典型相关分析及其应用实例

合集下载

典型相关分析的实例

典型相关分析的实例

5组(标准化)典型变量系数(X)
U1 X1 X3 X4 X6 X2 -0.2175 0.5288 U2 0.0189 U3 0.7823 0.6032 U4 0.1289 0.1229 U5 1.5590 0.6988 1.0488 0.5852 -1.1443 0.0352 -0.8298
1.6213 -0.7370 -0.4066 -1.1704
0.3986 0.2919 0.5298 0.4586 0.3053 0.0912 0.0701 0.1669 0.1939 0.0007 0.2274 0.2739 0.5489 0.0840 0.5238 0.3877 0.2523 0.0966 0.0376 0.0510 0.0915 0.0979 0.0669 0.03770 0.0061 0.0948 0.1421 0.1757 0.0210 0.2171 * 此外,还应满足 5 a51 X 1* a56 X 6)的方差为。 U ( 1
简单相关系数矩阵
简单相关系数公式符号
Corr(X)=R11
Corr(X,Y)=R12
Corr(Y,X)=R21 R21 R12
Corr(Y)=R22
简单相关系数 描述两组变量的相关关系的缺点
只是孤立考虑单个X与单个Y间的相关 ,没有考虑X、Y变量组内部各变量间的 相关。 两组间有许多简单相关系数(实例为30 个),使问题显得复杂,难以从整体描 述。
i 1, 2, m, min(p, q) m典型相关系数 i Corr (Ui ,Vi ) 典型变量系数或典型权重 a、b
X*1,X*2,…,X*p和Y*1,Y*2,…,Y*q分别为X1, X2,…,Xp和Y1,Y2,…,Yq的正态离差标准化值。 记第一对典型相关变量间的典型相关系数为: 1 =Corr(U1,V1)(使U1与V1 间最大相关) 第二对典型相关变量间的典型相关系数为: 2 =Corr(U2,V2)(与U1、V1 无关; 使U2与V2 间最大相关) ..... ……

典型相关分析的实例

典型相关分析的实例

吉他销售和声音质量之间的关系
我们将使用典型相关分析来判断吉他销量与声 音质量之间是否存在关系。
结论和要点
典型相关分析是一种重要的数据分析工具,可用于确定两组变量之间是否存 在高度关联性。它经常用于社会科学、金融市场和医学等领域。然而,要记 住,在开始分析之前,确保你的数据完整且充分。
典型相关分析的实例介绍
运动鞋销售与收入的关系
我们将使用典型相关分析来确定是否运动鞋的 销售与收入之间存在 Nhomakorabea著的关系。
通货膨胀率和道琼斯指数的关系
我们将使用典型相关分析来确定两者之间是否 存在高度相关性,以便制定股票投资策略。
脉搏和血压之间的关系
我们将使用典型相关分析来确定脉搏和血压之 间的关系,以帮助预测高血压的风险。
将两个变量矩阵相乘,找到相关系数矩阵。
第三步: 进行典型相关分析
找到总体典型变量并计算各个典型变量的权 重。
第四步: 分析结果
通过比较典型变量的权重来评估两组变量之 间的关系以及它们之间的模式.
典型相关分析的应用领域
1
社会科学
可以用于研究某些社会群体中不同变
心理学
2
量之间的关系,如社会经济状况和健 康状况之间的关系。
探索典型相关分析
典型相关分析是一种可用于研究两组变量之间关系的统计工具。在本次演示 中,我们将介绍典型相关分析的基础知识和实际应用。
典型相关分析的定义
典型相关分析是一种多元统计工具,用于确定两个变量集合之间的关系。其 主要目的是找到两组变量之间的模式,以便可以预测它们之间的关系。
典型相关分析的基本思想
变量之间的关系
如果两组变量之间存在关系,则它们的变化将 会同时发生。
寻找相关性

