2018年全国2卷数学试卷及参考答案
2018高考数学全国卷含答案解析

从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.
2018年江苏高考数学真题及解析

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年全国二卷数学(含详解答案)

{(x ,y ) x + y 2≤3 ,x ∈ Z ,y ∈ Z ,则 A 中元素的个数为3.函数 f (x ) = 的图像大致为+ - + … + - ,设计了右侧的程序框图,2018 年全国二卷数学一、选择题:本题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 1 + 2i=1 - 2i4 3A . - - i5 54 3 B . - + i5 53 4 C . - - i 5 53 4D . - + i5 52.已知集合 A =A .92}B .8C .5D .4e x - e - xx 24.已知向量 a , b 满足 | a | = 1 , a ⋅ b = -1 ,则 a ⋅ (2a - b ) =A .4B .3C .2D .05.双曲线 x 2 y 2 - a 2 b 2= 1( a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为A . y = ± 2 xB . y = ± 3xC . y = ± 22x D . y = ± 3 2 x6.在 △ABC 中, cos C 5 =2 5, BC = 1 , AC = 5 ,则 AB =A . 4 27.为计算 S = 1 -B . 30C . 29D . 2 51 1 1 1 1234 99 100开始则在空白框中应填入A . i = i + 1B . i = i + 2是 N = 0, T = 0i = 1i < 100否C . i = i + 3D . i = i + 4N = N +1 iS = N - TT = T +1 i + 1输出 S结束12B . 6C . 5D . 4B .12.已知 F , F 是椭圆 C : a 2 b 214.若 x, y 满足约束条件 ⎨ x - 2 y + 3 ≥ 0 , 则 z = x + y 的最大值为__________.⎪ x - 5 ≤ 0 ,8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是A . 11 14 C . 1 15 D . 1 189.在长方体 ABCD - A B C D 中, AB = BC = 1 , AA = 3 ,则异面直线 AD 与 DB 所成角1 1 1 1111的余弦值为A .1 5 B . 5 52210.若 f ( x ) = cos x - sin x 在 [-a, a] 是减函数,则 a 的最大值是A . ππ 2 C . 3π4 D . π11 .已知 f ( x ) 是定义域为 (-∞, +∞ ) 的奇函数,满足f (1- x) = f (1+ x) .若 f (1)= 2,则f (1)+ f (2)+ f (3)+… + f (50)=A . -50B .0C .2D .501 2 x 2 y 2 += 1( a > b > 0) 的左、右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为 3 6 的直线上, △PF F 为等腰三角形, ∠F F P = 120︒ ,则 C 的离心率为1 2 1 2A .23B .12C .1 3 D . 14二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.曲线 y = 2ln( x + 1) 在点 (0, 0) 处的切线方程为__________.⎧ x + 2 y - 5 ≥ 0 ,⎪⎩15.已知 sin α + cos β = 1, cos α + sin β = 0 ,则 sin(α + β ) = __________.16.已知圆锥的顶点为 S ,母线 SA ,SB 所成角的余弦值为 7,SA 与圆锥底面所成角为 45°,8若 △SAB 的面积为 5 15 ,则该圆锥的侧面积为__________.三、解答题:共 70 分。
2018年考研数学二真题及答案解析

