第二届华杯赛全套(初赛、复赛、决一、决二)试题解析
华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. 1B. -1C. -5D. 5答案:C2. 若a和b是两个不同的实数,且a^2 + b^2 = 0,下列哪个选项是正确的?A. a = 0,b ≠ 0B. a ≠ 0,b = 0C. a = 0,b = 0D. a ≠ 0,b ≠ 0答案:C3. 计算下列几何图形的面积:一个半径为3的圆。
A. 9πB. 18πC. 27πD. 36π答案:C4. 一个数列的前三项分别是1, 2, 4,每一项都是前一项的两倍,这个数列的第五项是多少?A. 16B. 32C. 64D. 128答案:B二、填空题(每题5分,共20分)5. 一个等差数列的首项是5,公差是3,那么这个数列的第10项是________。
答案:286. 已知一个直角三角形的两条直角边长分别为6和8,那么这个三角形的斜边长是________。
答案:107. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是________。
答案:24立方厘米8. 一个分数的分子是15,分母是20,化简后这个分数是________。
答案:3/4三、解答题(每题15分,共30分)9. 已知一个二次函数y = ax^2 + bx + c,其中a = 2,b = -3,c = 1,求这个函数的顶点坐标。
答案:顶点坐标为(3/2, -5/2)。
10. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,那么选中男生的概率是多少?答案:选中男生的概率是3/5。
第二届“华杯赛”初赛试题答案

第二届“华杯赛”初赛答案
1.2000年举行第八届
2.小圆上的蚂蚁爬了11圈后,再次碰到大圆上的蚂蚁。
3.共有121个棋孔。
4.这个四位数是1981。
5.格子布中白色部分的面积是总面积的58%。
6.六个方框中的数字的连乘积等于0。
7.这个正方形和四个圆盖住的面积约是13.42平方米。
8.七根竹竿的总长是
63
1
64
米。
9.第三个梯形面积最大。
10.下一次既响铃又亮灯时是下午3点钟。
11.至少要抽13张牌,才能保证有四张牌是同一花色的。
12.这个班共有36个人。
13.第十次交换座位后,小兔坐在第2号位子。
14.能排成4个被11除余8的数。
15.共有100个。
有史以来最全的华杯赛解析

有史以来最全的华杯赛解析(介绍、分析、建议、难度分析一网打尽)华杯赛介绍华杯赛,全称“全国华罗庚金杯少年数学邀请赛”,是1986年创办的全国性大型少年数学竞赛活动,至今已举办了21届。
全国已有近100个城市,3000多万名少年儿童参加了比赛,是目前全国最权威的小学数学比赛。
华杯赛的分组:华杯赛分为小学中、高年级组和初一、初二组,其中小中组参赛要求为不高于4年级,小高组参赛要求为不高于6年级。
(此文均为小高组内容)华杯赛的奖项分配:初赛的前30%进入决赛,获决赛个人一、二、三等奖比例为本市参加决赛人数的36%。
其中:一等奖为参加决赛人数的6%,二等奖为12%,三等奖为18%。
试题分析初赛决赛的试题分析我们通常参加的华杯赛分为初赛与决赛两个部分。
通过对近十年分真题的分析和研究我们会发现:虽然初、复赛的题量,分值都不尽相同,但其所考查的知识点基本没有太大变化,归结起来依然是:计算,计数,几何,应用题,行程问题,数论以及组合杂题这七大模块。
但是由于所针对的孩子程度不同,所以初赛和决赛在侧重点和难易程度上也有所不同。
下面我将为大家分别详细介绍初赛和复赛的题型以及考点。
初赛部分:初赛总共有10道题(6选择+4填空)都只需写答案,不需要过程。
每道题10分共100分,考试时间60分钟。
研究近四年的初赛真题,我们能得到近四年的初赛考点分布情况:再将这些考点进行简单的难易区分,由简到难依次是(后面括号数字代表其近四年题量):计算(3),应用题(3),几何(6),行程(4),计数(6),数论(8),组合杂题(9)所以我们可以发现,从初赛起,华杯赛就对7大模块开始了全面的考察,而且在更考验思维能力、相对不容易的考点上更加侧重。
初赛主要的目的还是考察孩子们的奥数思维,起到一个“选优”的选拔作用。
决赛部分:到了决赛,题量会有所增加,共有14道题(8填空+4简答+2解答),其中选择题每道10分,简答题每道10分,解答题每道15分,总分150分,考试时间90分钟。
华杯赛历届试题及答案