典型相关分析及其应用实例

典型相关分析及其应用实例

摘要典型相关分析是多元统计分析的一个重要研究课题.它是研究两组变量之间相关的一种统计分析方法,能够有效地揭示两组变量之间的相互线性依赖关系.它借助主成分分析降维的思想,用少数几对综合变量来反映两组变量间的线性相关性质.目前它已经在众多领域的相关分析和预测分析中得到广泛应用.本文首先描述了典型相关分析的统计思想,定义了总体典型相关变量及典型相关系数,并简要概述了它们的求解思路,然后深入对样本典型相关分析的几种算法做了比较全面的论述.根据典型相关分析的推理,归纳总结了它的一些重要性质并给出了证明,接着推导了典型相关系数的显著性检验.最后通过理论与实例分析两个层面论证了典型相关分析的应用于实际生活中的可行性与优越性.【关键词】典型相关分析,样本典型相关,性质,实际应用ABSTRACTThe Canonical Correlation Analysis is an important studying topic of the Multivariate Statistical Analysis. It is the statistical analysis method which studies the correlation between two sets of variables. It can work to reveal the mutual line dependence relation availably between two sets of variables. With the help of the thought about the Principal Components, we can use a few comprehensive variables to reflect the linear relationship between two sets of variables. Nowadays It has already been used widely in the correlation analysis and forecasted analysis.This text describes the statistical thought of the Canonical Correlation Analysis firstly, and then defines the total canonical correlation variables and canonical correlation coefficient, and sum up their solution method briefly. After it I go deep into discuss some algorithm of the sample canonical correlation analysis thoroughly. According to the reasoning of the Canonical Correlation Analysis, sum up some of its important properties and give the identification, following it, I infer the significance testing about the canonical correlation coefficient. According to the analysis from the theories and the application, we can achieve the possibility and the superiority from canonical correlation analysis in the real life.【Key words】Canonical Correlation Analysis,Sample canonical correlation,Character,Practical applications目录前言 (1)第1章典型相关分析的数学描述 (2)第2章典型变量与典型相关系数 (3)2.1 总体典型相关 (3)2.2 样本典型相关 (4)2.2.1 第一对典型相关变量的解法 (4)2.2.2 典型相关变量的一般解法 (8)2.2.3 从相关矩阵出发计算典型相关 (9)第3章典型相关变量的性质 (11)第4章典型相关系数的显著性检验 (15)第5章典型相关分析的计算步骤及应用实例 (18)5.1 典型相关分析的计算步骤 (18)5.2 实例分析 (19)结语 (26)致谢 (27)参考文献 (28)附录 (29)前言典型相关分析(Canonical Correlation Analysis ,CCA)作为多元统计学的一个重要部分,是相关分析研究的一个主要内容.典型相关分析不仅其方法本身具有重要的理论意义,而且它还可以作为其他分析方法,如多重回归、判别分析和相应分析的工具,因此在多元分析方法中占有特殊的地位.典型相关的概念是在两个变量相关的基础上发展起来的.我们知道,两个随机变量的相关关系可以用它们的简单相关系数来衡量;一个随机变量与一组随机变量之间的相关关系可以用复相关系数来衡量.但考虑一组随机变量与另一组随机变量的关系时,如果运用两个变量的相关关系,分别考虑第一组每个变量和第二组中每个变量的相关,或者运用复相关关系,考虑一组变量中的每个变量和另一组变量的相关,这样做比较繁琐,抓不住要领.因此,为了用比较少的变量来反映两组变量之间的相关关系,一种考虑的思路就是类似主成分分析,考虑两组变量的线性组合,从这两个线性组合中找出最相关的综合变量,通过少数几个综合变量来反映两组变量的相关性质,这样便引出了典型相关分析.典型相关分析的基本思想是首先在每组变量中找出变量的线性组合,使其具有最大相关性,然后再在每组变量中找出第二对线性组合,使其分别与第一对线性组合不相关,而第二对本身具有最大的相关性,如此继续下去,直到两组变量之间的相关性被提取完毕为止.有了这样线性组合的最大相关,则讨论两组变量之间的相关,就转化为只研究这些线性组合的最大相关,从而减少研究变量的个数.典型相关分析是由Hotelling于1936年提出的.就目前而言,它的理论己经比较完善,计算机的发展解决了典型相关分析在应用中计算方面的困难,成为普遍应用的进行两组变量之间相关性分析技术.如在生态环境方面,用典型相关理论对预报场与因子场进行分析,实现了短期气象预测;借助典型相关,分析了植被与环境的关系;在社会生活领域,应用典型相关分析了物价指标和影响物价因素的相关关系等等.第1章 典型相关分析的数学描述一般地,假设有一组变量p X X X ,,,21 与另一组变量q Y Y Y ,,,21 ,我们要研究这两组变量之间的相关关系,如何给两组变量之间的相关性以数量的描述.当q p 1时,就是我们常见的研究两个变量X 与Y 之间的简单相关关系,其相关系数是最常见的度量,定义为:)()(),(Y Var X Var Y X Cov xy当1 p ,1 q (或1,1 p q )时,p 维随机向量'21),(p X X X X ,设),(~1p N Y X , 22211211,其中,11 是第一组变量的协方差阵,12 是第一组与第二组变量的协方差阵,22 是第二组变量的协方差阵.则称221211121R 为Y 与p X X X ,,,21 的全相关系数,全相关系数用于度量一个随机变量Y 与另一组随机变量p X X X ,,,21 的相关系数.当1, q p 时,利用主成分分析的思想,可以把多个变量与多个变量之间的相关化为两个新的综合变量之间的相关.也就是做两组变量的线性组合即X X X X U p p '2211 Y Y Y Y V q q '2211其中,'21),,,(p 和'21),,,(q 为任意非零向量,于是我们把研究两组变量之间的问题化为研究两个变量V U 与之间的相关问题,希望寻求 ,使U ,V 之间最大可能的相关,我们称这种相关为典型相关,基于这种原则的分析方法就是典型相关分析.第2章 典型变量与典型相关系数2.1 总体典型相关设有两组随机变量'21),,,(p X X X X ,'21),,,(q Y Y Y Y ,分别为维维和q p 随机向量,根据典型相关分析的思想,我们用X 和Y 的线性组合X ' 和Y ' 之间的相关性来研究两组随机变量X 和Y 之间的相关性.我们希望找到 和,使得)(‘Y X ', 最大.由相关系数的定义)()(),(),(''''''Y Var X Var Y X Cov Y X易得出对任意常数d c f e ,,,,均有),(])(,)([''''Y X d Y c f X e这说明使得相关系数最大的Y X '', 并不唯一.因此,为避免不必要的结果重复,我们在求综合变量时常常限定1)(' X Var , 1)(' Y Var于是,我们就有了下面的定义:设有两组随机变量'21),,(p X X X X ,'21),,(q Y Y Y Y ,q p 维随机向量Y X 的均值向量为零,协方差阵0 (不妨设q p ).如果存在'1111),,(p 和'1111),,(q ,使得在约束条件1)(' X Var ,1)(' Y Var 下,),(m ax ),('''1'1Y X Y X则称Y X '1'1, 是Y X ,的典型相关变量,它们之间的相关系数称为典型相关系数;其他典型相关变量定义如下:定义了前1 k 对典型相关变量之后,第k 对典型相关变量定义为:如果存在'1),,(pk k k 和'1),,(qk k k ,使得 ⑴ Y X k k '', 和前面的1 k 对典型相关变量都不相关;⑵ 1)(' X Var k ,1)(' Y Var k ; ⑶ Y X k k '' 和的相关系数最大,则称Y X k k '' 和是Y X ,的第k 对(组)典型相关变量,它们之间的相关系数称为第k 个典型相关系数(p k ,,2 ).2.2 样本典型相关以上是根据总体情况已知的情形进行,而实际研究中,总体均值向量 和协方差阵 通常是未知的,因而无法求得总体的典型相关变量和典型相关系数,首先需要根据观测到的样本数据阵对 进行估计. 2.2.1 第一对典型相关变量的解法设总体'11),,,,,(q p Y Y X X Z ,已知总体的n 次观测数据为:1)()()()(q p t t t Y X Z (n t ,,2,1 ), 于是样本数据阵为)(212122221222211121111211q p n nq n n np n n q p q p y y y x x x y y y x x xy y y x x x若假定),,(~ q p N Z 则由参考文献【2】中定理2.5.1知协方差阵 的最大似然估计为'1)()()()(1nt t t Z Z Z Z n其中Z = nt t Z n 1)(1,样本协方差矩阵S 为:22211211S S S SS 式中nj j j X X X X n S 1'11)()(1'112)()(1 Y Y X X n S j nj j 21S nj j j X X Y Y n 1')()(1 '122)()(1 Y Y Y Y n S j nj jn j j X n X 11, nj j Y n Y 11令j j X U ' ,j j Y V ' ,则样本的相关系数为nj jnj jj nj j j j V VU UV V U U V U r 1212'1)()()()(),(又因为:X X n X n U n U n j j n j j n j j '1'1'1111Y Y n Y n V n V n j j n j j n j j '1'1'111112''''1'''1)()(1)()(1S Y Y X X n V V U U n S j n j j j n j j V U jj 11''''1'''1)()(1)()(1S X X X X n U U U U n S j n j j j n j j U U jj 22''''1'''1)()(1)()(1S Y Y Y Y n V V V V n S j n j j j n j j V V jj 所以22'11'12'),(S S S V U r j j由于j U ,j V 乘以任意常数并不改变他们之间的相关系数,即不妨限定取标准化的j U 与j V ,即限定j U 及j V 的样本方差为1,故有:1 j j j j V V U U S S (2.2.1) 则 12'),(S V U r j j (2.2.2) 于是我们要求的问题就是在(2.2.1)的约束条件下,求p R ,q R ,使得式(2.2.2)达到最大.这是条件极值的问题,由拉格朗日乘子法,此问题等价于求 , ,使)1(2)1(2),(22'11'12'S S S(2.2.3) 达到最大.式中,,为拉格朗日乘数因子.对上式分别关于 , 求偏导并令其为0,得方程组:0022211112S S S S (2.2.4)分别用' ,' 左乘方程(2.2.4)得22'21'11'12'S S S S 又 '12')( S 21'S 所以'12'21')(S S也就是说,正好等于线性组合U 与V 之间的相关系数,于是(2.2.4)式可写为:0022211112 S S S S 或 022211211S S S S(2.2.5) 而式(2.2.5)有非零解的充要条件是:022211211S S S S (2.2.6)该方程左端是的q p 次多项式,因此有q p 个根.求解的高次方程(2.2.6),把求得的最大的代回方程组(2.2.5),再求得 和 ,从而得出第一对典型相关变量.具体计算时,因的高次方程(2.2.6)不易解,将其代入方程组(2.2.5)后还需求解q p 阶方程组.为了计算上的方便,我们做如下变换:用12212 S S 左乘方程组(2.2.5)的第二式,则有12212 SS 21S -02212212S S S 即 12212 S S 21S = 12S又由(2.2.5)的第一式,得 1112S S代入上式: 12212 SS 21S 0112S(0)1122112212 S S S S (2.2.7)再用111 S 左乘式(2.2.7),得(111S12212 SS 0)221p I S (2.2.8)因此,对2有p 个解,设为22221p r r r ,对 也有p 个解.类似地,用11121 S S 左乘式(2.2.5)中的第一式,则有011111211211121S S S S S S (2.2.9)又由(2.2.5)中的第二式,得2221S S代入到(2.2.8)式,有 11121( SS 12S 0)222S再以122 S 左乘上式,得0)(21211121122q I S S S S (2.2.10)因此对2有q 个解,对 也有q 个解,因此2为111S 12212 S S 21S 的特征根, 是对应于2的特征向量.同时2也是1211121122S S S S 的特征根, 为相应特征向量.而式(2.2.8)和(2.2.10)有非零解的充分必要条件为:002121112112222112212111q p I S S S S I S S S S (2.2.11)对于(2.2.11)式的第一式,由于011 S ,022 S ,所以0111S ,0122 S ,故有:2112212111S S S S 2121221221221112111S S S S S S 而2121221221221112111S S S S S S 与2111211222122122111 S S S S S S 有相同的特征根.如果记T 12212111 S S S则 2111211222122122111S S S SS S='T T类似的对式(2.2.11)的第二式,可得T T S S SSS S'21221221112111212122而'T T 与T T '有相同的非零特征根,从而推出(2.2.8)和(2.2.10)的非零特征根是相同的.设已求得'T T 的p 个特征根依次为: 022221p则T T '的q 个特征根中,除了上面的p 个外,其余的p q 个都为零.故p 个特征根排列是021 p ,, 1210 p p ,因此,只要取最大的1 ,代入方程组(2.2.5)即可求得相应的1 ,1 .令U =X '1 与Y V '1 为第一对典型相关变量,而1'112'1),( S V U r 为第一典型相关系数.可见求典型相关系数及典型相关变量的问题,就等价于求解'T T 的最大特征值及相应的特征向量. 2.2.2 典型相关变量的一般解法从样本典型相关变量的解法中,我们知道求典型相关变量和典型相关系数的问题,就是求解'T T 的最大特征值及相应的特征向量.不仅如此,求解第k 对典型相关变量和典型相关系数,类似的也是求'T T 的第k 大的特征值和相应的特征向量.下面引用参考文献【2】中定理10.1.1 来得出样本典型相关的一般求法.设总体的n 次观测数据为:1)()()()( q p t t t Y X Z (n t ,,2,1 ) 不妨设q p ,样本均值为0,协方差矩阵S 为:22211211S S S SS 0 记2122122111S S ST ,并设p 阶方阵'T T 的特征值依次为022221p (p i i ,,1,0 );而p l l l ,,,21 为相应的单位正交特征向量.令 kk l S2111,k k k S S 211221则X U k k ',Y V kk '为Y X ,第k 对典型相关变量,'k为第k 典型相关系数. 由上述分析不难看出,典型相关系数i 越大说明相应的典型变量之间的关系越密切,因此一般在实际中忽略典型相关系数很小的那些典型变量,按i 的大小只取前n 个典型变量及典型相关系数进行分析. 2.2.3 从相关矩阵出发计算典型相关以上我们从样本协方差阵S 出发,导出了样本典型相关变量和样本典型相关系数.下面我们从样本相关阵R 出发来求解样本典型相关变量和样本典型相关系数.设样本相关阵为)(ij r R ,其中jj ii ij ij s s s r / ,ij s 为样本协方差阵S 的i 行j 列元素.把R 相应剖分为22211211R R R R R 有时,Y X 和的各分量的单位不全相同,我们希望在对各分量作标准化变换之后再做典型相关.记)(1X E ,)(2Y Epp s s D 00111q p q p p p s s D ,1,1200则 111111D R D S ,222222D R D S 212112D R D S ,121221D R D S , 对Y X 和的各分量作标准化变换,即令)(111* X D X ,)(212* Y D Y现在来求*X 和*Y 的典型相关变量*'*X i ,*'*Y i ,m i ,,2,1 . **11111111X X S D S D R**11222222Y Y S D S D R **11112212X Y S D S D R **11221121Y X S D S D R于是1121122121111112112112221212121111111112112212111)()( D S S S S D D S D D S D D S D D S D R R R R因为 2112212111S S S S i i i r 2 1121122121111 D S S S S D )()(121i i i D r D 所以 2112212111R R R R *2*i i i r 式中*i i D 1 ,有111'1111'*11'* i i i i i i S D R D R同理: 1211121122R R R R *2*i i i r 式中*i i D 1 ,有122'2222'*22'* i i i i i i S D R D R ,由此可见*i ,*i 为**,Y X 的第i 对典型系数,其第i 个典型相关系数为i r ,在标准化变换下具有不变性.第3章 典型相关变量的性质根据典型相关分析的统计思想及推导,我们归纳总结了典型相关变量的一些重要性质并对总体与样本分别给出证明.性质1 同一组的典型变量互不相关 ⅰ总体典型相关设Y X 与的第i 对典型变量为X U i i ' ,Y V i i ' ,m i ,,2,1则有 0),( j i U U 0),( j i V V m j i 1 证明详见参考文献【5】. ⅱ样本典型相关设Y X 与的第i 对典型变量为X U i i ' ,Y V i i ' ,m i ,,2,1因为 '111i i U U i i S S ,'221i iVV i i S S ,m i ,,2,1 '11(,)0i j i j U U i j r U U S S ,m j i 1'22(,)0i ji j VV i j r V V S S ,m j i 1 表明由X 组成的第一组典型变量m U U U ,,,21 互不相关,且均有相同的方差1;同样,由Y 组成的第二组典型变量m V V V ,,,21 也互不相关,且也有相同的方差1.