2021年高等数学下考试题库(附答案)

合集下载

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )2ln 2ln f x xg x x和(B )||f x x 和2g x x(C )f xx 和2g xx(D )||x f xx和g x12.函数sin 420ln 10x x f xxax在0x 处连续,则a().(A )0 (B )14(C )1 (D )23.曲线ln y x x 的平行于直线10x y 的切线方程为(). (A )1y x (B )(1)yx (C )ln 11y x x (D )y x4.设函数||f x x ,则函数在点0x处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x 是函数4yx 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||yx 的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211fdx x x 的结果是().(A )1f C x(B )1fC x(C )1fC x(D )1fCx8.xxdxe e的结果是().(A )arctan xeC (B )arctan xe C (C )xxeeC (D )ln()xxee C9.下列定积分为零的是().(A )424arctan 1x dx x(B )44arcsin x x dx (C )112xxee dx (D )121sin xx x dx10.设f x 为连续函数,则102f x dx 等于().(A )20f f (B )1112f f (C )1202f f (D )10f f 二.填空题(每题4分,共20分)1.设函数2100xex f xx a x在0x 处连续,则a.2.已知曲线y f x 在2x处的切线的倾斜角为56,则2f .3.21x yx的垂直渐近线有条.4.21ln dx x x.5.422sin cos x x x dx.三.计算(每小题5分,共30分)1.求极限①21limxxx x ②2sin 1limx xx x x e 2.求曲线ln yx y 所确定的隐函数的导数x y .3.求不定积分①13dx x x ②220dx a xa③xxe dx四.应用题(每题10分,共20分)1.作出函数323yxx 的图像.2.求曲线22yx 和直线4y x 所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.333.24.arctanln x c5.2三.计算题1①2e②162.11xyx y3. ①11ln||23xCx②22ln||x a x C③1xe x C四.应用题1.略2.18S《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)f x x 和2g x x(B) 211xf xx 和1y x (C)f xx 和22(sin cos )g xx xx (D)2ln f x x 和2ln g x x2.设函数2sin 21112111x x x fxx xx,则1lim x f x ().(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数y f x 在点0x 处可导,且fx >0, 曲线则yf x 在点00,x f x 处的切线的倾斜角为{ }.(A)(B)2(C)锐角(D)钝角4.曲线ln y x 上某点的切线平行于直线23y x ,则该点坐标是().(A)12,ln2(B)12,ln2(C) 1,ln 22(D)1,ln 225.函数2xy x e 及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A) 若0x 为函数y f x 的驻点,则0x 必为函数y f x 的极值点. (B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在0x 处取得极值,且0f x 存在,则必有0fx =0.(D) 若函数yf x 在0x 处连续,则0fx 一定存在.7.设函数y f x 的一个原函数为12xx e ,则f x =().(A) 121x x e (B)12xx e (C)121xx e (D) 12xxe8.若f x dx F x c ,则sin cos xf x dx ( ).(A)sin F xc(B)sin F xc (C) cos F xc(D)cos F x c9.设F x 为连续函数,则102x fdx =().(A)10f f (B)21f f (C)220f f (D) 1202ff 10.定积分badx a b 在几何上的表示().(A) 线段长b a (B) 线段长a b (C) 矩形面积1a b (D) 矩形面积1b a 二.填空题(每题4分,共20分)1.设2ln 101cos 0xx f xxax, 在0x 连续,则a =________.2.设2sin y x , 则dy _________________sin d x .3.函数211x yx的水平和垂直渐近线共有_______条.4.不定积分ln x xdx ______________________.5. 定积分2121sin 11x x dx x___________.三.计算题(每小题5分,共30分) 1.求下列极限:①10lim 12xx x ②arctan 2lim 1xx x2.求由方程1yyxe 所确定的隐函数的导数x y .3.求下列不定积分:①3tan sec x xdx②220dx a xa③2xx e dx四.应用题(每题10分,共20分) 1.作出函数313yx x 的图象.(要求列出表格)2.计算由两条抛物线:22,yx y x 所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD 二填空题: 1.-22.2sinx3.34.2211ln 24x x x c5.2三.计算题:1. ①2e②12.2yxey y 3.①3sec 3x c②22lnxaxc③222xxx ec四.应用题:1.略2.13S《高数》试卷3(上)一、填空题(每小题3分, 共24分)1.函数219y x的定义域为________________________.2.设函数sin 4,0,0xx f xxa x , 则当a=_________时, f x 在0x 处连续.3. 函数221()32x f x xx的无穷型间断点为________________.4.设()f x 可导, ()xyf e , 则____________.y5. 221lim_________________.25xx xx6.321421sin 1x x dx xx=______________.7.20_______________________.x td e dtdx 8. 30yyy是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01limsin xx ex;2. 233lim9x x x; 3.1lim 1.2xxx三、求下列导数或微分(每小题5分, 共15分) 1. 2x yx , 求(0)y . 2. cos xy e, 求dy .3. 设x yxye, 求dy dx.四、求下列积分(每小题5分, 共15分)1.12sin x dx x.2.ln(1)x x dx .3.120xe dx五、(8分)求曲线1cos x t yt在2t处的切线与法线方程.