五年级上册图形的面积知识点归纳
人教版五年级数学上册第6单元《图形的面积》单元分析

人教版五年级数学上册第6单元《图形的
面积》单元分析
单元介绍
本单元主要讲解图形的面积计算方法,通过研究各种图形的面积计算公式和实际问题的解决,培养学生的空间思维和数学应用能力。
研究目标
1. 理解图形面积的概念和意义;
2. 掌握计算正方形、长方形、三角形和圆的面积的方法;
3. 能够运用所学方法解决实际生活中的问题;
4. 培养学生的观察能力和解决问题的能力。
教学内容
本单元的重点内容包括:
1. 正方形的面积计算方法;
2. 长方形的面积计算方法;
3. 三角形的面积计算方法;
4. 圆的面积计算方法;
5. 小结和巩固练。
研究方法
教师采用多媒体教学、示范演示和小组合作等多种教学方法,
引导学生主动参与、积极思考,培养他们的独立研究能力和合作精神。
研究评价
学生将通过老师的评价、题的答题情况和综合测试等形式进行
研究评价。
重点评价学生的计算和解决问题的能力,学生在课堂中
的表现和练结果将作为评价的主要参考依据。
注意事项
1. 学生在研究过程中要注意理解公式的运用和解决问题的方法;
2. 学生要勤于思考,积极互动,相互研究,形成良好的研究氛围;
3. 学生在解决问题时要尽量准确,注重计算过程的合理性和思
路的清晰性;
4. 学生可以课后做一些练题巩固所学知识。
总结
本单元通过图形的面积计算,帮助学生在数学中培养空间思维和应用能力。
通过多种教学方法的应用和学习评价的指导,学生能够掌握面积计算的方法,并能够灵活运用于实际生活中解决问题。
新人教版五年级上册数学多边形的面积知识点

多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
五年级数学上册第四单元多边形的面积知识点总结北师大版

第四单元多边形的面积㈠比较图形的面积知识点:借助方格纸,能直接判断图形面积的大小。
平面图形面积大小的比较有多种方法:根据图形面积的大小,可以直接进行比较;可以借助参照物进行比较;可以运用重叠的方法进行比较;借助方格,利用数方格的的方法进行比较;直接计算面积后再进行比较等。
图形面积相同,其形状可以是不同的。
补充知识点:确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。
㈡地毯上的图形面积知识点:根据地毯上所给图案探求不规则图案面积的计算方法。
直接通过数方格的方法,得出答案的面积。
将图案进行“化整为零”式的计算,即根据图案的特点,将整体的图案分割为若干个相同面积的小图案,通过求小图案的面积,得出整个图案的面积。
采用“大面积减小面积”的方法,即通过计算相关图形的面积,得到所求的面积。
补充知识点:在解决问题时,策略和方法是多种多样的。
㈢动手做知识点:认识平行四边形、三角形与梯形的底和高。
从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。
三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。
高和底的关系是对应的。
用三角板画出平行四边形的高的方法:把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。
从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。
注意:从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高。
用三角板画出三角形的高的方法:把三角板的一条直角边对准三角形的一个顶点,另一条直角边与这个顶点的对边重合。
从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。
北师大版五年级数学上册第四单元 多边形的面积 知识点汇总

易错点:移补后图形的面积没有改变,周长可能有变化。
易错题:判断:割补后图形的面积不变,则周长也不变。
(√) 错因分析:图形割补后形状发生了变化,所以周长也可能发生变化。
如割补后的图形周长变小了。
答案:✕重点提示:1. 梯形有无数条高。
2. 在平行四边5. 只确定了底和高,并不能却定一个图形的具体形状,等底等高可以画出无数个不同形状的图形。
6. 对应的底和高互相垂直。
...........三、平行四边形的面积1. 通过割补法把平行四边形转化为长方形,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高。
平行四边形的面积=底×高;用字母表示为S=ah。
2. 长方形的长=平行四边形的底长方形的宽=平行四边形的高长方形的面积=长×宽平行四边形的面积=底×高3. 等底等高的平行四边形的面积相等。
4. 平行四边形的面积公式的应用:已知平行四边形的面积和高,求平行四边形的底,可以用“底=平行四边形的面积÷高”来解答。
四、三角形的面积求平行四边形的面积。
错解:6×7=42(cm2)错因分析:计算平行四边形的面积要用一组对应的底和高相乘。
答案:7×4=28(cm2)易错题:判断:两个面积相等的三角形一定能拼成一个平行四边形。
(√)错因分析:两个面积相等的三角形的形状不一定相同,两个完全相同的三角形才能拼成一个1. 两个完全相同的三角形能拼成一个平行四边形。
平行四边形的底和高分别是三角形的底和高。
2. 三角形的面积是与它等底等高的平行四边形面积的一半。
3. 三角形的面积=底×高÷2,用字母表示为S=ah÷2。
4. 三角形的面积公式的应用:已知三角形的面积和底,要求三角形的高,可以应用“高=三角形的面积×2÷底”来解答。
5. 等底等高的三角形的面积相等。
五、梯形的面积1. 两个完全相同的梯形,可以拼成一个平行四边形。
北师大版五年级数学上册第六单元 组合图形的面积 知识点总结