2018全国研究生入学考试考研数学二试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若1)(lim 212=++®x bx ax e xx,则()(A )1,21-==b a (B )1,21--==b a (C )1,21==b a (D )1,21-==b a 2.下列函数中,在0=x 处不可导的是(A )x x x f sin )(=(B )x x x f sin )(=(C )xx f cos )(=(D )xx f cos)(=3.设函数îíì³-=010,1)(x x x f ,<,ïîïíì³--£-=0,01,1-,2)(x b x x x x ax x g <<,若)()(x g x f +在R 上连续,则(A )1,3==b a (B )2,3==b a (C )1,3-==b a (D )2,3-==b a 4.设函数)(x f 在[]1,0上二阶可导,且ò=1)(dx x f ,则(A )0)(<x f ¢时,0)21(<f (B )0)(<x f ¢¢时,0)21(<f (C )0)(>x f ¢时,0)21(<f (D )0)(>x f ¢¢时,0)21(<f 5.设dx x x M ò-++=22221)1(pp ,dx e x N x ò-+=221pp ,dx x K ò-+=22)cos 1(pp ,则(A )KN M >>(B )N K M >>(C )NM K >>(D )MN K >>6.=-+-òòòò----dy xy dx dy xy dxxxxx1201222)1()1((A )35(B )65(C )37(D )677.下列矩阵中,与矩阵÷÷øöççèæ100110011相似的为相似的为(A )÷÷÷øöçççèæ1001101-11 (B )÷÷÷øöçççèæ1001101-01 (C )÷÷÷øöçççèæ1000101-11 (D )÷÷÷øöçççèæ1000101-01 8.设A ,B 为n 阶矩阵,记)(x r 为矩阵X 的秩,)(Y X 表示分块矩阵,则(A ))() (A r AB A r =(B ))() (A r BA A r =(C ){})(),(max ) (B r A r B A r =(D ))() (TTB A r B A r =二、填空题:9~14小题,每小题4分,共24分. 9.]arctan )1[arctan(lim 2x x x x -++¥®= 。
2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案

2018年高考全国二卷(全国卷Ⅱ)理科数学试题及答案1.已知复数 $\frac{1+2i}{1-2i}=\frac{-43}{55}$,求其值。
2.已知集合 $A=\{(x,y)|x+y^2\leq 3,x\in Z,y\in Z\}$,求$A$ 中元素的个数。
3.函数 $f(x)=\frac{e^x-e^{-x}}{x^2}$ 的图像大致为什么样子?4.已知向量 $a,b$ 满足 $|a|=1$,$a\cdot b=-1$,求 $a\cdot (2a-b)$ 的值。
5.双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为 $3$,求其渐近线方程。
6.在$\triangle ABC$ 中,$\cos A=\frac{4}{5}$,$BC=1$,$AC=5$,求 $AB$ 的值。
7.设计一个程序框图来计算 $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{100}$。
8.XXX猜想是“每个大于 $2$ 的偶数可以表示为两个素数的和”,在不超过 $30$ 的素数中,随机选取两个不同的数,其和等于 $30$ 的概率是多少?9.在长方体 $ABCD-A_1B_1C_1D_1$ 中,$AB=BC=1$,$AA_1=3$,求异面直线$AD_1$ 和$DB_1$ 所成角的余弦值。
10.若 $f(x)=\cos x-\sin x$ 在 $[-a,a]$ 上是减函数,求$a$ 的最大值。
11.已知 $f(x)$ 是定义域为 $(-\infty,+\infty)$ 的奇函数,满足 $f(1-x)=f(1+x)$,且 $f(1)=2$,求$f(1)+f(2)+f(3)+\cdots+f(50)$ 的值。
12.已知 $F_1,F_2$ 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点,$A$ 是椭圆的左顶点,点 $P$ 在过 $A$ 且斜率为 $3$ 的直线上,$\triangle PF_1F_2$ 是等腰三角形,且 $\angleF_1PF_2=120^\circ$,求椭圆的离心率。
2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)2018年全国二卷数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=-A .43i 55-- B .43i 55-+ C .34i 55--D .34i 55-+2.已知集合(){}223A x y x y x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>3线方程为 A .2y x= B .3y x= C .2y =D .3y x =6.在ABC△中,5cos2C 1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的开始0,0N T ==S N T =-S 输出1i =100i <1N N i=+11T T i =++结束是否和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .15B 5C 5D 210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50 12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A是C的左顶点,点P 在过A3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。
2018年全国硕士研究生入学统一考试数学二真题及标准答案