六、(8分)求由曲线21,y x直线0,0y x 和1x 所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y yy的通解.八、(7分)求微分方程xy ye x满足初始条件10y 的特解.《高数》试卷3参考答案一.1.3x2.4a 3.2x 4.'()xxe f e 5.126.07.22x xe8.二阶二.1.原式=0lim1x x x2.311lim 36x x3.原式=112221lim[(1)]2xx e x三.1.221','(0)(2)2y y x2.cos sin xdyxe dx3.两边对x 求写:'(1')x yyxy ey 'x yx yey xy y y xexxy四.1.原式=lim2cos x x C2.原式=2221lim(1)()lim(1)[lim(1)]22x xx d x x d x x =22111lim(1)lim(1)(1)221221x xxx dxx x dxx x=221lim(1)[lim(1)]222xx x x x C3.原式=12212111(2)(1)222xx e d x ee五.sin 1,122dy dy ttt ydxdx且.切线:1,1022y x y x 即法线:1(),1022y x yx 即六.1221013(1)()22Sxdxx x 1122425210(1)(21)228()5315Vx dx x xdxxxx 七.特征方程:231261332(cos2sin 2)xrr riyeC x C x 八.11()dxdxxxx ye e e dxC 1[(1)]xx e C x由10,yxC1xx yex《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(x x y 的定义域是(). A 1,2 B1,2 C 1,2 D1,22、极限xxe lim 的值是().A 、B 、C 、D 、不存在3、211)1sin(limxx x(). A 、1B 、C 、21D 、214、曲线23xxy 在点)0,1(处的切线方程是()A 、)1(2x y B 、)1(4x y C 、14xyD 、)1(3x y 5、下列各微分式正确的是().A 、)(2x d xdx B 、)2(sin 2cos x d xdxC 、)5(x d dx D 、22)()(dx x d 6、设C x dxx f 2cos2)(,则)(x f ().A 、2sin xB 、2sinxC 、Cx2sinD 、2sin2x 7、dx xx ln 2(). A 、C x x 22ln 212B 、Cx 2)ln 2(21C 、Cxln 2ln D 、Cxx 2ln 18、曲线2xy,1x ,0y 所围成的图形绕y 轴旋转所得旋转体体积V().A 、104dx x B 、1ydy C 、10)1(dyy D 、14)1(dxx 9、11dx eexx().A 、21lne B 、22lne C 、31lne D 、221lne 10、微分方程xey yy22的一个特解为().A 、xe y273B 、xey73C 、xxey272D 、xey272二、填空题(每小题4分)1、设函数xxe y ,则y;2、如果322sin 3lim 0xmx x , 则m.3、113cos xdxx ;4、微分方程044yyy 的通解是. 5、函数x x x f 2)(在区间4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限xxx x11lim;2、求x xysin ln cot 212的导数;3、求函数1133xx y的微分;4、求不定积分11xdx ;5、求定积分eedx x 1ln ;6、解方程21xy x dxdy ;四、应用题(每小题10分)1、求抛物线2xy与22x y 所围成的平面图形的面积.2、利用导数作出函数323xxy 的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、xe x )2(;2、94;3、;4、xex C C y221)(;5、8,0三、1、1;2、x 3cot ;3、dxxx 232)1(6;4、C x x )11ln(212;5、)12(2e;6、Cxy2212;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12xxy 的定义域是().A 、,01,2B 、),0(0,1C 、),0()0,1(D 、),1(2、下列各式中,极限存在的是().A 、x x c o s lim 0B 、x xarctan lim C 、x xsin lim D 、xx2lim 3、xxxx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln 的平行于直线01y x 的切线方程是().A 、xyB 、)1)(1(ln x x yC 、1x yD 、)1(xy 5、已知x x y 3sin ,则dy ().A 、dx x x )3sin 33cos (B 、dx x x x )3cos 33(sinC 、dxx x)3sin 3(cos D 、dxx x x)3cos 3(sin 6、下列等式成立的是().A 、Cxdx x 111B 、Cx a dxa xxln C 、C x xdxsin cos D 、Cxxdx 211tan7、计算xdx x e x cos sin sin 的结果中正确的是(). A 、C e x sin B 、Cx e x cos sin C 、C xe x sin sin D 、C x e x )1(sin sin 8、曲线2x y,1x ,0y 所围成的图形绕x 轴旋转所得旋转体体积V (). A 、104dx x B 、10ydyC 、10)1(dyy D 、104)1(dx x 9、设a ﹥0,则dx x a a022(). A 、2a B 、22a C 、241a 0 D 、241a 10、方程()是一阶线性微分方程. A 、0ln 2x y yx B 、0y e y x C 、0sin )1(2y y y x D 、0)6(2dy x y dxy x 二、填空题(每小题4分)1、设0,0,1)(x b ax x e x f x ,则有)(lim 0x f x ,)(lim 0x f x ;2、设x xe y ,则y;3、函数)1ln()(2x x f 在区间2,1的最大值是,最小值是;4、113cos xdxx ;5、微分方程023y y y 的通解是 .三、计算题(每小题5分)1、求极限)2311(lim 21x x x x ;2、求x x y arccos 12的导数;3、求函数21x xy 的微分;4、求不定积分dx x x ln 21;5、求定积分eedx x 1ln ;6、求方程y xy y x 2满足初始条件4)21(y 的特解.四、应用题(每小题10分)1、求由曲线22x y 和直线0y x 所围成的平面图形的面积.2、利用导数作出函数49623x x x y 的图象.参考答案(B卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B. 二、1、2,b ;2、x e x )2(;3、5ln ,0;4、0;5、x x e C e C 221. 三、1、31;2、1arccos 12x x x;3、dxx x 221)1(1;4、C x ln 22;5、)12(2e ;6、x e x y 122;四、1、29;2、图略。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