1.组合图形的意义:几个简单的图形,通过不同的方式组合而成的图形。
2.求组合图形的面积的方法:分割法,添补法、割补法。
(1)分割法:将组合图形分割成已经学过的基本图形,分别计算出所分割的图形的面积,再相加。
(2)添补法:通过添补将组合图形化成所学过的基本图形,然后减去所添图形的面积,即得组合图形的面积。
(3)割补法:将组合图形的某一部分割下来,补在具有相同边长的部分重新组合成所学过的基本图形(面积不变),再计算。
二、估算与计算不规则图形的面积
1.数方格:数方格时,把大于半格的按1格来算,小于半格的不算。
2.把原图形近似看作某个基本图形,用方格纸量出计算基本图形面积的条件,算出面积。
三、公顷、平方千米
1.公顷是测量和计算土地面积常用的单位,边长是100米的正方形土地,它的面积是1公顷,即1公顷=10000平方米。
2.平方米和公顷之间的换算方法:平方米换算成公顷时,把小数点向左移动四位。公顷换算成平方米时,把小数点向右移动四位。
3.平方千米是比公顷还大的面积单位。边长是1000米的正方形,它的面积是1平方千米。
1km2=100公顷1km2=100000的已经学过的基本图形,再进行计算。
易错题:
求图中的空白处的面积。
18×18-2×18×2=252
错因分析:做题时容易忽略中间的重叠部分的面积。
案:18×18-2×18×2+2×2=256
易混点:
高级单位转化成低级单位,要乘进率;低级单位转化成高级单位,要除以进率。
小学数学五年级上册《6.1组合图形的面积》资料计算公式

小学数学五年级上册
《组合图形的面积》资料计算公式
长方形:
{长方形面积=长×宽}
正方形:
{正方形面积=边长×边长}
平行四边形:
{平行四边形面积=底×高}
三角形:
{三角形面积=底×高÷2}
梯形:
{梯形面积=(上底+下底)×高÷2}
圆形(正圆):
{圆形(正圆)面积=圆周率×半径×半径}
圆环:
{圆形(外环)面积={圆周率×(外环半径^2-内环半径^2)} 扇形:
{圆形(扇形)面积=圆周率×半径×半径×扇形角度/360}
长方体表面积:
{长方体表面积=(长×宽+长×高+宽×高)×2}
正方体表面积:
{正方体表面积=棱长×棱长×6}
球体(正球)表面积:
{球体(正球)表面积=圆周率×半径×半径×4}
椭圆
(其中π(圆周率,a,b分别是椭圆的长半轴,短半轴的长). 半圆:
(半圆形的面积公式=圆周率×半径的平方÷2)。
五上多边形面积知识点归纳总结及习题

五年级数学上册第五单元多边形面积知识点归纳总结一、基本图形(一)长方形1、长方形面积=长×宽字母公式:s=ab长方形周长=(长+宽)×2字母公式:c=(a+b)×2(长=周长÷2-宽;宽=周长÷2-长)2、★长方形中面积、周长与长和宽之间的变化关系:(1)长方形的长加宽等于长方形周长的一半。
即 a + b = c ÷ 2(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。
(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。
(4)长方形框架拉成平行四边形,周长不变,面积变小。
(二)正方形1、正方形面积=边长×边长字母公式:s= a²或者s=a×a2、正方形周长=边长×4字母公式:c=4a 或者c= a×4(三)平行四边形1、平行四边形面积=底×高字母公式:s=ah2、★平行四边形面积公式的推导过程:剪拼、平移沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
3、★等底等高的平行四边形面积相等。
(四)三角形1、三角形面积=底× 高÷2字母公式:s=ah÷2(底=面积×2÷高;高=面积×2÷底)2、★三角形面积公式的推导过程:旋转、平移将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形的面积是这个平行四边形的面积一半。
五年级上册有关几何图形面积的公式