(总分:150.00,做题时间:180分钟)
一、单项选择题
选择题:1?8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(总题数:8,分数:32.00)
1. (分数:4.00)
A.a=1/2,b=-1
(1) 求f(x1,x2,x3) = 0 的解
(2) 求f(x1,x2,x3) 的规范型(分数:11.00)
__________________________________________________________________________________________
正确答案:(
)
解析:
12.曲线 对应点处的曲率为__________。(分数:4.00)
填空项1:__________________ (正确答案:
2/3
)
解析:
13.设函数z = z(x,y)由方程l __________。
(分数:4.00)
填空项1:__________________ (正确答案:
1/4
)
正确答案:(
)
解析:
19.将长为2m的铁丝分成三段,依次围城圆、正方形与正三角形,三个图形的面积之和是否存 在最小值?若存在,求出最小值。
(分数:10.00)
__________________________________________________________________________________________
2
)
解析:
三、解答题
解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
2018年全国硕士研究生入学考试数学二真题及答案

2
2
(C)当 f (x) 0 时, f (1) 0 (D)当 f (x) 0时, f (1) 0
2
2
【答案】( D )
【解析一】有高于一阶导数的信息时,优先考虑“泰勒展开”。从选项中判断,展开点为 x0
1 2
。
将函数
f
( x) 在
x0
1
处展开,有
2
f (x) f (1) f (1)(x 1) f ( ) (x 1)2 ,其中 1 x 。
1
ex ax2 bx1
ex ax2 bx1
x2
elim x0
ex
ax2 bx1 x2
,
x0
因此,
lim
ex
ax2
bx
1
0
lim
x
1 2
x2
ax2
bx
(x2 )
0
x0
x2
x0
x2
lim
x0
(1 2
a)x2
(1 x2
b)x
(x2)
0
1 2
a
0,1
b
0
或用“洛必达”: lim x0
ex
ax2 x2
x b 1, x 0
则 F(1) 1 a, F(0) 1 b, F(1 0) 2, F(0 0) 1,
因为函数连续,所以极限值等于函数值,即1 a 2,1 b 1 a 3,b 2 ,
故选 (D).
4.
设函数
f
(
x)
在
[0,1]
上二阶可导。且
1
0
f
( x)dx
0 ,则
()
(A)当 f (x) 0 时, f (1) 0 (B)当 f (x) 0 时, f (1) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。
1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( )A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>3 )A .2y x =±B .3y x =±C .22y x =±D .32y x =±6.在ABC △中,5cos25C =,1BC =,5AC =,则AB =( ) A .42B .30C .29D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图, 则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( )A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题。
每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。
17.(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,153-=S . (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测改地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型①:30.413.5y t =-+:根据2010年至2016年的数据(时间变量t 的值依次为127⋅⋅⋅,,,)建立模型②:9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)设抛物线2:4C y x =的焦点为F ,过F 且斜率为()0k k >的直线l 与C 交于A B ,两点。
8AB =. (1)求l 的方程;(2)求过点A B ,且与C 的准线相切的圆的方程.20.(12分)如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.21.(12分)已知函数()2x f x e ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在()0+∞,只有一个零点,求a .(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一部分计分。