5. y x3 .
三 .计算题
1. 8i 3 j 2k .
z
2.
3x 2 sin y cos y cos y
z sin y ,
x
y
2 x 3 sin y cos y sin y cos y x 3 sin 3 y cos3 y .
z
yz z
xz
3.
x
xy z 2 , y
xy z2 .
4. 32 a 3
).
A.3
B.4
C.5
5.函数 z 2xy 3 x2 2 y 2 的极大值为(
D.6 ).
A.0
B.1
C. 1
6.设 z
x2
3 xy
y 2 ,则
z x 1,2

A.6
B.7
C.8
1
D.
2
). D.9
7.若几何级数
ar n 是收敛的,则(
).
n0
A. r 1
B. r 1 C. r 1
D. r 1
8.幂级数
2
.
3 23
四 .应用题
16
1. .
3
《高等数学》试卷 3(下)
一、选择题(本题共 10 小题,每题 3 分,共 30 分)
1、二阶行列式 2 -3 的值为(

45
A 、10 B 、 20 C、 24 D 、 22
2、设 a=i+2j-k,b=2j+3k , 则 a 与 b 的向量积为(

A 、i-j+2k
2
1
x1 y 2 z
直线 L 3:
与平面 3x 2y 6z 0之间的夹角为 ____________ 。

高等数学下考试题库(含答案)

高等数学下考试题库(含答案)

精品文档n 02《高等数学》试卷1 (下)•选择题(3分10)n 1n A. p 1B. p 1C. p 1D. p 18.幕级数n x的收敛域为().n 1nA. 1,1 B1,1C.1,1 D. 1,1A. a b 0B. a b 0C. a b 0D. a b 05屈数z 33x y3xy 的极小值是().A.2B. 2C.1D. 1z =( ).6.设zxsin y ,贝U —y1, 4昴A. 一B. ——C. <2D.42.2 2a 与b 垂直的充要条件是( 4.两个向量 17.若p 级数—收敛,则( )1.点 M 1 2,3,1 到点 M 2 2,7,4 的距离M 1M 2A.3B.4C.5D.62.向量a i 2j k,b2ij ,则有(A. a // bB. a 丄 bC. a 4 -D. : a,b3屈数y1 x2 y 2 1的定义域是A. x, y 1 x 2B. x,y 1 x 2C. x, y 1x 2D x, y 1x 29.幕级数x n在收敛域内的和函数是()n 0 21 A.1 x2 2C ・-1 x1D.-2 xB・2 x10・微分方程xy yin y0的通解为()•xB・ xxD. y eA. y cey e C. y cxe填空题(4分5)2•函数 z sin xy 的全微分是 ____________________________________1 4.^^的麦克劳林级数是 ___________________________________2 x5.微分方程y 4y 4y 0的通解为三.计算题(5分6)1.设 z e u sin v ,而 u xy, v xy ,求-^,x zy2.已知隐函数z z x, y由方程x C222y z4x 2z 50确定,求,x y/ 2 23.计算 sin 、x y d ,其中D2 2x 2 2y 4 .D 四•应用题(10分2)1•一平面过点A 0,0,3且垂直于直线 AB ,其中点B 2, 1,1,则此平面方程为 _________________________ 532^33•设 z x y 3xy2/ 小 zxy 1,贝U ------x y4•如图,求两个半径相等的直交圆柱面所围成的立体的体积( R 为半径)2x5•求微分方程y 3y e 在y xo 0条件下的特解1•要用铁板做一个体积为2 m3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线y f x上任何一点的切线斜率等于自原点到该切点的连线斜率的求此曲线方程2倍,且曲线过点1,3一.选择题 CBCAD ACCBD 二填空题1.2x y2z 6 0.2. cos xy ydx xdy .3.6x 2y9y 2 1 .三.计算题Z xy, e xsin x y cos x y yz2.— X 2 X J 1 zy2y z 1 .z 2 23.dsind 6 216 34.- R 3 . 33x 2x5. y e e四.应用题1. 长、宽、高均为3 2m 时,用料最省1 2 2. y x .3《高数》试卷2 (下)一.选择题(3分10)1.点 M 1 4,3,1,M 2 7,1,2 的距离 M 1M 2 ( ).2.设两平面方程分别为 x 2y 2z 1 0和 x y 5 0,则两平面的夹角为(试卷1参考答案4.1n2n5. yC i C 2X e2x.z xy .1. e ysin x xcos x y A. 12B. 13C. 14D. 15A. 6B.4C. 3D.?3.函数 z arcs in x 2 y 2的定义域为( A. x, y 0B. x,y 0 y 2 1C. x, y 0 x 2D. x,y 0 x 2 4•点P 1, 2,1 到平面 x 2y 2z 0的距离为( A.3 B.4 C.5 D.6 5屈数z 2xy 3x 2 2y 2的极大值为( ) A.0 B.1 C. 1 1 D.- 26.设z2 小 x 3xy y 2,则—1 x 1,2 ( ).A.6B.7C.8D.9 7.若几何级数 ar n 是收敛的,则( ).n 0A. r 1B. r 1C. ” 1D. r8.幕级数 n 1 x n 的收敛域为 ( )n 0A. 1,1B. 1,1C. 1,1D.1,1sin na 9.级数 4 疋( ). n 1 nA.条件收敛B.绝对收敛 c.发散 10.微分方程xy yl ny 0的通解为 ( A. y e cx B. x — y ceC. y x e 二填空题(4分 5) x 3 1.直线l 过点A 2,2, 1且与直线y t)•D. D.不能确定 xy cxe平行,则直线I 的方程为2t2.函数z e xy 的全微分为3•曲面z 2x2 4y2在点2,1,4 处的切平面方程为 _______________________________________________ 14. 12的麦克劳林级数是__________________________ •1 x25•微分方程xdy 3ydx 0在y x11条件下的特解为________________________________ •三•计算题(5分6)1. 设a i 2j k,b2j 3k ,求a b.四.应用题(10分2)2.设z u2v uv2,而u xcosy,v xsin y,求—z3.已知隐函数z z x,y3由x 3xyz 2确定,求5.求微分方程y 3y2ax(a 0)所围的几何体的体积4a2与圆柱面x2 2 y2y 0的通解.1.试用二重积分计算由y x,y 2 x和x 4所围图形的面积.2.如图,以初速度v。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( )..4 C2.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x【4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). B.2- D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nn x 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-)9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ).A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分⨯6).1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省 .试卷1参考答案一.选择题 CBCAD ACCBD | 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-."4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ).!A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). .4 C5.函数22232y x xy z --=的极大值为( ). B.1 C.1- D.21】6.设223y xy x z ++=,则()=∂∂2,1xz ( )..7 C 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.¥2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.%试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n nx .5.3x y =. 三.计算题1.k j i238+-.!2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=.¥《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22-,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、z yz R x ,-- D 、zyz R x ,- 》6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