五年级上册有关几何图形面积的公式
1、正方形
正方形的面积=边长×边长 字母表示:2a S =
2、长方形
长方形的面积=长×宽 字母表示:b a S = 有关推论:
长=面积÷宽 字母表示:b S a ÷= 宽=面积÷长 字母表示:a S b ÷=
3、平行四边形
平行四边形的面积=底×高 字母表示:ah S = 有关推论:
底=面积÷高 字母表示:h S a ÷= 高=面积÷底 字母表示:a S h ÷=
4、三角形
三角形的面积=底×高÷2 字母表示:2÷=ah S 有关推论:
底=面积×2÷高 字母表示:h S a ÷=2 高=面积×2÷底 字母表示:a S h ÷=2
5、梯形
梯形的面积=(上底+下底)高÷2 字母表示:()2÷+=h b a S 有关推论:
上底=面积×2÷高-下底 字母表示:b h S a -÷=2 下底=面积×2÷高-上底 字母表示:a h S b -÷=2 高=面积×2÷(上底+下底) 字母表示:()b a S h +÷=2
6、组合图形
(1)由基本图形组成的图形:先分解成基本图形,再把基本图形的面积加、减;
(2)不规则图形:数格子,满一格算一格,不足一格算半格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级上册《图形的面积》知识点归纳
比较图形的面积
【知识点】:
借助方格纸,能直接判断图形面积的大小。
平面图形面积大小的比较有多种方法:
根据图形面积的大小,可以直接进行比较;可以借助参照物进行比较;可以运用重叠的方法进行比较;借助方格,利用数方格的的方法进行比较;直接计算面积后再进行比较等。
图形面积相同,其形状可以是不同的。
补充【知识点】:
确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定。
地毯上的图形面积
【知识点】:
根据地毯上所给图案探求不规则图案面积的计算方法。
直接通过数方格的方法,得出答案的面积。
将图案进行“化整为零”式的计算,即根据图案的特点,将整体的图案分割为若干个相同面积的小图案,通过求小图案的面积,得出整个图案的面积。
采用“大面积减小面积”的方法,即通过计算相关图形的面积,
得到所求的面积。
补充【知识点】:
在解决问题时,策略与方法是多种多样的。
动手做
【知识点】:
认识平行四边形、三角形与梯形的底与高。
从平行四边形一边的某一点到对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边是平行四边形的底。
三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
从梯形的两条平行线中的一条上的某一点到对边画垂直线段,这条垂直线段就是梯形的高,这条对边就是梯形的底。
高与底的关系是对应的。
用三角板画出平行四边形的高的方法。
把三角板的一条直角边与平行四边形的一条边重合,让三角板的另一条直角边过对边的某一点。
从这一点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从点到垂足)就是平行四边形一条边上的高。
注意:从一条边上的任意一点可以向它的对边画高,也可以从另一条边上的任意一点向它的对边画高,但把高画在底边延长线上在小学阶段不要求。
用三角板画出三角形的高的方法。
把三角板的一条直角边对准三角形的一个顶点,另一条直角边与
这个顶点的对边重合。
从这个顶点沿着三角板的另一条直角边向它的对边画垂线,这条垂线(从顶点到垂足)就是三角形形一条边上的高。
用三角板画梯形的高的方法。
用同样的方法,画出梯形两条平行线之间的垂直线段,就是梯形的高。
组合图形面积
【知识点】:
了解组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
计算组合图形的面积的方法是多种多样的。
一般运用的方法是“分割法”与“添补法”。
分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条的关系。
添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
运用所学的知识,解决生活中组合图形的实际问题。
探索活动:成长的脚印
【知识点】:
能正确估计不规则图形面积的大小。
能用数格子的方法,计算不规则图形的面积。
估计、计算不规则图形面积的内容主要是以方格图作为北京进行
第3 页
估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。
尝试与猜测
鸡兔同笼
【知识点】:
借助“鸡兔同笼”这个载体让学生经历列表、尝试与不断调整的过程,从中体会出解决问题的一般策略—列表。
点阵中的规律
【知识点】:
能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
在“点阵中的规律”的活动中,通过观察前后图形中点的变化规律,推理出后续图形中点的数量。