性质2 不同组的典型变量之间的相关性ⅰ总体典型相关i i i V U ),( m i ,,2,10),( j i V U m j i 1 证明详见参考文献【5】. ⅱ样本典型相关i i i i i r V U r S ),(12' , m i ,,2,1'1211''22111222(,)0,1i j i j U V i ji j j i j r U V S S S S S r i j m表明不同组的任意两个典型变量,当j i 时,相关系数为i r ;当j i 时是彼此不相关的.记'21),,,(m U U U U ,'21),,,(m V V V V ,则上述性质可用矩阵表示为 ,UU m VV m S I S IUV S或 mm IU S I V其中12(,,...,)m diag r r r性质3 原始变量与典型变量之间的关系 求出典型变量后,进一步计算原始变量与典型变量之间的相关系数矩阵,也称为典型结构.下面我们分别对总体与样本进行讨论.ⅰ总体典型相关的原始变量与典型变量的相关性详见参考文献【2】. ⅱ样本典型相关 记m p ij m A )(),,,(21 m q ij m B )(),,,(21S22211211S S S S =q p q p p q p pq p q p q p p p p p p p q p p p p pp p q p p p s s s s s s s s s s s s s s s s ,1,,1,,11,1,11,1,1,1,11,1111则A S X A X A X X n S n i i XU11'''1)()(1 B S X B X B X X n S n i i XV12'''1)()(1 A S X A X A Y Y n S n i i YU21'''1)()(1 B S Y B Y B Y Y n S n i i YV22'''1)()(1所以利用协方差进一步可以计算原始变量与典型变量之间的相关关系.若假定原始变量均为标准化变量,则通过以上计算所得到的原始变量与典型变量的协方差阵就是相关系数矩阵.1(,)pi j ik k r X U s,1(,)qi j i p k k r X V sp i ,,2,1 , m j ,,2,1,1(,)pi j i p k kjk r Y U s,1(,)qi j i p p k kjk r Y V s q i ,,2,1 , m j ,,2,1性质4 设Y X 和分别为维维和q p 随机向量,令d X C X '*,h Y G Y '*,其中C 为p p 阶非退化矩阵,d 为p 维常数向量,G 为q q 阶非退化矩阵,q h 为维常数向量.则:ⅰ对于总体典型相关有:⑴ **Y X 和的典型相关变量为*'*)(X a i 和*'*)(Y b i ,其中i i a C a 1* ,i i b G b 1* (p i ,,2,1 );而i i b a 和是Y X 和的第i 对典型相关变量的系数.⑵ ],[])(,)[(''*'**'*Y b X a Y b X a i i i i ,即线性变换不改变相关性. 证明详见参考文献【2】.ⅱ对于样本典型相关有:⑴ **Y X 和的典型相关变量为*'*)(X a i 和*'*)(Y b i ,其中i i a C a 1* ,i i b G b 1* (p i ,,2,1 );而i i b a 和是Y X 和的第i 对典型相关变量的系数.⑵ ],[])(,)[(''*'**'*Y b X a r Y b X a r i i i i ,即线性变换不改变相关性. 证明:⑴ 设**Y X 和的典型相关变量分别为*'*)(X a U i ,*'*)(Y b V i由于 i i a C a 1* ,i i b G b 1*d X C X '*,h Y G Y '*所以 d C a X a d X C C a d X C a C U i i i i '1''''1'''1)()()()()(h G b Y b h Y G G b h Y G b G V i i i i '1''''1'''1)()()()()(即有i i b a 和是Y X 和的第i 对典型相关变量的系数. ⑵ 由⑴的证明可知*'*)(X a U i d C a X a i i '1'')( *'1'''*)()(h G b Y b Y b V i i i由于d C a i '1')( 与h G b i '1')( 都是常数,所以],[])(,)([])(,)[('''1'''1''*'**'*Y b X a r h G b Y b d C a X a r Y b X a r i i i i i i i i 即有线性变换不改变相关性.性质5 简单相关、复相关和典型相关之间的关系当1 q p , Y X 与之间的(惟一)典型相关就是它们之间的简单相关;当Y X q p 与时或,11 之间的(惟一)典型相关就是它们的复相关.复相关是典型相关的一个特例,而简单相关又是复相关的一个特例.从第一个典型相关的定义可以看出,第一个典型相关系数至少同)(Y X 或的任一分量与)(X Y 或的复相关系数一样大,即使所有这些复相关系数都很小,第一个典型相关系数仍可能很大;同样,从复相关的定义也可以看出,当1 p (或1 q )时,)()(X Y Y X 或与或之间的复相关系数也不会小于)()(X Y Y X 或与或的任一分量之间的相关系数,即使所有这些相关系数都很小,复相关系数仍可能很大.第4章 典型相关系数的显著性检验设总体Z 的两组变量'21),,,(p X X X X ,'21),,,(q Y Y Y Y ,且'),(Y X Z ),(~ q p N ,在做两组变量X ,Y 的典型相关分析之前,首先应该检验两组变量是否相关,如果不相关,则讨论两组变量的典型相关就毫无意义. 1.考虑假设检验问题:0H :021 m1H :m ,,,21 至少有一个不为零其中 q p m ,m in .若检验接受0H ,则认为讨论两组变量之间的相关性没有意义;若检验拒绝0H ,则认为第一对典型变量是显著的.上式实际上等价于假设检验问题0H :0),(12 Y X Cov , 1H :012用似然比方法可导出检验0H 的似然比统计量||||||2211S S S其中q p 阶样本离差阵S 是 的最大似然估计,且S =22211211S S S S ,11S ,22S 分别是11 ,22 的最大似然估计.该似然比统计量 的精确分布已由霍特林(1936),Girshik (1939)和Anderson (1958)给出,但表达方式很复杂,又不易找到该分布的临界值表,下面我们采用 的近似分布.利用矩阵行列式及其分块行列式的关系,可得出:||·||||21122121122S S S S S S =|S S S S |·|S |·||21-12212-1111122 p S所以)1(001001||212212112212111ipi p p S S S S其中 2i是'TT 的特征值(2122122111S S S T ),按大小次序排列为 2122 02 p,当1 n 时,在0H 成立下 ln 0m Q 近似服从2f 分布,这里pq f ,)1(211 q p n m ,因此在给定检验水平 之下,若由样本算出的20 Q 临界值,则否定0H ,也就是说第一对典型变量1 U ,1V 具有相关性,其相关系数为1 ,即至少可以认为第一个典型相关系数1为显著的.将它除去之后,再检验其余1 p 个典型相关系数的显著性,这时用Bartlett 提出的大样本2 检验计算统计量:pi ip22223221)1()1()1)(1(则统计量11ln )]1(212[ q p n Q近似地服从(1 p )(1 q )个自由度的2分布,如果21 Q ,则认为2显著,即第二对典型变量2U ,2V 相关,以下逐个进行检验,直到某一个相关系数k检验为不显著时截止.这时我们就找出了反映两组变量相互关系的1 k 对典型变量.2.检验)(0k H : ),,2(0p k k当否定0H 时,表明Y X ,相关,进而可以得出至少第一个典型相关系数01 ,相应的第一对典型相关变量11,V U 可能已经提取了两组变量相关关系的绝大部分信息.两组变量余下的部分可认为不相关,这时0 k ),,2(p k ,故在否定0H 后,有必要再检验)(0k H ),,2(p k ,即第k 个及以后的所有典型相关系数均为0),,3,2(p k .为了减少计算量,下面我们采用二分法来减少检验次数,取检验统计量为p ki i k q p k n Q )1ln()]1(21[2它近似服从)1)(1( k q k p 个自由度的2 分布.在检验水平 下,若)]1)(1[(2k q k p Q k ,则拒绝0H ,即认为第k 对典型相关系数在显著性水平 下是显著的,否则不显著.从第2个典型相关系数到第p 个典型相关系数,共1 p 个数,所以根据二分法的原理,将它们分为一个区间 p ,2,然后先检验第 21p 个典型相关系数即中位数,当021p 时,即认为第 21p 个典型相关系数不相关,否定原假设,接着检验21,2p ;若当021p 时,则检验p p ,21.如此划分区间依次检验下去,由数学分析上的区间套定理,一定存在第k 个数),,3,2(p k ,使得01 k ,而0 k .以上的一系列检验实际上是一个序贯检验,检验直到对某个k 值0H 未被拒绝为止.事实上,检验的总显著性水平已不是 了,且难以确定.还有,检验的结果易受样本容量大小的影响.因此,检验的结果只宜作为确定典型变量个数的重要参考依据,而不宜作为惟一的依据.第5章 典型相关分析的计算步骤及应用实例5.1 典型相关分析的计算步骤设)()1(,,n X X 为取自正态总体的样本(实际上,相当广泛的情况下也对),每个样品测量两组指标,分别记为'1),,(p X X X ,'1),,(q Y Y Y ,原始资料矩阵为:)(212122221222211121111211q p n nq n n np n n q p q p y y y x x x y y y x x xy y y x x x第一步 计算相关矩阵R ,并将R 剖分为22211211R R R R R 其中11R ,22R 分别为第一组变量和第二组变量之间的相关系数矩阵,'2112R R 为第一组与第二组变量之间的相关系数.第二步 求典型相关系数及典型变量首先求2112212111R R R R A的特征根 2i,特征向量)(1i D;1211121122R R R R B的特征根2i,特征向量)(2i D.)()(111)(i i D D,)()(212)(i i D D写出样本的典型变量为 X U ’)1(1,Y V ’)1(1X U ’)2(2,Y V ’)2(2X U p p ’)(,Y V p p ’)(第三步 典型相关系数的显著性检验 首先,检验第一对典型变量的相关系数,即0H :0^1 ,1H :0^1它的似然比统计量为pi i p1^2^2^22^211)1()1()1)(1(则统计量11ln )]1(212[ q p n Q给定显著性水平 ,查表得2,若21 Q ,则否定0H ,认为第一对典型变量相关,否则不相关.如果相关则依次逐个检验其余典型相关系数,直到某一个相关系数^k ),,2(p k 检验为不显著时截止.5.2 实例分析例1:某康复俱乐部对20名中年人测量了三个生理指标:体重)(1x 、腰围(2x )、脉搏(3x )和三个训练指标:引体向上(1y )、起坐次数(2y )、跳跃次数(3y ).数据如附录1:解:记'321),,(x x x X ,'321),,(y y y Y ,其中样本容量20 n .附录1中的数据用SPSS 统计软件计算得六个变量之间的相关矩阵如下:n Sig.(2-tailed) .113 .127. .526 .340 .884 N 20 20 20 202020 Y1Pearson Correlatio n -.390 -.552(*) .1511 .696(**).496(*)Sig.(2-tailed) .089 .012.526 . .001 .026 N 20 20 20202020Y2PearsonCorrelatio n -.493(*)-.646(**).225 .696(**) 1 .669(**)Sig.(2-tailed) .027 .002.340 .001 . .001 N 20 20 20 202020 Y3Pearson Correlatio n -.226 -.191 .035.496(*) .669(**)1Sig.(2-tailed) .337 .419.884 .026 .001 . N 20 2020202020** Correlation is significant at the 0.01 level (2-tailed).* Correlation is significant at the 0.05 level (2-tailed).即样本相关矩阵为:11R =1353.0366.01870.0122R =1669.0496.01696.01'2112R R =035.0225.0151.0192.0646.0552.0226.0493.0390.0于是特征方程 022112212111 R R R R用Matlab 求得矩阵2112212111R R R R 的特征值分别为0.6630、0.0402和0.0053,于是 797.01 ,201.02 ,073.03下面我们进行典型相关系数的显著性检验,先检验第一对典型变量的相关系数,欲检验:0H :01 , 1H :01 它的似然比统计量为)1)(1)(1(2322211 =3504.0)0053.01)(0402.01)(6330.01( 255.163504.0ln 5.15ln )]333(2120[11 Q查2 分布表得,919.16)9(205.0 ,因此在05.0 的显著性水平下,)9(205.01 Q ,所以拒绝原假设0H ,也即认为第一对典型相关变量是显著相关的.然后检验第二对典型变量的相关系数,即进一步检验:0H :02 , 1H :02它的似然比统计量为9547.0)0053.01)(0402.01()1)(1(23222 )4(488.9745.09547.0ln 08.16ln ])333(21120[205.02212 Q 所以无法否定原假设0H ,故接受0H :02 ,即认为第二对典型相关变量不是显著相关的.由以上检验可知只需求第一对典型变量即可. 于是求797.01 的特征向量 *1,而*1*12112211R R ,解得059.0579.1775.0*1,716.0054.1350.0*1 , 因此,第一对样本典型变量为*3*2*1*1059.0579.1775.0x x x u *3*2*1*1716.0054.1350.0y y y vY X 与第一对典型变量的相关系数为797.01 ,可见两者的相关性较为密切,即可认为生理指标与训练指标之间存在显著相关性.例2:为了研究某企业不同部门人员工作时间的关系,随机选取25个企业进行入户调查,达到25个被访企业业务部门和技术部门经理每月工作时间和员工每月工作时间(单位为小时),具体数据如附表2分析:设业务部门经理和员工每月工作时间为(21,X X ),技术部门经理和员工每月工作时间为(21,Y Y ),利用典型相关分析研究企业业务部门和技术部门人员工作时间的关系.解:样本容量为25 n ,2 p ,2 q 分别为随机变量Y X 与的维数.⑴ 标准化随机变量'21),(X X X 与'21),(Y Y Y .根据样本均值i x与标准差ii S ,依照公式iiiki ki S x x x*,对数据标准化.⑵ 求解Y X 的相关矩阵R ,并将其分块yy yxxy xx R RR R R . 将数据输入SPSS 软件求得相关系数矩阵如下:Correlations** Correlation is significant at the 0.01 level (2-tailed).所以样本相关矩阵1834.0705.0705.01693.0711.01735.01R 分块后2222 yy yx xy xx R RR R R ⑶ 求解534949.0538840.0538840.0544309.011111yx yy xy xx R R R R M 的两个非零特征根,解得两个非零特征根为6218.021 ,0029.022 .⑷ 进行相关系数的显著性检验,取r m 个显著性检验不为0的特征根.Y X 与第一对典型变量的相关系数为7885.01 ,Y X 与第二对典型变量的相关系数为0537.02 .先检验第一对典型变量的相关系数,假设01H :01 (即第一对典型变量不相关),由典型相关系数的值可得3771.0)1)(1(22211计算统计量97.203771.0ln )5.224(ln )]1(21)1[(11 q p n Q 对于给定的显著性水平05.0488.9)4()1)(1(97.20205.021 m q m p Q所以否定零假设.01H :01 ,即第一对典型变量是显著相关的.然后检验第二对典型变量的相关系数,假设02H :02 (即第二对典型变量不相关),由典型相关系数的值可得9971.0)1(222 计算统计量05945.09971.0ln )5.224(ln )]1(21)2[(22 q p n Q 对于给定的显著性水平05.0841.3)1()1)(1(05945.0205.022 m q m p Q所以无法否定假设.02H :02 ,即第二对典型变量不是显著相关的.由以上检验可知,只需求第一对典型变量即可.⑸ 求1 m 个显著性检验不为0的特征根21 的特征向量1l ,而11111l R R m yx yy,解得'1)521548.0,55216.0( l ,'1)538134.0,504018.0( m .⑹ 求出r 对典型相关变量X l u j j ' ,Y m v j j ' ,.,,2,1m j 根据上面求得的特征向量11m l 和,得第一对典型相关变量为21'1121'11538134.0504018.0521548.055216.0Y Y Y m v X X X l u Y X 与第一对典型变量的相关系数为7885.01 ,可见其相关性较为密切.⑺ 由于21'11521548.055216.0X X X l u ,与业务部门经理和员工每月工作时间都成正比,而且系数差不多,所以u可以解释为业务部门人员工作时间.同1理v可以解释为技术部门人员的工作时间.可见一个企业技术部门和业务部门人1员月工作时间存在显著的相关性.典型相关分析是一种采用类似主成分分析的做法,在每一组变量中都选择若干个有代表性的综合指标(变量的线性组合),通过研究两组的综合指标之间的关系来反映两组变量之间的相关关系.在实际中,只须着重研究相关关系较大的那几对典型相关变量.本文首先根据典型相关分析的统计理论,初步探讨了总体典型相关变量和典型相关系数,然后重点讨论了样本典型相关分析,以及它们的一系列性质与显著性检验,并做了相应的实例分析.通过实例分析,我们进一步明确了典型相关分析是研究两组变量之间相关性的一种降维技术的统计分析方法.而复相关是典型相关的一个特例,简单相关是复相关的一个特例.第一对典型相关包含有最多的有关两组变量间相关的信息,第二对其次,其他对依次递减.各对典型相关变量所含的信息互不重复.并且经标准化的两组变量之间的典型相关系数与原始的两组变量间的相应典型相关系数是相同的.本文是在我的指导老师吴可法教授的精心指导和悉心关怀下完成的,在我的学习生涯和论文工作中无不倾注着老师的辛勤汗水和殷切关怀.吴老师宽厚的人格、敏捷的思维、严谨的治学态度、渊博的知识、积极向上的人生态度、平易近人的师长风范和两年来的谆谆教导,使我深受启迪,并永远铭记在心.从吴老师身上,我不仅学到了扎实的专业知识和技能,更学到了做人的道理,这些教诲必将成为惠及一生的宝贵财富.在此谨向吴老师致以最衷心的感谢和美好的祝愿!论文期间,我得到了许多老师和同学的帮助,本人在这里对他们致以衷心的感谢.我还要感谢我的家人,是他们的理解、支持和鼓励,使我的学习能够顺利进行.最后衷心感谢在百忙之中评审论文和参加答辩的各位专家、教授!。