高等数学考试题库(附答案)-(14614)

高等数学考试题库(附答案)-(14614)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是(). (A )2ln 2ln f x xg x x和(B )||f x x 和2g x x(C )f xx 和2g xx(D )||x f xx和g x12.函数sin 420ln 10x x f xxax在0x 处连续,则a().(A )0 (B )14(C )1 (D )23.曲线ln y x x 的平行于直线10x y 的切线方程为(). (A )1y x (B )(1)yx (C )ln 11y x x (D )y x4.设函数||f x x ,则函数在点0x处().(A )连续且可导(B )连续且可微(C )连续不可导(D )不连续不可微5.点0x 是函数4yx 的().(A )驻点但非极值点(B )拐点(C )驻点且是拐点(D )驻点且是极值点6.曲线1||yx 的渐近线情况是().(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.211fdx x x 的结果是().(A )1f C x(B )1fC x(C )1fC x(D )1fCx8.xxdxe e的结果是().(A )arctan xeC (B )arctan xe C (C )xxeeC (D )ln()xxee C9.下列定积分为零的是().(A )424arctan 1x dx x(B )44arcsin x x dx (C )112xxee dx (D )121sin xx x dx10.设f x 为连续函数,则102f x dx 等于().(A )20f f (B )1112f f (C )1202f f (D )10f f 二.填空题(每题4分,共20分)1.设函数2100xex f xx a x在0x 处连续,则a.2.已知曲线y f x 在2x处的切线的倾斜角为56,则2f .3.21x yx的垂直渐近线有条.4.21ln dx x x.5.422sin cos x x x dx.三.计算(每小题5分,共30分)1.求极限①21limxxx x ②2sin 1limx xx x x e 2.求曲线ln yx y 所确定的隐函数的导数x y .3.求不定积分①13dx x x ②220dx a xa③xxe dx四.应用题(每题10分,共20分)1.作出函数323yxx 的图像.2.求曲线22yx 和直线4y x 所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.22.333.24.arctanln x c5.2三.计算题1①2e②162.11xyx y3. ①11ln||23xCx②22ln||x a x C③1xe x C四.应用题1.略2.18S《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)f x x 和2g x x(B) 211xf xx 和1y x (C)f xx 和22(sin cos )g xx xx (D)2ln f x x 和2ln g x x2.设函数2sin 21112111x x x fxx xx,则1lim x f x ().(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数y f x 在点0x 处可导,且fx >0, 曲线则yf x 在点00,x f x 处的切线的倾斜角为{ }.(A)(B)2(C)锐角(D)钝角4.曲线ln y x 上某点的切线平行于直线23y x ,则该点坐标是().(A)12,ln2(B)12,ln2(C) 1,ln 22(D)1,ln 225.函数2xy x e 及图象在1,2内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A) 若0x 为函数y f x 的驻点,则0x 必为函数y f x 的极值点. (B) 函数y f x 导数不存在的点,一定不是函数y f x 的极值点.(C) 若函数y f x 在0x 处取得极值,且0f x 存在,则必有0fx =0.(D) 若函数yf x 在0x 处连续,则0fx 一定存在.7.设函数y f x 的一个原函数为12xx e ,则f x =().(A) 121x x e (B)12xx e (C)121xx e (D) 12xxe8.若f x dx F x c ,则sin cos xf x dx ( ).(A)sin F xc(B)sin F xc (C) cos F xc(D)cos F x c9.设F x 为连续函数,则102x fdx =().(A)10f f (B)21f f (C)220f f (D) 1202ff 10.定积分badx a b 在几何上的表示().(A) 线段长b a (B) 线段长a b (C) 矩形面积1a b (D) 矩形面积1b a 二.填空题(每题4分,共20分)1.设2ln 101cos 0xx f xxax, 在0x 连续,则a =________.2.设2sin y x , 则dy _________________sin d x .3.函数211x yx的水平和垂直渐近线共有_______条.4.不定积分ln x xdx ______________________.5. 定积分2121sin 11x x dx x___________.三.计算题(每小题5分,共30分) 1.求下列极限:①10lim 12xx x ②arctan 2lim 1xx x2.求由方程1yyxe 所确定的隐函数的导数x y .3.求下列不定积分:①3tan sec x xdx②220dx a xa③2xx e dx四.应用题(每题10分,共20分) 1.作出函数313yx x 的图象.(要求列出表格)2.计算由两条抛物线:22,yx y x 所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD 二填空题: 1.-22.2sinx3.34.2211ln 24x x x c5.2三.计算题:1. ①2e②12.2yxey y 3.①3sec 3x c②22lnxaxc③222xxx ec四.应用题:1.略2.13S《高数》试卷3(上)一、填空题(每小题3分, 共24分)1.函数219y x的定义域为________________________.2.设函数sin 4,0,0xx f xxa x , 则当a=_________时, f x 在0x 处连续.3. 函数221()32x f x xx的无穷型间断点为________________.4.设()f x 可导, ()xyf e , 则____________.y5. 221lim_________________.25xx xx6.321421sin 1x x dx xx=______________.7.20_______________________.x td e dtdx 8. 30yyy是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01limsin xx ex;2. 233lim9x x x; 3.1lim 1.2xxx三、求下列导数或微分(每小题5分, 共15分) 1. 2x yx , 求(0)y . 2. cos xy e, 求dy .3. 设x yxye, 求dy dx.四、求下列积分(每小题5分, 共15分)1.12sin x dx x.2.ln(1)x x dx .3.120xe dx五、(8分)求曲线1cos x t yt在2t处的切线与法线方程.