22.【选修4-4:坐标系与参数方程】(10分)在直角坐标系xOy中,曲线C的参数方程为2cos4sinxyθθ=⎧⎨=⎩(θ为参数),直线l的参数方程为1cos2sinx l ay l a=+⎧⎨=+⎩(l为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为()12,,求l的斜率.23.【选修4-5:不等式选讲】(10分)设函数()52f x x a x=-+--.(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学参考答案一、选择题12.解:41,236322=∴+==e c a c c PF , 二、填空题13. x y 2= 14. 9 15.21- 16.π24016.设母线长为a,a a a 22OA 8055ASB sin 21S 22ABS ==⇒=∠=∆,所以 ππ2402221S 2==⋅=a C a 侧 三、填空题17.解:(1)由153-=S 可得:15331-=+d a ,所以2=d ,所以92-=n a n(2)16-S 4,82)(n 21取最小值时,当=-=+=n n n na a S n n 18.解:(1)①1.22619*5.134.30y ^=+-=,5.2569*5.1799y ^=+=(2)对于模型①,当年份为2016年时,1.19917*5.134.30y ^=+-=对于模型②,当年份为2016年时,5.2217*5.1799y ^=+= 比较而言,②的准确度高,误差较小,所以选择②19.解:(1)∵F (1,0),设直线)1(-=x k y ,联立0)42()1(422222=++-⇒⎩⎨⎧-==k x k x k x k y x y⎪⎩⎪⎨⎧=+=+142212221x x k k x x ,∵82AB 21=++=x x ,∴k=1,所以直线方程01=--y x (2)设AB 的中点为N (N N y x ,),设圆心为M (a,b ),所以圆的半径r=a+1 因为⎪⎪⎩⎪⎪⎨⎧=+==+=22322121y y y x x x N N ,所以MN 的方程为2)3(1+--=x y ,即05=-+y x 所以22222-b 3-a MN )()()(a x -=+=,由垂径定理:2222AB ⎪⎪⎭⎫ ⎝⎛+=MN r即:()2232161)(-+=+a a 解得:113==a a 或 所以圆的方程为:16)2()3(22=-+-y x 和144)6()11(22=++-y x20.证明:连接BO ,因为AB=BC ,则BO ⊥AC ,所以BO=2又因为在△PAC 中,PA=PC=4,所以PO ⊥AC ,且32PO =,因为222PB OB PO =+, 所以PO ⊥BO ,从而PO ⊥平面ABC ;(2)以OB 为x 轴,以OC 为y 轴,以OP 为z 轴,设B C B M λ=,B (2,0,0),C (0,2,0)A (0,-2,0) P (0,0,32),设M (x,y,0),所以)0,2,2(,0,,2B M -=-=BC y x )(,所以)(0,2,2-2M λλ 设平面PAC 的法向量为)0,0,1(1=n ,设平面MPA 的法向量为),,(1112z y x n =,),(),,,(0,2-2-2-2MA 32-2-0PA λλ==所以⎪⎪⎩⎪⎪⎨⎧=-=---=⇒⎪⎩⎪⎨⎧=⋅=⋅331330MA 0PA 22222z y x n n λλ因为二面角M PA C --为30︒,所以2330cos 0==n n 得=λ31 设PC 与平面PAM 所成角为θ,所以43sin ==θ 21解:(1)当a=1,2)(,2)(,)('''2-=-=-=x x x e x f x e x f x e x f当单调递增单调递减,)(,2ln )(,2ln ''x f x x f x ><,所以02ln 22)2(ln )(''>-=≥f x f 所以是单调递增在),0[)(+∞x f ,所以1)0()(=≥f x f(3)令00)(2=-⇒=a x e x f x ,令a x e x g x -=2)(,32)(x x e x g x )(‘-= 当单调递减时,)(,0)(2'x g x g x <<,单调递增时,)(,0)(2'x g x g x >> 所以a e g x g -==4)2()(2min ①当无零点时,)(,0)(4min 2x g x g e a >< ②当只有一个零点时,)(,0)(4min 2x g x g e a == ③0)(4min 2<>x g e a 时,22.(1)曲线C 的直角坐标方程:116422=+y x直线L 直角坐标方程:2)1(tan +-=x y α(2) 联立116422=+y x 与1cos 2sin x l a y l a =+⎧⎨=+⎩8)sin 4cos 8(sin cos 4222=-+++t t αααα)( 所以2tan ,0sin cos 4sin 4cos 8022221-=∴=++=+ααααα得t t 23.(1)当1a =时,⎪⎩⎪⎨⎧≥-<<--≤+=2,2621,21,42)(x x x x x x f ,所以不等式()0f x ≥的解集为{}32≤≤-x x (2)若()1f x ≤,则42≥-++x a x ,因为22+≥-++a x a x 所以只需要6242-≤≥⇒≥+a a a 或 综上:a 的取值范围为{}26≥-≤a a a 或。