应用相关仪探测供热管线漏点实例分析

应用相关仪探测供热管线漏点实例分析
区域 供 热
21. 0 02期
应用相关仪探 测供 热管线漏 点实例分析
长春 市热 力( 团) 限责任 公 司 杨 忠 实 鲁 亚钦 刘 绳 集 有
【 摘 要 】 目前 国 内供 热 行 业普 遍 存在 管 网泄露 的现 象 , 寻找 漏 点 成 为一 个很 大
的 难 题 。 热 集 团针 对 此 问 题 积 极 寻 找 解 决 方 案 , 长 引进 数 字 相 关仪 对 所 辖 管 网 进 行 漏
公 司 富锦 站 的 外 网漏 点 进 行 试 验 性 的探 测 ,
对 区域 内阀 门 、 明管 进行 了 1 0 及 0 %直 接
听音 探测 ,以听 取从 漏水 点 传播 至 管道 构 筑
物 的声波 , 从而 发现 漏水 异常 。 发 现的漏 水 对 异 常 均作 了详 细 记录 , 在实 地做 了标记 。 并

2,一
区域 供 热
2 1. 0 02期
与 图上 不符 的 . 以实地 调查 为准 。 4 漏 水点修 复 、 经过 探测确 认 的漏水 点 ,各 站负 责人 进
2 中海 南站 ( 0 、 C 5号楼 )
管道 图和探头位 置 :
行 了及时 维修 。
四、 漏点检测 的具体 情况 下 面对 净月 公 司 中海 站及 朝一 公 司富锦 站检测 的具体 情况进 行介绍 : 1 中海 中心站 ( 1 、 B 8号楼 ) 管 道图和探 头位置 :
A3 A2 一
车 豆I 库 亘 漏 点 l 虽 水
msg - ̄ - A 2 A 1
ቤተ መጻሕፍቲ ባይዱ
A1 3相 关图 : 一A
以上相 关 图可见 .异 常 峰值 明显且 三个

计量典型案例

计量典型案例

计量典型案例全文共四篇示例,供读者参考第一篇示例:近年来,随着社会经济的不断发展,计量技术在各个领域的应用也变得越来越广泛。

计量典型案例作为计量技术的应用实例,在工业生产、商业经营、科研实验等方面起着至关重要的作用。

本文将通过分析几个典型案例,探讨计量技术在各个领域的具体应用情况,以及其对相关行业的影响。

我们来看一个关于工业生产中计量技术应用的案例。

某家汽车制造厂为了确保生产出的汽车零件的质量符合标准,采用了高精度的计量技术进行检测。

通过使用精确的测量仪器,对零件的尺寸、重量等进行精准测量,可以及时发现零件存在的缺陷,从而提前进行处理,保证最终汽车的质量达标。

在汽车的整个生产过程中,计量技术也广泛应用于原材料的计量、检测和配比等环节,以确保整个生产过程的稳定性和标准化。

商业经营领域也是计量技术应用的重要领域之一。

某家超市为了提高商品的销售量,采用了计量技术对商品的质量进行检测和管理。

通过使用结合仪器测量和人工监测的方式,可以确保商品的重量、价格等信息准确无误。

超市还可以通过计量技术对销售数据进行分析,了解各类商品的销售情况,从而调整商品的进货量和定价策略,提高销售效益。

计量技术在商业经营领域的应用,可以帮助企业更好地管理商品信息和销售数据,提高经营效率。

除了工业生产和商业经营领域,计量技术在科研实验中也有着广泛的应用。

某个研究机构需要对一种新型药物的成分进行分析,就需要使用高精度的计量技术对药物的成分进行测量。

通过精确测量每种成分的含量和比例,可以确保药物的疗效和安全性符合标准,为新药的研发提供可靠的数据支持。

计量技术还可以用于研究机构对实验数据的统计分析,以确保实验数据的准确性和可靠性。

计量典型案例在各个领域都有着重要的应用意义。

通过对这些案例的分析,可以更深入地了解计量技术在不同领域的应用场景和技术方法,为相关行业的技术发展和创新提供一定的借鉴和参考。

希望未来可以有更多的研究机构、企业和个人重视计量技术的应用,不断推动技术的发展和创新,为社会经济的可持续发展做出更大的贡献。

《关于两组数据的相关性分析》

《关于两组数据的相关性分析》

《关于两组数据的相关性分析》我通过查阅资料和同学们分组讨论等总结性阐述了关于两组变量间相关关系的统计分析。

通过学习和阐述我对两组数据的相关性分析的问题有了比较深的了解.研究典型相关分析的原理、典型成分的计算方法及计算步骤.把两组变量X与y转化为具有最大相关性的若干对典型成分,直到两组变量的相关性被分解.通过典型相关系数及其显著性检验.选择典型成分分析两组变量的相关性.实例表明只有第一个典型相关系数能通过显著性检验,而其它两个典型相关系数显著为零,放应选取第一对典型成分F,和Gl傲分析.典型相关分析是研究两组随机变量之间相关性的一种统计分析方法,它将两组随机变量间的相关信息更加充分地挖掘出来,分别在两组随机变量中提取相关性最大的两个成分,通过测定这两个成分之间的相关关系,可以推测两组随机变量的相关关系.典型相关分析的方法由霍特林于1936年首次提出.在许多实际问题中,需要研究两组变量之间的相关性.例如:研究成年男性体型与血压之间的关系;研究国民经济的投入要素与产出要素这两组变量之间的联系情况;研究临床症状与所患疾病;研究原材料质量与相应产品质量;研究居民营养与健康状况的关系;研究人体形态与人体功能的关系;研究身体特征与健身训练结果的关系.首先,我们应该进行变量指标的选择,如成年男性体型与血压之间的关系中,体型可用身高、体重、体型指数等指标来表示,血压可用收缩压、舒张压、脉率等指标来表示;又如身体特征与健身训练结果的关系中,身体特征可用体重、腰围、脉搏表示,而训练结果可用单杠、弯曲、跳高等指标来体现.其次是样本数据的收集.最后,利用典型相关分析的原理进行研究.相信这个对我以后的统计学的研究会有很大的帮助.第二篇:两化融合的数据分析资料相关关系概念:相关关系反映出变量之间虽然相互影响,具有依存关系,但彼此之间是不能一对应的。