六、(8分)求由曲线21,y x直线0,0y x 和1x 所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y yy的通解.八、(7分)求微分方程xy ye x满足初始条件10y 的特解.《高数》试卷3参考答案一.1.3x2.4a 3.2x 4.'()xxe f e 5.126.07.22x xe8.二阶二.1.原式=0lim1x x x2.311lim 36x x3.原式=112221lim[(1)]2xx e x三.1.221','(0)(2)2y y x2.cos sin xdyxe dx3.两边对x 求写:'(1')x yyxy ey 'x yx yey xy y y xexxy四.1.原式=lim2cos x x C2.原式=2221lim(1)()lim(1)[lim(1)]22x xx d x x d x x =22111lim(1)lim(1)(1)221221x xxx dxx x dxx x=221lim(1)[lim(1)]222xx x x x C3.原式=12212111(2)(1)222xx e d x ee五.sin 1,122dy dy ttt ydxdx且.切线:1,1022y x y x 即法线:1(),1022y x yx 即六.1221013(1)()22Sxdxx x 1122425210(1)(21)228()5315Vx dx x xdxxxx 七.特征方程:231261332(cos2sin 2)xrr riyeC x C x 八.11()dxdxxxx ye e e dxC 1[(1)]xx e C x由10,yxC1xx yex《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(x x y 的定义域是(). A 1,2 B1,2 C 1,2 D1,22、极限xxe lim 的值是().A 、B 、C 、D 、不存在3、211)1sin(limxx x(). A 、1B 、C 、21D 、214、曲线23xxy 在点)0,1(处的切线方程是()A 、)1(2x y B 、)1(4x y C 、14xyD 、)1(3x y 5、下列各微分式正确的是().A 、)(2x d xdx B 、)2(sin 2cos x d xdxC 、)5(x d dx D 、22)()(dx x d 6、设C x dxx f 2cos2)(,则)(x f ().A 、2sin xB 、2sinxC 、Cx2sinD 、2sin2x 7、dx xx ln 2(). A 、C x x 22ln 212B 、Cx 2)ln 2(21C 、Cxln 2ln D 、Cxx 2ln 18、曲线2xy,1x ,0y 所围成的图形绕y 轴旋转所得旋转体体积V().A 、104dx x B 、1ydy C 、10)1(dyy D 、14)1(dxx 9、11dx eexx().A 、21lne B 、22lne C 、31lne D 、221lne 10、微分方程xey yy22的一个特解为().A 、xe y273B 、xey73C 、xxey272D 、xey272二、填空题(每小题4分)1、设函数xxe y ,则y;2、如果322sin 3lim 0xmx x , 则m.3、113cos xdxx ;4、微分方程044yyy 的通解是. 5、函数x x x f 2)(在区间4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限xxx x11lim;2、求x xysin ln cot 212的导数;3、求函数1133xx y的微分;4、求不定积分11xdx ;5、求定积分eedx x 1ln ;6、解方程21xy x dxdy ;四、应用题(每小题10分)1、求抛物线2xy与22x y 所围成的平面图形的面积.2、利用导数作出函数323xxy 的图象.参考答案一、1、C ;2、D ;3、C ;4、B ;5、C ;6、B ;7、B ;8、A ;9、A ;10、D ;二、1、xe x )2(;2、94;3、;4、xex C C y221)(;5、8,0三、1、1;2、x 3cot ;3、dxxx 232)1(6;4、C x x )11ln(212;5、)12(2e;6、Cxy2212;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12xxy 的定义域是().A 、,01,2B 、),0(0,1C 、),0()0,1(D 、),1(2、下列各式中,极限存在的是().A 、x x c o s lim 0B 、x xarctan lim C 、x xsin lim D 、xx2lim 3、xxxx )1(lim ().A 、eB 、2eC 、1D 、e14、曲线x x y ln 的平行于直线01y x 的切线方程是().A 、xyB 、)1)(1(ln x x yC 、1x yD 、)1(xy 5、已知x x y 3sin ,则dy ().A 、dx x x )3sin 33cos (B 、dx x x x )3cos 33(sinC 、dxx x)3sin 3(cos D 、dxx x x)3cos 3(sin 6、下列等式成立的是().A 、Cxdx x 111B 、Cx a dxa xxln C 、C x xdxsin cos D 、Cxxdx 211tan7、计算xdx x e x cos sin sin 的结果中正确的是(). A 、C e x sin B 、Cx e x cos sin C 、C xe x sin sin D 、C x e x )1(sin sin 8、曲线2x y,1x ,0y 所围成的图形绕x 轴旋转所得旋转体体积V (). A 、104dx x B 、10ydyC 、10)1(dyy D 、104)1(dx x 9、设a ﹥0,则dx x a a022(). A 、2a B 、22a C 、241a 0 D 、241a 10、方程()是一阶线性微分方程. A 、0ln 2x y yx B 、0y e y x C 、0sin )1(2y y y x D 、0)6(2dy x y dxy x 二、填空题(每小题4分)1、设0,0,1)(x b ax x e x f x ,则有)(lim 0x f x ,)(lim 0x f x ;2、设x xe y ,则y;3、函数)1ln()(2x x f 在区间2,1的最大值是,最小值是;4、113cos xdxx ;5、微分方程023y y y 的通解是 .三、计算题(每小题5分)1、求极限)2311(lim 21x x x x ;2、求x x y arccos 12的导数;3、求函数21x xy 的微分;4、求不定积分dx x x ln 21;5、求定积分eedx x 1ln ;6、求方程y xy y x 2满足初始条件4)21(y 的特解.四、应用题(每小题10分)1、求由曲线22x y 和直线0y x 所围成的平面图形的面积.2、利用导数作出函数49623x x x y 的图象.参考答案(B卷)一、1、B ;2、A ;3、D ;4、C ;5、B ;6、C ;7、D ;8、A ;9、D ;10、B. 二、1、2,b ;2、x e x )2(;3、5ln ,0;4、0;5、x x e C e C 221. 三、1、31;2、1arccos 12x x x;3、dxx x 221)1(1;4、C x ln 22;5、)12(2e ;6、x e x y 122;四、1、29;2、图略。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