华杯赛历届试题及答案华杯赛,全称“华罗庚数学金杯赛”,是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。
以下是历届华杯赛的部分试题及答案,供参考:一、选择题1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,除以5的余数是1,那么这个数除以15的余数是多少?- A. 3- B. 4- C. 5- D. 6答案:A二、填空题1. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是________ 立方厘米。
答案:2402. 计算下列数列的第10项:1, 1, 2, 3, 5, 8, 13, 21, 34, ...答案:55三、解答题1. 一个水池有注水口和排水口,单开注水口每小时可注水20吨,单开排水口每小时可排水10吨。
如果同时打开注水口和排水口,水池每小时净增水量是多少吨?如果池中原有水100吨,需要多少时间才能将水排空?答案:同时打开注水口和排水口时,水池每小时净增水量是20吨- 10吨 = 10吨。
要将100吨水排空,需要的时间为100吨÷ 10吨/小时 = 10小时。
2. 一个班级有48名学生,其中1/3是男生,剩下是女生。
问这个班级有多少名女生?答案:班级中有48名学生,其中1/3是男生,即48 * (1/3) = 16名男生。
剩下的学生是女生,所以女生人数为48 - 16 = 32名。
四、证明题1. 证明对于任意的正整数n,n的立方与n的和不小于n的平方与n 的两倍之和。
答案:设n为任意正整数。
我们需要证明n^3 + n ≥ n^2 + 2n。
展开立方项,得到n^3 + n - n^2 - 2n = n(n^2 - n - 1) = n(n - (1 + √5)/2)(n - (1 - √5)/2)。
由于n是正整数,(n - (1 +√5)/2)和(n - (1 - √5)/2)都是负数或零,因此整个表达式是非负的,即n^3 + n ≥ n^2 + 2n。
历届华杯赛初赛真题集锦-含答案

目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。
华杯赛试题及答案

华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 中国数学奥林匹克竞赛B. 中国数学华罗庚杯竞赛C. 中国数学华杯赛D. 全国青少年数学华罗庚杯竞赛答案:D2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象是?A. 小学生B. 初中生C. 高中生D. 大学生答案:B4. 华杯赛的试题难度级别是?A. 初级B. 中级C. 高级D. 专家级答案:C二、填空题(每题5分,共20分)1. 华杯赛的全称是________。
答案:全国青少年数学华罗庚杯竞赛2. 华杯赛的举办周期是________。
答案:每年一次3. 华杯赛的参赛对象是________。
答案:初中生4. 华杯赛的试题难度级别是________。
答案:高级三、解答题(每题10分,共30分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的第10项。
答案:该等差数列的公差为3,所以第10项为2 + 3 * (10 - 1) = 31。
2. 一个圆的半径为5,求该圆的面积。
答案:圆的面积公式为πr²,所以面积为π * 5² = 25π。
3. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:根据勾股定理,斜边长度为√(3² + 4²) = 5。
四、证明题(每题10分,共30分)1. 证明:如果一个三角形的两边相等,则这个三角形是等腰三角形。
答案:设三角形ABC中,AB = AC,根据等腰三角形的定义,如果一个三角形有两边相等,则这个三角形是等腰三角形,所以三角形ABC是等腰三角形。
2. 证明:如果一个四边形的对角线互相垂直平分,则这个四边形是菱形。
答案:设四边形ABCD中,对角线AC和BD互相垂直平分,根据菱形的定义,如果一个四边形的对角线互相垂直平分,则这个四边形是菱形,所以四边形ABCD是菱形。
第二届华杯赛决赛二试试题及解答

第二届华杯赛决赛二试试题1.有50名学生参加联欢会,第一个到会的女生同全部男生握过手,第二个到会的女生只差1个男生没握手,第三个到会的女生只差2个男生没握手,如此等等,最后一个到会的女生同7个男生握过手,问这50名同学中有多少男生?2.分子小于6而分母小于60的不可约真分数有多少个?3.已知五个数依次是13,12,15,25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数,请问最后这个数从个位起向左数,可以连续地数到几个0(参见图)?4.用1分、2分和5分的硬币凑成一元钱,共有多少不同的凑法?5.有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4千米,载学生时车速每小时40千米,空车每小时50千米,问:要使两班学生同时到达少年宫,第一班学生步行了全程的几分之几?(学生上下车时间不计)6.下面是两个1989位整数相乘!问乘积的各位数字之和是多少?1.28名男生2.共有197个3.可以连续地数到10个04.共有541种凑法5.第一班学生步行了全程的6.17,901第二届华杯赛决赛二试试题解答1.【解】可以设想每个女生与最后一个与她握手的男生一同跳舞,不再与其他人握手.这样,一对对舞伴离开后,最后留下6(=7-1)名男生,所以男生比女生多6名,由和差问题的解法立即得到男生有(50+6)÷2=28名.2.【解】分子的取值范围是从1到5.当分子为1时,分母可从2到59.共有58个真分数.它们当然都是不可约分数.由于2,3,5都是质数,因此当分子分别为2,3,5时,分母必须而且只须适合下列二个条件:1)分母大于分子且小于60.2)分母不是分子的倍数.经过简单的计算可以知道:当分子为2时,适合条件的分母有29个;当分子为3时,适合条件的分母有38个;当分子为5时,适合条件的分母有44个;最后来看分子为4的情形,与分子为2基本相同,分母不能为偶数,此外分母不能为3所以共有28(=29-1)个.总之。
历届华杯赛初二试题及答案