相关分析的作用:(1)确定选择相关关系的表现形式及相关分析方法。

(2)把握相关关系的方向与密切程度。

典型相关分析及其应用

典型相关分析及其应用

( 1 ) a k r X , b k r y和前面的 k 一1 对典型变量都不
相关 ;
的相关 性来 研究 与 y之 间 的相 关 性 , 并 找 到 a与
收 稿 日期 : 2 0 1 3— 1 0—0 4
作者简介 : 田 兵( 1 9 8 2一) , 山西五 台人 , 理学硕士 , 编辑 , 研 究方向 : 数理统计 。
变量, 称 它们 之 间的相关 系 数 p ( U , V )为第 ( = 2 , 3 , …, mi n ( p, q ) )典型 相关 系数 。
P ( a r X, b Y )=
c o v ( 口 X. b r , , )

方法 , 它能 够有 效 地揭 示 两 组 随机 变 量 之 间 的相 互
线性 依 赖关 系 。 对 任意 的 O l , 和 c , d , 有
_ 、
在 许 多 实 际 问题 中 , 我 们 会 经 常遇 到 研 究 一 组 变量 和 另一 组变 量 相互 关 系 的 问题 。例 如 , 考 察 一
典 型相 关 分析 ( c a n o n i c a l c o r r e l a t i o n a n a l y s i s ) 是 用 于分 析两 组 随机 变量 之 间相关 性程 度 的一 种统计
b , 使 p( a V X, b y )最大 。 由相关 系数 的定 义
问题 ma x P ( a T X, b l , ) S . t v a r ( a T X) =1 , v a r ( 6 ' , )=1 . ( 3 ) ( 4 )
【 Y =b l Y 1 +6 2 y 2+, … +b 这 样将 研究 两组 变量 的相关 性 问题变 为 了研究

典型相关分析

典型相关分析

引言在一元统计分析中,用相关系数来衡量两个随机变量之间的线性相关关系;用复相关系数研究一个随机变量和多个随机变量的线性相关关系。

然而,这些统计方法在研究两组变量之间的相关关系时却无能为力。

比如要研究生理指标与训练指标的关系,居民生活环境与健康状况的关系,人口统计变量与消费变量(之间是否具有相关关系。

阅读能力变量(阅读速度、阅读才能)与数学运算能力变量(数学运算速度、数学运算才能)是否相关。

典型相关分析(Canonical Correlation )是研究两组变量之间相关关系的一种多元统计方法。

它能够揭示出两组变量之间的内在联系。

1936年霍特林(Hotelling )最早就“大学表现”和“入学前成绩”的关系、政府政策变量与经济目标变量的关系等问题进行了研究,提出了典型相关分析技术。

之后,Cooley 和Hohnes (1971),Tatsuoka (1971)及Mardia ,Kent 和Bibby (1979)等人对典型相关分析的应用进行了讨论,Kshirsagar (1972)则从理论上给出了最好的分析。

典型相关分析的目的是识别并量化两组变量之间的联系,将两组变量相关关系的分析,转化为一组变量的线性组合与另一组变量线性组合之间的相关关系分析。

目前,典型相关分析已被应用于心理学、市场营销等领域。

如用于研究个人性格与职业兴趣的关系,市场促销活动与消费者响应之间的关系等问题的分析研究。

第一章、典型相关的基本理论 1.1 典型相关分析的基本概念典型相关分析由Hotelling 提出,其基本思想和主成分分析非常相似。

首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此继续下去,直到两组变量之间的相关性被提取完毕为此。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