高等数学下考试题库(附答案)(1)

高等数学下考试题库(附答案)(1)

《高等数学》试卷1(下)一 .选择题( 3 分10)1.点M12,3,1到点 M 2 2,7,4的距离 M1M 2() .A.3B.4C.5D.62.向量a i 2 j k ,b2i j ,则有() .A. a∥bB. a⊥bC. a,b3D. a, b43.函数y2x2y 21的定义域是() .x2y21A.x, y 1 x2y 22B.x, y 1 x 2y22C. x, y 1 x2y 22 D x, y 1 x2y224.两个向量a与b垂直的充要条件是().A. a b 0B. a b 0C. a b 0D. a b 05.函数z x3y33xy的极小值是() .A.2B.2C.1D.16.设z xsin y ,则z=() . y 1,4A.2B.2C.2D.2 227.若p级数1收敛,则() .n 1 n pA. p 1B. p1C. p1D. p18.幂级数x n的收敛域为() .n 1 nA.1,1B1,1 C.1,1 D.1,1x n9.幂级数在收敛域内的和函数是() .n 021 B.2 C.2 D.1A.1212x x x x10.微分方程 xy y ln y0 的通解为().A.y ce xB. y e xC. y cxe xD. y e cx二 .填空题( 4 分5)1.一平面过点A 0,0,3且垂直于直线AB ,其中点B 2, 1,1,则此平面方程为______________________.2.函数z sin xy的全微分是 ______________________________.3.设z x3 y 23xy3xy 1 ,则 2 z_____________________________.x y1的麦克劳林级数是 ___________________________.4.2x5.微分方程y 4 y 4 y 0 的通解为_________________________________.三 .计算题( 5 分6)1.设z e u sin v ,而 u xy, v x y ,求z , z.x y2.已知隐函数z z x, y由方程 x 2 2 y2z24x2z 5 0 确定,求z ,z .x y3.计算sin x2y 2 d,其中 D:2x 2y242.D4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程y 3 y e2 x在 y x 00 条件下的特解.四 .应用题( 10 分2)1.要用铁板做一个体积为 2 m3的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?1 2..曲线y f x 上任何一点的切线斜率等于自原点到该切点的连线斜率的2 倍,且曲线过点1,,3求此曲线方程.试卷 1 参考答案一 .选择题 CBCAD ACCBD 二 .填空题 1. 2xy 2 z 6 0.2. cos xy ydx xdy .3. 6x2y 9 y 2 1 .4.1 nxn.n 1n 025. y C 1 C 2 x e 2 x.三 .计算题1.z e xyy sin xycos x y ,z e xy x sin x y cos x y .xy2.z 2 x , z 2 y . xz 1 yz 122sind 6 2.3.d4. 16R 3 .35. y e 3 x e 2x .四 .应用题1.长、宽、高均为 3 2m 时,用料最省 .2. y1 x2 .3《高数》试卷 2(下)一 .选择题( 3 分 10)1.点 M 1 4,3,1 , M 2 7,1,2 的距离 M 1 M 2 ( ) .A. 12B. 13C. 14D. 152.设两平面方程分别为x 2y 2z 1 0和 x y 5 0 ,则两平面的夹角为().A. B. C.3D.6423.函数z arcsin x 2y 2的定义域为() .A.x, y 0 x 2y21B.x, y 0 x 2y21C. x, y 0 x2y 2D. x, y 0 x2y2224.点P1,2,1 到平面x 2 y2z50 的距离为().A.3B.4C.5D.65.函数z2xy3x2 2 y 2的极大值为() .A.0B.1C.11 D. 26.设z x23xy y 2,则z1,2() .xA.6B.7C.8D.97.