
在生活中,我们经常利用相似的知识解决建筑类问题。
如图,小王依据图纸上的△ABC,以1∶2的比例建造了模型房梁△A'B'C',CD和C'D'分别是它们的立柱。
第3题图
比是______。
5.如图,梯形DBCE中,DE//BC,若S△EOD∶S△BOC =1∶9,求DE∶BC的值。
相似三角形的性质数学教案

相似三角形的性质数学教案
标题:相似三角形的性质
一、教学目标:
1. 理解并掌握相似三角形的定义。
2. 掌握相似三角形的基本性质,并能够应用这些性质解决实际问题。
3. 培养学生的空间观念和逻辑推理能力。
二、教学重点与难点:
1. 教学重点:理解相似三角形的定义和性质。
2. 教学难点:运用相似三角形的性质解决实际问题。
三、教学过程:
(一)引入新课
通过一些生活中的实例引出相似的概念,激发学生的学习兴趣。
(二)新课讲解
1. 定义:如果两个三角形的对应角相等,那么这两个三角形就叫做相似三角形。
2. 性质:相似三角形的对应边成比例,对应高的比等于对应边的比,对应中线的比等于对应边的比,对应角平分线的比也等于对应边的比。
(三)例题解析
1. 选择适当的题目进行示范,让学生理解和掌握如何运用相似三角形的性质解决问题。
2. 让学生自己尝试解答一些题目,教师在一旁指导。
(四)课堂练习
设计一些练习题,让学生巩固所学的知识。
(五)小结与作业
1. 小结本节课的主要内容和学习的重点。
2. 分配一些课后作业,让学生在课后继续复习和巩固所学知识。
四、教学反思
在教学结束后,对整个教学过程进行反思,总结成功之处和需要改进的地方。
相似三角形的性质教案

相似三角形的性质教案一、教学目标:1.知识目标:了解相似三角形的概念和相似三角形的性质。
2.能力目标:能够判断给定的两个三角形是否相似,并应用相似三角形的性质解决实际问题。
3.情感目标:培养学生的逻辑思维能力和解决问题的能力,并培养学生对数学知识的兴趣。
二、教学重难点:1.教学重点:相似三角形的性质。
2.教学难点:判断相似三角形和应用相似三角形的性质解决问题。
三、教学过程:1.激发兴趣:通过一个关于相似三角形的有趣例题,引导学生思考分析相似三角形的性质。
例题:如图,已知ΔABC ∼ΔDEF,且 AB = 3cm,BC = 4cm,AC = 5cm,DE = 6cm,寻找 x,使得 DF = x cm,EF = 8cm。
(图略)让学生思考一下,如何求得x的值?2.呈现知识:引入相似三角形的概念和性质。
(1)引入相似三角形的概念:如果两个三角形的对应角相等,那么这两个三角形是相似的。
记作ΔABC∼ΔDEF。
(2)相似三角形的性质:相似三角形的对应边成比例。
即有如下比例关系:AB/DE=BC/EF=AC/DF。
3.教学拓展:通过几个例题,帮助学生理解和应用相似三角形的性质。
例题1:如图,已知ΔABC ∼ ΔDEF,且 AB = 6cm,BC = 8cm,AC= 10cm,DE = 9cm,求 DF。
(图略)解:根据相似三角形的性质,可得AB/DE=BC/EF=AC/DF。
代入已知条件,得6/9=8/EF=10/DF。
由此可得EF = (9×8)/6 = 12cm,DF = (10×9)/6 = 15cm。
例题2:如图,已知ΔABC ∼ ΔDEF,且 AB = 4cm,AC = 8cm,DE= 10cm,以 DF 为底边,求ΔDFG 的高 GH。
(图略)解:根据相似三角形的性质,可得AB/DE=AC/DF。
代入已知条件,得 4/10 = 8/DF,解得 DF = 20/4 = 5cm。
4.7.1《相似三角形的性质》教案

(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-应用相似三角形性质解决实际问题,如证明几何问题、计算长度等。
-重点举例:
a.证明两个三角形相似,并运用相似性质计算未知长度。
b.利用相似三角形性质解释生活中的实际问题,如建筑设计、摄影等。
2.教学难点
-理解相似三角形的性质及其证明过程Байду номын сангаас尤其是对应高的比相等和对应中线的比相等。
-掌握相似三角形的判定方法,能够正确区分和应用AA、SAS、SSS相似定理。
在学生小组讨论环节,我发现有些小组在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分交流。为了提高讨论效果,我打算在下次教学中增加一些互动环节,引导学生更好地进行思想碰撞,提高他们的沟通能力和逻辑思维能力。
最后,我希望通过这次教学反思,能够让自己在今后的教学中更加得心应手,让学生的学习效果更上一层楼。
相似三角形的判定数学教学教案【优秀10篇】

相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形的性质》教案
课标要求
了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.
教学目标
知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.
情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.
教学重点
相似三角形性质定理的理解与运用.
教学难点
探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.
教学流程
一、情境引入
三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.
问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?
引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.
二、探究归纳
回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?
相似三角形的对应角相等,对应边成比例.
问题:相似三角形的其他几何量可能具有哪些性质?
探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.
图1
图2
问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?
追问:对应高在哪两个三角形中,它们相似吗?如何证明?
解:∵△ABC ∽△A ′B ′C ′
∴∠B =∠B ′
∵△ABD 和△A ′B ′D ′都是直角三角形
∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?
结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?
推广:相似三角形对应线段的比等于相似比.
问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?
结论:相似三角形的周长比等于相似比.
思考:相似三角形面积比与相似比有什么关系?
如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.
21212
ABC
A B C BC AD S BC AD k k k S B C A D
B C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.
三、应用提高
例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边
BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积. 解:在△ABC 和△DEF 中,
∵AB =2DE ,AC =2DF ,
1.2
DE DF AB AC ∴== ∵∠A =∠D ,
∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2
∵△ABC 的边 BC 上的高是6,面积为125,
∴△DEF 的边 EF 上的高为163,2
⨯= 面积为211253 5.2⨯=()
应用:
1.判断
(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )
(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )
2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''
3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例
是多少?这个三角形的面积发生了怎样的变化?
四、体验收获
说一说你的收获.
相似三角形的性质:
1.对应角相等,对应边成比例(对应边的比等于相似比)
2.对应高线、对应中线、对应角平分线的比等于相似比
3.对应周长比等于相似比
4.对应面积比等于相似比的平方
五、拓展提升
1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?
2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?
3cm2cm
3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.
六、课内检测
1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()
A.5倍B.15倍C.25倍D.30倍
2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()
A.1:1 B.1:2 C.1:4 D.2
3.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()
A.40cm B.50 cm C.60 cm D.70 cm
4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.
5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为
_______.
七、布置作业
必做题:教材42页习题27.2第6题.
选做题:教材43页习题27.2第12题.
附:板书设计
教学反思:。