典型相关系数度量了这两组变量之间联系的强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要典型相关分析是多元统计分析的一个重要研究课题.它是研究两组变量之间相关的一种统计分析方法,能够有效地揭示两组变量之间的相互线性依赖关系.它借助主成分分析降维的思想,用少数几对综合变量来反映两组变量间的线性相关性质.目前它已经在众多领域的相关分析和预测分析中得到广泛应用.本文首先描述了典型相关分析的统计思想,定义了总体典型相关变量及典型相关系数,并简要概述了它们的求解思路,然后深入对样本典型相关分析的几种算法做了比较全面的论述.根据典型相关分析的推理,归纳总结了它的一些重要性质并给出了证明,接着推导了典型相关系数的显著性检验.最后通过理论与实例分析两个层面论证了典型相关分析的应用于实际生活中的可行性与优越性.【关键词】典型相关分析,样本典型相关,性质,实际应用ABSTRACTThe Canonical Correlation Analysis is an important studying topic of the Multivariate Statistical Analysis. It is the statistical analysis method which studies the correlation between two sets of variables. It can work to reveal the mutual line dependence relation availably between two sets of variables. With the help of the thought about the Principal Components, we can use a few comprehensive variables to reflect the linear relationship between two sets of variables. Nowadays It has already been used widely in the correlation analysis and forecasted analysis.This text describes the statistical thought of the Canonical Correlation Analysis firstly, and then defines the total canonical correlation variables and canonical correlation coefficient, and sum up their solution method briefly. After it I go deep into discuss some algorithm of the sample canonical correlation analysis thoroughly. According to the reasoning of the Canonical Correlation Analysis, sum up some of its important properties and give the identification, following it, I infer the significance testing about the canonical correlation coefficient. According to the analysis from the theories and the application, we can achieve the possibility and the superiority from canonical correlation analysis in the real life.【Key words】Canonical Correlation Analysis,Sample canonical correlation,Character,Practical applications目录前言 (1)第1章典型相关分析的数学描述 (2)第2章典型变量与典型相关系数 (3)2.1 总体典型相关 (3)2.2 样本典型相关 (4)2.2.1 第一对典型相关变量的解法 (4)2.2.2 典型相关变量的一般解法 (8)2.2.3 从相关矩阵出发计算典型相关 (9)第3章典型相关变量的性质 (11)第4章典型相关系数的显著性检验 (15)第5章典型相关分析的计算步骤及应用实例 (18)5.1 典型相关分析的计算步骤 (18)5.2 实例分析 (19)结语 (26)致谢 (27)参考文献 (28)附录 (29)前言典型相关分析(Canonical Correlation Analysis ,CCA)作为多元统计学的一个重要部分,是相关分析研究的一个主要内容.典型相关分析不仅其方法本身具有重要的理论意义,而且它还可以作为其他分析方法,如多重回归、判别分析和相应分析的工具,因此在多元分析方法中占有特殊的地位.典型相关的概念是在两个变量相关的基础上发展起来的.我们知道,两个随机变量的相关关系可以用它们的简单相关系数来衡量;一个随机变量与一组随机变量之间的相关关系可以用复相关系数来衡量.但考虑一组随机变量与另一组随机变量的关系时,如果运用两个变量的相关关系,分别考虑第一组每个变量和第二组中每个变量的相关,或者运用复相关关系,考虑一组变量中的每个变量和另一组变量的相关,这样做比较繁琐,抓不住要领.因此,为了用比较少的变量来反映两组变量之间的相关关系,一种考虑的思路就是类似主成分分析,考虑两组变量的线性组合,从这两个线性组合中找出最相关的综合变量,通过少数几个综合变量来反映两组变量的相关性质,这样便引出了典型相关分析.典型相关分析的基本思想是首先在每组变量中找出变量的线性组合,使其具有最大相关性,然后再在每组变量中找出第二对线性组合,使其分别与第一对线性组合不相关,而第二对本身具有最大的相关性,如此继续下去,直到两组变量之间的相关性被提取完毕为止.有了这样线性组合的最大相关,则讨论两组变量之间的相关,就转化为只研究这些线性组合的最大相关,从而减少研究变量的个数.典型相关分析是由Hotelling于1936年提出的.就目前而言,它的理论己经比较完善,计算机的发展解决了典型相关分析在应用中计算方面的困难,成为普遍应用的进行两组变量之间相关性分析技术.如在生态环境方面,用典型相关理论对预报场与因子场进行分析,实现了短期气象预测;借助典型相关,分析了植被与环境的关系;在社会生活领域,应用典型相关分析了物价指标和影响物价因素的相关关系等等.第1章 典型相关分析的数学描述一般地,假设有一组变量p X X X ,,,21 与另一组变量q Y Y Y ,,,21 ,我们要研究这两组变量之间的相关关系,如何给两组变量之间的相关性以数量的描述.当q p ==1时,就是我们常见的研究两个变量X 与Y 之间的简单相关关系,其相关系数是最常见的度量,定义为:)()(),(Y Var X Var Y X Cov xy =ρ当1≥p ,1=q (或1,1=≥p q )时,p 维随机向量'21),(p X X X X =,设),(~1∑⎥⎦⎤⎢⎣⎡+μp N Y X ,⎥⎦⎤⎢⎣⎡∑∑∑∑=∑22211211,其中,11∑是第一组变量的协方差阵,12∑是第一组与第二组变量的协方差阵,22∑是第二组变量的协方差阵.则称221211121∑∑∑∑=-R 为Y 与p X X X ,,,21 的全相关系数,全相关系数用于度量一个随机变量Y 与另一组随机变量p X X X ,,,21 的相关系数.当1,>q p 时,利用主成分分析的思想,可以把多个变量与多个变量之间的相关化为两个新的综合变量之间的相关.也就是做两组变量的线性组合即X X X X U p p '2211αααα=++= Y Y Y Y V q q '2211ββββ=++=其中,'21),,,(p αααα =和'21),,,(q ββββ =为任意非零向量,于是我们把研究两组变量之间的问题化为研究两个变量V U 与之间的相关问题,希望寻求α,β使U ,V 之间最大可能的相关,我们称这种相关为典型相关,基于这种原则的分析方法就是典型相关分析.第2章 典型变量与典型相关系数2.1 总体典型相关设有两组随机变量'21),,,(p X X X X =,'21),,,(q Y Y Y Y =,分别为维维和q p 随机向量,根据典型相关分析的思想,我们用X 和Y 的线性组合X 'α和Y 'β之间的相关性来研究两组随机变量X 和Y 之间的相关性.我们希望找到βα和,使得)(‘Y X ',βαρ最大.由相关系数的定义)()(),(),(''''''Y Var X Var Y X Cov Y X βαβαβαρ=易得出对任意常数d c f e ,,,,均有),(])(,)([''''Y X d Y c f X e βαρβαρ=++这说明使得相关系数最大的Y X '',βα并不唯一.因此,为避免不必要的结果重复,我们在求综合变量时常常限定1)('=X Var α , 1)('=Y Var β于是,我们就有了下面的定义:设有两组随机变量'21),,(p X X X X =,'21),,(q Y Y Y Y =,q p +维随机向量⎥⎦⎤⎢⎣⎡Y X 的均值向量为零,协方差阵0>∑(不妨设q p ≤).如果存在'1111),,(p ααα =和'1111),,(q βββ =,使得在约束条件1)('=X Var α ,1)('=Y Var β下,),(m ax ),('''1'1Y X Y X βαρβαρ=则称Y X '1'1,βα是Y X ,的典型相关变量,它们之间的相关系数称为典型相关系数;其他典型相关变量定义如下:定义了前1-k 对典型相关变量之后,第k 对典型相关变量定义为:如果存在'1),,(pk k k ααα =和'1),,(qk k k βββ =,使得 ⑴ Y X k k '',βα和前面的1-k 对典型相关变量都不相关;⑵ 1)('=X Var k α ,1)('=Y Var k β; ⑶ Y X k k ''βα和的相关系数最大,则称Y X k k ''βα和是Y X ,的第k 对(组)典型相关变量,它们之间的相关系数称为第k 个典型相关系数(p k ,,2 =).2.2 样本典型相关以上是根据总体情况已知的情形进行,而实际研究中,总体均值向量μ和协方差阵∑通常是未知的,因而无法求得总体的典型相关变量和典型相关系数,首先需要根据观测到的样本数据阵对∑进行估计. 2.2.1 第一对典型相关变量的解法设总体'11),,,,,(q p Y Y X X Z =,已知总体的n 次观测数据为:1)()()()(⨯+⎥⎥⎦⎤⎢⎢⎣⎡=q p t t t Y X Z (n t ,,2,1 =), 于是样本数据阵为)(212122221222211121111211q p n nq n n np n n q p q py y y x x x y y y x x x y y y x x x +⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡若假定),,(~∑+μq p N Z 则由参考文献【2】中定理2.5.1知协方差阵∑的最大似然估计为'1)()()()(1∑=--∧--=∑nt t t Z Z Z Z n其中-Z =∑=nt t Z n 1)(1,样本协方差矩阵S ∧∑=为:⎥⎦⎤⎢⎣⎡=22211211S S S SS 式中∑=----=nj j j X X X X n S 1'11)()(1'112)()(1-=---=∑Y Y X X n S j nj j =21S ∑=----nj j j X X Y Y n 1')()(1 '122)()(1-=---=∑Y Y Y Y n S j nj j ∑=-=n j j X n X 11, ∑=-=nj j Y n Y 11令j j X U 'α=,j j Y V 'β=,则样本的相关系数为∑∑∑=-=--=-----=nj jnj jj nj j j j V VU UV V U U V U r 1212'1)()()()(),(又因为:-===-====∑∑∑X X n X n U n U n j j n j j n j j '1'1'1111ααα-===-====∑∑∑Y Y n Y n V n V n j j n j j n j j '1'1'1111ββββαββαα12''''1'''1)()(1)()(1S Y Y X X n V V U U n S j n j j j n j j V U jj =--=--=-=--=-∑∑ αααααα11''''1'''1)()(1)()(1S X X X X n U U U U n S j n j j j n j j U U jj =--=--=-=--=-∑∑ββββββ22''''1'''1)()(1)()(1S Y Y Y Y n V V V V n S j n j j j n j j V V jj =--=--=-=--=-∑∑ 所以ββααβα22'11'12'),(S S S V U r j j =由于j U ,j V 乘以任意常数并不改变他们之间的相关系数,即不妨限定取标准化的j U 与j V ,即限定j U 及j V 的样本方差为1,故有:1==j j j j V V U U S S (2.2.1) 则 βα12'),(S V U r j j = (2.2.2) 于是我们要求的问题就是在(2.2.1)的约束条件下,求p R ∈α,q R ∈β,使得式(2.2.2)达到最大.这是条件极值的问题,由拉格朗日乘子法,此问题等价于求α,β,使)1(2)1(2),(22'11'12'----=∧∧ββμααλβαβαϕS S S(2.2.3) 达到最大.式中,∧λ,∧μ为拉格朗日乘数因子.对上式分别关于α,β求偏导并令其为0,得方程组:⎪⎪⎩⎪⎪⎨⎧=-=∂∂=-=∂∂∧∧0022211112βμαβϕαλβαϕS S S S (2.2.4)分别用'α,'β左乘方程(2.2.4)得⎪⎩⎪⎨⎧====∧∧∧∧μββμαβλααλβα22'21'11'12'S S S S 又 ='12')(βαS αβ21'S 所以 ∧∧===λβααβμ'12'21')(S S也就是说,∧λ正好等于线性组合U 与V 之间的相关系数,于是(2.2.4)式可写为:⎪⎩⎪⎨⎧=-=-∧∧0022211112βλααλβS S S S 或 022211211=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--∧∧βαλλS S S S(2.2.5) 而式(2.2.5)有非零解的充要条件是:022211211=--∧∧S S S S λλ (2.2.6)该方程左端是∧λ的q p +次多项式,因此有q p +个根.求解∧λ的高次方程(2.2.6),把求得的最大的∧λ代回方程组(2.2.5),再求得α和β,从而得出第一对典型相关变量.具体计算时,因∧λ的高次方程(2.2.6)不易解,将其代入方程组(2.2.5)后还需求解q p +阶方程组.