若几何级数ar n是收敛的,则() .n 0A. r1B. r1C. r1D. r18.幂级数n 1 x n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数sin na是() .n 1n4A. 条件收敛B.绝对收敛C.发散D.不能确定10.微分方程xy y ln y0的通解为().A. y e cxB.y ce xC. y e xD. y cxe x二 .填空题( 4 分5)x3t1.直线l过点A 2,2, 1 且与直线y t平行,则直线 l的方程为 __________________________.z12t2.函数z e xy的全微分为___________________________.3.曲面z2x 2 4 y 2在点 2,1,4 处的切平面方程为_____________________________________.1的麦克劳林级数是 ______________________.4.1 x25.微分方程xdy 3 ydx0 在y x 11条件下的特解为 ______________________________.三 .计算题( 5 分6)1.设a i 2 j k , b 2 j 3k ,求 a b.2.设z u2 v uv2,而 u x cos y,v x sin y ,求z ,z .x y3.已知隐函数z z x, y由 x33xyz 2 确定,求z ,z .x y4.如图,求球面x 2y 2z24a 2与圆柱面 x 2y 22ax (a0 )所围的几何体的体积.5.求微分方程y3y 2y 0 的通解.四 .应用题( 10 分2)1.试用二重积分计算由yx , y 2 x 和x 4 所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律x x t .d 2 xg .(提示:当 t 0dt 2时,有 x x0,dxv0)dt试卷 2 参考答案一.选择题 CBABA CCDBA.二 .填空题x 2y 2 z11..1122.e xy ydx xdy .3. 8x8 y z 4 .4. 1 n x2n.n 05.y x3.三 .计算题1. 8i 3 j2k .2.z3x2sin ycos y cosy sin y ,z2x3sin ycosy sin y cosy x3sin3y cos3y.x yz yz z xz3.x xy z2,y xy z2.4.32 a32.3 2 35.y C1 e 2 x C2 e x.四 .应用题161..31 gt22. x v0t x0.2《高等数学》试卷3(下)一、选择题(本题共10 小题,每题 3 分,共 30 分)1、二阶行列式2-3的值为()45A 、10B、20C、 24D、222、设 a=i+2j-k,b=2j+3k,则 a 与 b 的向量积为()A 、i-j+2k B、8i-j+2k C、8i-3j+2k D、8i-3i+k3、点 P( -1、 -2、 1)到平面x+2y-2z-5=0 的距离为()A 、2B、 3C、 4D、 54、函数 z=xsiny 在点( 1,)处的两个偏导数分别为()4A 、 2 ,2,B、 2 ,2C、22225、设 x2+y 2+z2 =2Rx ,则z ,z分别为()x y 22 D 、2 2 , 2222A 、x R,y B 、x R ,y C、x R , y D、x R,y z z z z z z z z6、设圆心在原点,半径为R,面密度为x2y2的薄板的质量为()(面积 A=R 2)2B、2212A、R A2R A C、3R A D、R A27、级数(1)n x n)n的收敛半径为(n 1A 、2B、1C、 1D、 3 28、 cosx 的麦克劳林级数为()A 、( 1)nx 2nB、( 1)n x 2n C、( 1)n x 2 n D、( 1)nx2n 1 ( 2n)!(2n)!(2n)!( 2n 1)!n0n1n 0n 09、微分方程 (y``) 4+(y`) 5+y`+2=0 的阶数是()A 、一阶B 、二阶C、三阶D、四阶10、微分方程 y``+3y`+2y=0的特征根为()A 、-2, -1B、 2,1C、-2, 1 D 、 1,-2二、填空题(本题共 5 小题,每题 4 分,共 20 分)1、直线 L1: x=y=z 与直线 L :x1y3z的夹角为___________。