历届华杯赛初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的平方等于该数本身,那么这个数可能是:A. -1B. 1C. 2D. 0答案:B, D3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数列的前三项为2, 4, 6,如果这是一个等差数列,那么第四项是:A. 7B. 8C. 9D. 10答案:B二、填空题(每空5分,共30分)1. 一个数的立方根是2,这个数是________。
答案:82. 如果一个圆的半径是5厘米,那么它的面积是________平方厘米。
答案:78.53. 一个等腰三角形的底边长为6厘米,两腰相等,如果它的周长是18厘米,那么腰长是________厘米。
答案:64. 一个数的绝对值是5,这个数可以是________或________。
答案:5 或 -5三、解答题(每题25分,共50分)1. 解方程:\[ x^2 - 5x + 6 = 0 \]答案:首先,我们可以通过因式分解来解这个方程:\[ (x - 2)(x - 3) = 0 \]因此,\( x = 2 \) 或 \( x = 3 \)。
2. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
答案:根据三角形的三边关系,如果对于任意三角形的两边a和b,它们的和大于第三边c(即a + b > c),那么这个三角形是存在的。
这是因为,如果a + b ≤ c,那么a和b的延长线将会相交于c的延长线上,而不是形成一个封闭的三角形。
因此,这个条件保证了三角形的存在性。
结束语以上是历届华杯赛初二试题及答案的示例。
这些题目旨在考察学生的数学基础知识和解题技巧。
希望这些示例能够帮助学生更好地准备华杯赛,提高他们的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二届“华杯赛”初赛试题
1.“华罗庚金杯”少年数学邀请赛每隔一年举行一次。
今年(1988年)是第二届。
问2000年是第几届?
2.一个充气的救生圈(如图1)。
虚线所示的大圆,半径是33厘米。
实线所示的小圆,半径是9厘米。
有两只蚂蚁同时从A点出发,以同样的速度分别沿大圆和小圆爬行。
问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上的蚂蚁。
3.图2是一个跳棋棋盘,请你算算棋盘上共有多少个棋孔?
图2
4.有一个四位整数。
在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是2000.81。
求
这个四位数。
5.图3是一块黑白格子布。
白色大正方形的边长是14厘米,白色小正方形的边长是6厘米。
问:这块布中白色的面积占总面积的百分之几?
6.图4是两个三位数相减的算式,每个方框代表一个数字。
问:这六个方框中的数字的连乘积等于多少?
7.图5中正方形的边长是2米,四个圆的半径都是1米,圆心分别是正方形的四个顶点。
问:这个正方形
和四个圆盖住的面积是多少平方米?
8.有七根竹竿排成一行。
第一根竹竿长1米,其余每根的长都是前一根的一半。
问:这七根竹竿的总长是几米?
9.有三条线段A、B、C,A长2.12米,B长2.71米,C长3.53米。
以它们作为上底、下底和高,可以作出三
个不同的梯形。
问:第几个梯形的面积最大?
10.有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃。
中午12点整,电子钟既响铃又亮灯。
问:下一次既响铃又亮灯是几点钟?
11.一副扑克牌有四种花色,每种花色有13张。
从中任意抽牌。
问:要抽多少张牌,才能保证有四张牌是同一花色的?
12.有一个班的同学去划船。
他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正
好每条船坐9人。
问:这个班共有多少同学?
13.四个小动物换座位。
一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号。
以后它们不停地交换位子。
第一次上下两排交换。
第二次是在第一次交换后再左右两排交换。
第三次再上下两排交换第四次再左右两排交换……这样一直换下去。
问:第十次交换位子后,小兔坐在第几号位子上?
14.用1、9、8、8这四个数字能排成几个被11除余8的四位数?
15.图8是一个围棋盘,它由横竖各19条线组成。
问:围棋盘上有多少个与图9中的小正方形一样的正方形?
第二届“华杯赛”复赛试题
1.计算
2.有三张卡片, 在它们上面各写有一个数字( 如下图)。
从中抽出一张、二张、三张, 按任意次序排起来, 可以得到不同的一位数、二位数、三位数. 请你将其中的质数都写出来.
3.有大、中、小三个正方形水池,它们的内边长分别是6 米、3 米、2 米。
把两堆碎石分别沉没在中、小水池的水里, 两个水池的水面分别升高了6 厘米和4 厘米.如果将这两堆碎石都沉没在大水池的水