为了计算上的方便,我们做如下变换:用12212-S S 左乘方程组(2.2.5)的第二式,则有12212-SS α21S -02212212=-∧βλS S S 即 12212-S S α21S =βλ12S ∧又由(2.2.5)的第一式,得 αλβ1112S S ∧= 代入上式: 12212-SS α21S 0112=-∧αλS(0)1122112212=-∧-αλS S S S (2.2.7)再用111-S 左乘式(2.2.7),得(111-S12212-SS 0)221=-∧αλp I S (2.2.8)因此,对∧2λ有p 个解,设为22221p r r r ≥≥≥ ,对α也有p 个解.类似地,用11121-S S 左乘式(2.2.5)中的第一式,则有011111211211121=--∧-αλβS S S S S S (2.2.9)又由(2.2.5)中的第二式,得βλα2221S S ∧= 代入到(2.2.8)式,有 11121(-SS 12S 0)222=-∧βλS再以122-S 左乘上式,得0)(21211121122=-∧--βλq I S S S S (2.2.10)因此对2∧λ有q 个解,对β也有q 个解,因此2∧λ为111-S 12212-S S 21S 的特征根,α是对应于2∧λ的特征向量.同时2∧λ也是1211121122S S S S --的特征根,β为相应特征向量.而式(2.2.8)和(2.2.10)有非零解的充分必要条件为:⎪⎪⎩⎪⎪⎨⎧=-=-∧--∧--002121112112222112212111q p I S S S S I S S S S λλ (2.2.11)对于(2.2.11)式的第一式,由于011>S ,022>S ,所以0111>-S ,0122>-S ,故有:2112212111S S S S --21212221221221112111S S S S S S ----=而2121221221221112111S S S S S S ----与2111211222122122111----S S S S S S 有相同的特征根.如果记=∧T 12212111--S S S则 2111211222122122111----S S S SS S='∧∧T T类似的对式(2.2.11)的第二式,可得 ∧∧----=T T SS SSS S'21221221112111212122而'∧∧T T 与∧∧T T '有相同的非零特征根,从而推出(2.2.8)和(2.2.10)的非零特征根是相同的.设已求得'∧∧T T 的p 个特征根依次为: 022221>≥≥≥∧∧∧p λλλ则T T '的q 个特征根中,除了上面的p 个外,其余的p q -个都为零.故p 个特征根排列是021>≥≥≥p λλλ ,, 1210λλλλ-≥-≥≥-≥->- p p ,因此,只要取最大的1λ,代入方程组(2.2.5)即可求得相应的1αα=,1ββ=.令U =X '1α与Y V '1β=为第一对典型相关变量,而1'112'1),(λβα==S V U r 为第一典型相关系数.可见求典型相关系数及典型相关变量的问题,就等价于求解'∧∧T T 的最大特征值及相应的特征向量. 2.2.2 典型相关变量的一般解法从样本典型相关变量的解法中,我们知道求典型相关变量和典型相关系数的问题,就是求解'∧∧T T 的最大特征值及相应的特征向量.不仅如此,求解第k 对典型相关变量和典型相关系数,类似的也是求'∧∧T T 的第k 大的特征值和相应的特征向量.下面引用参考文献【2】中定理10.1.1 来得出样本典型相关的一般求法.设总体的n 次观测数据为:1)()()()(⨯+⎥⎥⎦⎤⎢⎢⎣⎡=q p t t t Y X Z (n t ,,2,1 =) 不妨设q p ≤,样本均值为0,协方差矩阵S 为:⎥⎦⎤⎢⎣⎡=22211211S S S SS 0> 记2122122111--∧=SS ST ,并设p 阶方阵'∧∧T T 的特征值依次为022221>≥≥≥∧∧∧p λλλ (p i i ,,1,0 =>λ);而p l l l ,,,21 为相应的单位正交特征向量.令 kk l S2111-∧=α,∧--∧=k k k S S αλβ211221则X U k k '∧=α,Y V kk '∧=β为Y X ,第k 对典型相关变量,'k ∧λ为第k 典型相关系数. 由上述分析不难看出,典型相关系数∧i λ越大说明相应的典型变量之间的关系越密切,因此一般在实际中忽略典型相关系数很小的那些典型变量,按∧i λ的大小只取前n 个典型变量及典型相关系数进行分析. 2.2.3 从相关矩阵出发计算典型相关以上我们从样本协方差阵S 出发,导出了样本典型相关变量和样本典型相关系数.下面我们从样本相关阵R 出发来求解样本典型相关变量和样本典型相关系数.设样本相关阵为)(ij r R =,其中jj ii ij ij s s s r /=,ij s 为样本协方差阵S 的i 行j 列元素.把R 相应剖分为⎥⎦⎤⎢⎣⎡=22211211R R R R R 有时,Y X 和的各分量的单位不全相同,我们希望在对各分量作标准化变换之后再做典型相关.记)(1X E =μ,)(2Y E =μ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=pp s s D 00111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++++q p q p p p s s D ,1,1200则 111111D R D S =,222222D R D S = 212112D R D S =,121221D R D S =, 对Y X 和的各分量作标准化变换,即令)(111*μ-=-X D X ,)(212*μ-=-Y D Y现在来求*X 和*Y 的典型相关变量*'*X i α,*'*Y i β,m i ,,2,1 =. **11111111X X S D S D R --==**11222222Y Y S D S D R --== **11112212X Y S D S D R --== **11221121Y X S D S D R --==于是1121122121111112112112221212121111111112112212111)()(---------------==DS S S S D D S D D S D D S D D S D R R R R因为 2112212111S S S S --i i i r αα2= 1121122121111---D S S S S D )()(121i i i D r D αα= 所以 2112212111R R R R --*2*i i i r αα= 式中*i αi D α1=,有111'1111'*11'*===i i i i i i S D R D R αααααα同理: 1211121122R R R R --*2*i i i r ββ= 式中*i βi D β1=,有122'2222'*22'*===i i i i i i S D R D R ββββββ,由此可见*i α,*i β为**,Y X 的第i 对典型系数,其第i 个典型相关系数为i r ,在标准化变换下具有不变性.第3章 典型相关变量的性质根据典型相关分析的统计思想及推导,我们归纳总结了典型相关变量的一些重要性质并对总体与样本分别给出证明.性质1 同一组的典型变量互不相关 ⅰ总体典型相关设Y X 与的第i 对典型变量为X U i i 'α= ,Y V i i 'β=,m i ,,2,1 =则有 0),(=j i U U ρ 0),(=j i V V ρ m j i ≤≠≤1 证明详见参考文献【5】. ⅱ样本典型相关设Y X 与的第i 对典型变量为X U i i 'α= ,Y V i i 'β=,m i ,,2,1 =因为 '111i i U U i i S S αα==,'221i iVV i i S S ββ==,m i ,,2,1 = '11(,)0i j i j U U i j r U U S S αα===,m j i ≤≠≤1'22(,)0i ji j VV i j r V V S S ββ===,m j i ≤≠≤1 表明由X 组成的第一组典型变量m U U U ,,,21 互不相关,且均有相同的方差1;同样,由Y 组成的第二组典型变量m V V V ,,,21 也互不相关,且也有相同的方差1.性质2 不同组的典型变量之间的相关性ⅰ总体典型相关i i i V U ρρ=),( m i ,,2,1 =0),(=j i V U ρ m j i ≤≠≤1 证明详见参考文献【5】. ⅱ样本典型相关i i i i i r V U r S ),(12'==βα, m i ,,2,1 ='1211''22111222(,)0,1i j i j U V i ji j j i j r U V S S S S S r i j mαβαβαα--=====≤≠≤表明不同组的任意两个典型变量,当j i =时,相关系数为i r ;当j i ≠时是彼此不相关的.记'21),,,(m U U U U =,'21),,,(m V V V V =,则上述性质可用矩阵表示为 ,UU m VV m S I S I ==UV S =Λ或 mm IU S I V Λ⎛⎫⎛⎫= ⎪ ⎪Λ⎝⎭⎝⎭其中12(,,...,)m diag r r r Λ=性质3 原始变量与典型变量之间的关系 求出典型变量后,进一步计算原始变量与典型变量之间的相关系数矩阵,也称为典型结构.下面我们分别对总体与样本进行讨论.ⅰ总体典型相关的原始变量与典型变量的相关性详见参考文献【2】. ⅱ样本典型相关 记m p ij m A ⨯==)(),,,(21αααα m q ij m B ⨯==)(),,,(21ββββ=S ⎥⎦⎤⎢⎣⎡22211211S S S S =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++++++++++++++q p q p p q p p q p q p q p p p p pp p q p p p p pp p q p p p s s s s s s s s s s s s s s s s ,1,,1,,11,1,11,1,1,1,11,1111则A S X A X A X X n S n i i XU11'''1)()(1=--=-=-∑ B S X B X B X X n S n i i XV12'''1)()(1=--=-=-∑ A S X A X A Y Y n S n i i YU21'''1)()(1=--=-=-∑ B S Y B Y B Y Y n S n i i YV22'''1)()(1=--=-=-∑所以利用协方差进一步可以计算原始变量与典型变量之间的相关关系.若假定原始变量均为标准化变量,则通过以上计算所得到的原始变量与典型变量的协方差阵就是相关系数矩阵.1(,)pi j ik k r X U s α==∑,1(,)qi j i p k k r X V s β+==∑p i ,,2,1 = , m j ,,2,1 =,1(,)pi j i p k k r Y U s α+==∑,1(,)q i j i p p k kjk r Y V s β++==∑q i ,,2,1 = , m j ,,2,1 =性质4 设Y X 和分别为维维和q p 随机向量,令d X C X +='*,h Y G Y +='*,其中C 为p p ⨯阶非退化矩阵,d 为p 维常数向量,G 为q q ⨯阶非退化矩阵,q h 为维常数向量.则:ⅰ对于总体典型相关有:⑴ **Y X 和的典型相关变量为*'*)(X a i 和*'*)(Y b i ,其中i i a C a 1*-=,i i b G b 1*-=(p i ,,2,1 =);而i i b a 和是Y X 和的第i 对典型相关变量的系数.⑵ ],[])(,)[(''*'**'*Y b X a Y b X a i i i i ρρ=,即线性变换不改变相关性. 证明详见参考文献【2】.ⅱ对于样本典型相关有:⑴ **Y X 和的典型相关变量为*'*)(X a i 和*'*)(Y b i ,其中i i a C a 1*-=,i i b G b 1*-=(p i ,,2,1 =);而i i b a 和是Y X 和的第i 对典型相关变量的系数.⑵ ],[])(,)[(''*'**'*Y b X a r Y b X a r i i i i =,即线性变换不改变相关性. 证明:⑴ 设**Y X 和的典型相关变量分别为*'*)(X a U i =,*'*)(Y b V i =由于 i i a C a 1*-=,i i b G b 1*-=d X C X +='*,h Y G Y +='*所以 d C a X a d X C C a d X C a C U i i i i '1''''1'''1)()()()()(---+=+=+=h G b Y b h Y G G b h Y G b G V i i i i '1''''1'''1)()()()()(---+=+=+=即有i i b a 和是Y X 和的第i 对典型相关变量的系数. ⑵ 由⑴的证明可知*'*)(X a U i =d C a X a i i '1'')(-+= *'1'''*)()(h G b Y b Y b V i i i -+==由于d C a i '1')(-与h G b i '1')(-都是常数,所以],[])(,)([])(,)[('''1'''1''*'**'*Y b X a r h G b Y b d C a X a r Y b X a r i i i i i i i i =++=-- 即有线性变换不改变相关性.性质5 简单相关、复相关和典型相关之间的关系当1==q p , Y X 与之间的(惟一)典型相关就是它们之间的简单相关;当Y X q p 与时或,11==之间的(惟一)典型相关就是它们的复相关.复相关是典型相关的一个特例,而简单相关又是复相关的一个特例.从第一个典型相关的定义可以看出,第一个典型相关系数至少同)(Y X 或的任一分量与)(X Y 或的复相关系数一样大,即使所有这些复相关系数都很小,第一个典型相关系数仍可能很大;同样,从复相关的定义也可以看出,当1=p (或1=q )时,)()(X Y Y X 或与或之间的复相关系数也不会小于)()(X Y Y X 或与或的任一分量之间的相关系数,即使所有这些相关系数都很小,复相关系数仍可能很大.第4章 典型相关系数的显著性检验设总体Z 的两组变量'21),,,(p X X X X =,'21),,,(q Y Y Y Y =,且'),(Y X Z =),(~∑+μq p N ,在做两组变量X ,Y 的典型相关分析之前,首先应该检验两组变量是否相关,如果不相关,则讨论两组变量的典型相关就毫无意义. 1.考虑假设检验问题:0H :021====m ρρρ1H :m ρρρ,,,21 至少有一个不为零其中{}q p m ,m in =.若检验接受0H ,则认为讨论两组变量之间的相关性没有意义;若检验拒绝0H ,则认为第一对典型变量是显著的.上式实际上等价于假设检验问题0H :0),(12=∑=Y X Cov , 1H :012≠∑用似然比方法可导出检验0H 的似然比统计量||||||2211S S S =Λ其中q p +阶样本离差阵S 是∑的最大似然估计,且S =⎥⎦⎤⎢⎣⎡22211211S S S S ,11S ,22S 分别是11∑,22∑的最大似然估计.该似然比统计量Λ的精确分布已由霍特林(1936),Girshik (1939)和Anderson (1958)给出,但表达方式很复杂,又不易找到该分布的临界值表,下面我们采用Λ的近似分布.