大学高等数学下考试题库(附答案)

大学高等数学下考试题库(附答案)

《高等数学》试卷1(下)一。

选择题(3分10)1。

点到点的距离( ).A.3 B。

4 C。

5 D.62.向量,则有().A。

∥B。

⊥ C. D。

3.函数的定义域是( ).A. B.C。

D4。

两个向量与垂直的充要条件是( ).A. B. C. D.5.函数的极小值是( ).A。

2 B。

C。

1 D。

6。

设,则=()。

A. B. C. D。

7.若级数收敛,则()。

A. B。

C。

D.8。

幂级数的收敛域为().A. B C。

D。

9。

幂级数在收敛域内的和函数是( ).A. B。

C。

D。

10。

微分方程的通解为().A. B. C。

D。

二.填空题(4分5)1.一平面过点且垂直于直线,其中点,则此平面方程为______________________.2。

函数的全微分是______________________________.3.设,则_____________________________。

4.的麦克劳林级数是___________________________.5。

微分方程的通解为_________________________________.三。

计算题(5分6)1.设,而,求2。

已知隐函数由方程确定,求3.计算,其中.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(为半径)。

5.求微分方程在条件下的特解。

四.应用题(10分2)1.要用铁板做一个体积为2的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2。

曲线上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点,求此曲线方程.《高数》试卷2(下)一。

选择题(3分10)1.点,的距离( )。

A. B. C. D.2.设两平面方程分别为和,则两平面的夹角为().A。

B。

C. D。

3。

函数的定义域为()。

A. B.C。

D.4。

点到平面的距离为( )。

A。

3 B.4 C。

5 D.65.函数的极大值为()。

A.0B.1C.D.6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》试卷1(下)欧阳光明(2021.03.07)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b a D.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ). A.0=⋅b a B.0 =⨯b a C.0 =-b a D.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D .4.求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4. ()n n n n x ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-. 4.3316R . 5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ).A.6π B.4π C.3π D.2π 3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.65.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.21 6.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n n ar 是收敛的,则( ).A.1≤rB.1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z ty tx 213平行,则直线l 的方程为__________________________.2.函数xy e z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 三.计算题(5分⨯6)1.设k j b k j i a 32,2+=-+=,求.b a⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,yz x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.四.应用题(10分⨯2)1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x . 2.()xdy ydx e xy +. 3.488=--z y x . 4.()∑∞=-021n n n x .5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 2、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22,22 B 、,2222-C 、22-22- D 、22-,225、设x2+y2+z2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、zyz R x ---, C 、zyz R x ,--D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R2AB 、2R2AC 、3R2AD 、A R 2217、级数∑∞=-1)1(n n nn x 的收敛半径为( )A 、2B 、21 C 、1 D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题(本题共5小题,每题4分,共20分) 1、直线L1:x=y=z 与直线L2:的夹角为z y x =-+=-1321___________。

直线L3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________。

2、(0.98)2.03的近似值为________,sin100的近似值为___________。

3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________。

4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________。

三、计算题(本题共6小题,每小题5分,共30分)2、求曲线x=t,y=t2,z=t3在点(1,1,1)处的切线及法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n ?,?n收敛则是条件收敛还是绝对若收敛收敛吗5、将函数f(x)=e3x 展成麦克劳林级数四、应用题(本题共2小题,每题10分,共20分)1、求表面积为a2而体积最大的长方体体积。

参考答案 一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B 10,A二、填空题 1、218arcsin,182cosar 2、0.96,0.17365 3、л 4、0,+∞ 5、ycx ce y x 11,22-== 三、计算题2、解:因为x=t,y=t2,z=t3, 所以xt=1,yt=2t,zt=3t2,所以xt|t=1=1, yt|t=1=2, zt|t=1=3 故切线方程为:312111-=-=-z y x 法平面方程为:(x-1)+2(y-1)+3(z-1)=0 即x+2y+3z=63、解:因为D 由直线y=1,x=2,y=x 围成, 所以 D :1≤y≤2y≤x≤2故:⎰⎰⎰⎰⎰=-==212132811)22(][dy y y dy xydx xyd y Dσ4、解:这是交错级数,因为。

相关文档
最新文档