利用矩阵行列式及其分块行列式的关系,可得出:||·||||21122121122S S S S S S --==|S S S S |·|S |·||21-12212-1111122-I p S所以)1(001001||212212112212111∧=--∏-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=-I =Λipi p p S S S S λλλ其中∧2iλ是∧∧'TT 的特征值(2122122111--∧=S S S T ),按大小次序排列为∧21λ≥∧22λ≥≥ 02>∧pλ,当1>>n 时,在0H 成立下Λ-=ln 0m Q 近似服从2f χ分布,这里pq f =,)1(211++--=q p n m ,因此在给定检验水平α之下,若由样本算出的20αχ>Q 临界值,则否定0H ,也就是说第一对典型变量1∧U ,1∧V 具有相关性,其相关系数为1∧λ,即至少可以认为第一个典型相关系数1∧λ为显著的.将它除去之后,再检验其余1-p 个典型相关系数的显著性,这时用Bartlett 提出的大样本2χ检验计算统计量:∏=∧∧∧∧-=---=Λpi ip22223221)1()1()1)(1(λλλλ则统计量11ln )]1(212[Λ++---=q p n Q近似地服从(1-p )(1-q )个自由度的2χ分布,如果21αχ>Q ,则认为2∧λ显著,即第二对典型变量2U ,2V 相关,以下逐个进行检验,直到某一个相关系数k ∧λ检验为不显著时截止.这时我们就找出了反映两组变量相互关系的1-k 对典型变量.2.检验)(0k H : ),,2(0p k k ==λ当否定0H 时,表明Y X ,相关,进而可以得出至少第一个典型相关系数01≠λ,相应的第一对典型相关变量11,V U 可能已经提取了两组变量相关关系的绝大部分信息.两组变量余下的部分可认为不相关,这时0≈k λ),,2(p k =,故在否定0H 后,有必要再检验)(0k H ),,2(p k =,即第k 个及以后的所有典型相关系数均为0),,3,2(p k =.为了减少计算量,下面我们采用二分法来减少检验次数,取检验统计量为∑=∧-++---=p ki i k q p k n Q )1ln()]1(21[2λ它近似服从)1)(1(+-+-k q k p 个自由度的2χ分布.在检验水平α下,若)]1)(1[(2+-+->k q k p Q k αχ,则拒绝0H ,即认为第k 对典型相关系数在显著性水平α下是显著的,否则不显著.从第2个典型相关系数到第p 个典型相关系数,共1-p 个数,所以根据二分法的原理,将它们分为一个区间[]p ,2,然后先检验第⎥⎦⎤⎢⎣⎡-21p 个典型相关系数即中位数,当021=⎥⎦⎤⎢⎣⎡-p λ时,即认为第⎥⎦⎤⎢⎣⎡-21p 个典型相关系数不相关,否定原假设,接着检验⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-21,2p ;若当021≠⎥⎦⎤⎢⎣⎡-p λ时,则检验⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-p p ,21.如此划分区间依次检验下去,由数学分析上的区间套定理,一定存在第k 个数),,3,2(p k =,使得01≠-k λ,而0=k λ.以上的一系列检验实际上是一个序贯检验,检验直到对某个k 值0H 未被拒绝为止.事实上,检验的总显著性水平已不是α了,且难以确定.还有,检验的结果易受样本容量大小的影响.因此,检验的结果只宜作为确定典型变量个数的重要参考依据,而不宜作为惟一的依据.第5章 典型相关分析的计算步骤及应用实例5.1 典型相关分析的计算步骤设)()1(,,n X X 为取自正态总体的样本(实际上,相当广泛的情况下也对),每个样品测量两组指标,分别记为'1),,(p X X X =,'1),,(q Y Y Y =,原始资料矩阵为:)(212122221222211121111211q p n nq n n np n n q p q py y y x x x y y y x x x y y y x x x +⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡第一步 计算相关矩阵R ,并将R 剖分为⎥⎦⎤⎢⎣⎡=22211211R R R R R 其中11R ,22R 分别为第一组变量和第二组变量之间的相关系数矩阵,'2112R R =为第一组与第二组变量之间的相关系数.第二步 求典型相关系数及典型变量首先求2112212111R R R R A --∧=的特征根∧2iλ,特征向量)(1i D ∧α;1211121122R R R R B --∧=的特征根∧2iλ,特征向量)(2i D ∧β.)()(111)(i i D D ∧-∧=⇒αα,)()(212)(i i D D ∧-∧=ββ写出样本的典型变量为 X U ’)1(1∧∧=α,Y V ’)1(1∧∧=βX U ’)2(2∧∧=α,Y V ’)2(2∧∧=βX U p p ’)(∧∧=α,Y V p p ’)(∧∧=β第三步 典型相关系数的显著性检验 首先,检验第一对典型变量的相关系数,即0H :0^1=λ,1H :0^1≠λ它的似然比统计量为∏=-=---=Λpi i p1^2^2^22^211)1()1()1)(1(λλλλ则统计量11ln )]1(212[Λ++---=q p n Q给定显著性水平α,查表得2αχ,若21αχ>Q ,则否定0H ,认为第一对典型变量相关,否则不相关.如果相关则依次逐个检验其余典型相关系数,直到某一个相关系数^k λ),,2(p k =检验为不显著时截止.5.2 实例分析例1:某康复俱乐部对20名中年人测量了三个生理指标:体重)(1x 、腰围(2x )、脉搏(3x )和三个训练指标:引体向上(1y )、起坐次数(2y )、跳跃次数(3y ).数据如附录1:解:记'321),,(x x x X =,'321),,(y y y Y =,其中样本容量20=n .附录1中的数据用SPSS 统计软件计算得六个变量之间的相关矩阵如下:n Sig.(2-tailed) .113 .127. .526.340.884N 2Y1Pearson Correlatio n -.390 -.552(*) .1511 .696(**).496(*)Sig.(2-tailed) .089 .012.526. .001.026N 2Y2PearsonCorrelatio n -.493(*)-.646(**).225 .696(**) 1 .669(**)Sig.(2-tailed) .027 .002.340.001. .001N 2Y3Pearson Correlatio n -.226 -.191 .035.496(*) .669(**)1Sig.(2-tailed) .337 .419.884.026.001. N 2** Correlation is significant at the 0.01 level (2-tailed).* Correlation is significant at the 0.05 level (2-tailed).即样本相关矩阵为:11R =⎪⎪⎪⎭⎫ ⎝⎛--1353.0366.01870.0122R =⎪⎪⎪⎭⎫ ⎝⎛1669.0496.01696.01'2112R R ==⎪⎪⎪⎭⎫⎝⎛------035.0225.0151.0192.0646.0552.0226.0493.0390.0于是特征方程 022112212111=---λR R R R用Matlab 求得矩阵2112212111R R R R --的特征值分别为0.6630、0.0402和0.0053,于是 797.01=λ,201.02=λ,073.03=λ下面我们进行典型相关系数的显著性检验,先检验第一对典型变量的相关系数,欲检验:0H :01=λ , 1H :01≠λ 它的似然比统计量为)1)(1)(1(2322211λλλ---=Λ=3504.0)0053.01)(0402.01)(6330.01(=--- 255.163504.0ln 5.15ln )]333(2120[11=⨯-=Λ++--=Q查2χ分布表得,919.16)9(205.0=χ,因此在05.0=α的显著性水平下,)9(205.01χ≥Q ,所以拒绝原假设0H ,也即认为第一对典型相关变量是显著相关的.然后检验第二对典型变量的相关系数,即进一步检验:0H :02=λ , 1H :02≠λ它的似然比统计量为9547.0)0053.01)(0402.01()1)(1(23222=--=--=Λλλ)4(488.9745.09547.0ln 08.16ln ])333(21120[205.02212χλ=<=⨯-=Λ+++---=-Q 所以无法否定原假设0H ,故接受0H :02=λ,即认为第二对典型相关变量不是显著相关的.由以上检验可知只需求第一对典型变量即可. 于是求797.01=λ的特征向量∧*1α,而∧*1β∧-=*12112211αλR R ,解得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∧059.0579.1775.0*1α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∧716.0054.1350.0*1β, 因此,第一对样本典型变量为*3*2*1*1059.0579.1775.0x x x u -+-= *3*2*1*1716.0054.1350.0y y y v +--=Y X 与第一对典型变量的相关系数为797.01=λ,可见两者的相关性较为密切,即可认为生理指标与训练指标之间存在显著相关性.例2:为了研究某企业不同部门人员工作时间的关系,随机选取25个企业进行入户调查,达到25个被访企业业务部门和技术部门经理每月工作时间和员工每月工作时间(单位为小时),具体数据如附表2分析:设业务部门经理和员工每月工作时间为(21,X X ),技术部门经理和员工每月工作时间为(21,Y Y ),利用典型相关分析研究企业业务部门和技术部门人员工作时间的关系.解:样本容量为25=n ,2=p ,2=q 分别为随机变量Y X 与的维数.⑴ 标准化随机变量'21),(X X X =与'21),(Y Y Y =.根据样本均值i x -与标准差ii S ,依照公式iiiki ki S x x x --=*,对数据标准化.⑵ 求解⎪⎪⎭⎫⎝⎛Y X 的相关矩阵R ,并将其分块⎪⎪⎭⎫⎝⎛=yy yxxy xx R RR R R . 将数据输入SPSS 软件求得相关系数矩阵如下:Correlations** Correlation is significant at the 0.01 level (2-tailed).所以样本相关矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1834.0705.0705.01693.0711.01735.01R 分块后2222⎪⎪⎭⎫ ⎝⎛=yy yx xy xxR RR R R ⑶ 求解⎪⎪⎭⎫ ⎝⎛==----534949.0538840.0538840.0544309.011111yx yy xy xx R R R R M 的两个非零特征根,解得两个非零特征根为6218.021=λ,0029.022=λ.⑷ 进行相关系数的显著性检验,取r m ≤个显著性检验不为0的特征根.Y X 与第一对典型变量的相关系数为7885.01=λ,Y X 与第二对典型变量的相关系数为0537.02=λ.先检验第一对典型变量的相关系数,假设01H :01=λ(即第一对典型变量不相关),由典型相关系数的值可得3771.0)1)(1(22211=--=Λλλ计算统计量97.203771.0ln )5.224(ln )]1(21)1[(11=-=Λ++---=q p n Q 对于给定的显著性水平05.0=α488.9)4()1)(1(97.20205.021==+-+-≥=χχαm q m p Q所以否定零假设.01H :01=λ,即第一对典型变量是显著相关的.然后检验第二对典型变量的相关系数,假设02H :02=λ(即第二对典型变量不相关),由典型相关系数的值可得9971.0)1(222=-=Λλ 计算统计量05945.09971.0ln )5.224(ln )]1(21)2[(22=-=Λ++---=q p n Q 对于给定的显著性水平05.0=α841.3)1()1)(1(05945.0205.022==+-+-≤=χχαm q m p Q所以无法否定假设.02H :02=λ,即第二对典型变量不是显著相关的.由以上检验可知,只需求第一对典型变量即可.⑸ 求1=m 个显著性检验不为0的特征根21λ的特征向量1l ,而11111l R R m yx yy -=λ,解得'1)521548.0,55216.0(=l ,'1)538134.0,504018.0(=m .⑹ 求出r 对典型相关变量X l u j j '=,Y m v j j '=,.,,2,1m j = 根据上面求得的特征向量11m l 和,得第一对典型相关变量为⎩⎨⎧+==+==21'1121'11538134.0504018.0521548.055216.0Y Y Y m v X X X l u Y X 与第一对典型变量的相关系数为7885.01=λ,可见其相关性较为密切.⑺ 由于21'11521548.055216.0X X X l u +==,与业务部门经理和员工每月工作时间都成正比,而且系数差不多,所以u可以解释为业务部门人员工作时间.同1理v可以解释为技术部门人员的工作时间.可见一个企业技术部门和业务部门人1员月工作时间存在显著的相关性.典型相关分析是一种采用类似主成分分析的做法,在每一组变量中都选择若干个有代表性的综合指标(变量的线性组合),通过研究两组的综合指标之间的关系来反映两组变量之间的相关关系.在实际中,只须着重研究相关关系较大的那几对典型相关变量.本文首先根据典型相关分析的统计理论,初步探讨了总体典型相关变量和典型相关系数,然后重点讨论了样本典型相关分析,以及它们的一系列性质与显著性检验,并做了相应的实例分析.通过实例分析,我们进一步明确了典型相关分析是研究两组变量之间相关性的一种降维技术的统计分析方法.而复相关是典型相关的一个特例,简单相关是复相关的一个特例.第一对典型相关包含有最多的有关两组变量间相关的信息,第二对其次,其他对依次递减.各对典型相关变量所含的信息互不重复.并且经标准化的两组变量之间的典型相关系数与原始的两组变量间的相应典型相关系数是相同的.本文是在我的指导老师吴可法教授的精心指导和悉心关怀下完成的,在我的学习生涯和论文工作中无不倾注着老师的辛勤汗水和殷切关怀.吴老师宽厚的人格、敏捷的思维、严谨的治学态度、渊博的知识、积极向上的人生态度、平易近人的师长风范和两年来的谆谆教导,使我深受启迪,并永远铭记在心.从吴老师身上,我不仅学到了扎实的专业知识和技能,更学到了做人的道理,这些教诲必将成为惠及一生的宝贵财富.在此谨向吴老师致以最衷心的感谢和美好的祝愿!论文期间,我得到了许多老师和同学的帮助,本人在这里对他们致以衷心的感谢.我还要感谢我的家人,是他们的理解、支持和鼓励,使我的学习能够顺利进行.最后衷心感谢在百忙之中评审论文和参加答辩的各位专家、教授!。

相关文档
最新文档