里,大水池的水面升高了多少厘米?
4.在一个圆圈上有几十个孔( 不到100 个), 如下图。
小明像玩跳棋那样,从A 孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A 孔.他先试着每隔2 孔跳一步,结果只能跑到B 孔.他 又试着每隔4 孔跳一步,也只能跑到B 孔。
最后他每隔 6 孔跳一步,正好跑回到 A 孔, 你知道这个圆圈上共有多少个孔吗?
5.试将 1 , 2 , 3 , 4 , 5 , 6 , 7 分别填人下面的方框中,每个数字只用一次:使得这个数中任意两个都互质, 其中一个三位数已填好,它是714。
6.下图是一张道路图, 每段路上的数字是小王走这段路所需的分钟数.请问小王从 A 出发走到 B , 最
7.如图,梯形 ABCD 的中位线 EF 长 15 厘米,∠ABC =∠AEF = 90° ,G 是EF 上的一点. 如果三角形 ABG 的面积是梯形ABCD 面积的1/5, 那么 EG 的长是几厘米?
8.有三堆砝码,第一堆中每个砝码重 3 克,第二堆中每个砝码重 5 克,第三堆中每个砝码重 7 克。
请你取最少个数的砝码,使它们的总重量为 130 克。
写出你的取法,需要多少个砝码?
9.有 5 块圆形的花圃,它们的直径分别是 3 米、 4 米、 5 米、 8 米、9 米。
请将这 5 块花圃分成
两组,分别交给两个班管理,使两班所管理的面积尽可能接近。
10.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,每一个数都是前两个数的和,也就是: l , 1 , 2 , 3 , 5 , 8 , 13 ,21 , 34 , 55 , … …
问:这串数的前 100 个数中( 包括第 100 个数) 有多少个偶数?
11.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时 60 千米的速度行驶,正好可以按时返回甲地,可是,当到达乙地时,他发现他从甲地到乙地的速度只有每小时 55 千米.如果他想按时返回甲地,他应以多大的速度往回开?
12.如图,大圈是 400 米跑道,由 A 到 B的跑道长是200米,直线距离是 50 米.父子俩同时从 A 点出发逆时针方向沿跑道进行长跑锻炼,儿子跑大圈,父亲每跑到B点便沿直线跑.父亲每 100 米用 20 秒,儿子每 100 米用 19 秒.如果他们按这样的速度跑,儿子在跑第几圈时,第一次与父亲再相遇?
第二届“华杯赛”决赛一试题
1.下图的30个格子中各有一个数字,最上面一横行和最左面一竖列的数字已经填好,其余每个格子中的数字等于同一横行最左面数字与同一竖到最上面数字之和(例如a=14+17=31)。
问这30个数字的总和等于多少?
2.平行四边形ABCD周长为75厘米, 以BC为底时高是14厘米,以CD为底时高是16厘米。
求:平行四边形ABCD
的面积。
3.一段路程分成上坡、平路、下坡三段。
各段路程长之比依次是1∶2∶3,一人走各段路所用时间之比依次是4∶5∶6。
已知他上坡时速度为每小时3公里,路程全长50公里。
问此人走完全程用了多少时间?
4.小玲有两种不同形状的纸板。
一种是正方形的,一种是长方形的。
正方形纸板的总数与长方形纸板的总数之比是1∶2。
她用这些纸板做成一些竖式和横式的无盖纸盒。
正好将纸板用完,在小玲所做的纸盒中竖式纸盒的总数与横式纸盒的总数之比是多少?
5.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份,第二种将木棍分成十二等份,第三种将木棍分成十五等份。
如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
6.已知:
问:a的整数部分是多少?
7.下图算式中,所有分母都是四位数。
请在每个方格中各填入一个数字,使等式成立。
第二届“华杯赛”决赛二试题
1.有50 名学生参加联欢会。
第一个到会的女生同全部男生握过手。
第二个到会的女生只差1 个男生没握过手。
第三个到会的女生只差2个男生没握过手。
如此等等。
最后一个到会的女生同7个男生握过手。
问这50名同学中有多少男生?
2.分子小于6而分母小于60的不可约真分数有多少个?
3.已知五个数依次是13,12,15,25,20。
它们每相邻的两个数相乘得四个数。
这四个数每相邻的两个数相乘得三个数。
这三个数每相邻的两个数相乘得两个数。
这两个数相乘得一个数。
请问最后这个数从个位起向左数。
可以连续地数到几个0?
4.用1 分、2 分和5 分的硬币凑成一元。
共有多少种不同的凑法?
5.有两个班的小学生要到少年宫参加活动,但只有一辆车接送。
第一班的学生坐车从学校出发的同时,第二班学生开始步行。
车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫。
学生步行速度为每小时4 公里,载学生时车速每小时40 公里,空车每小时50 公里。
问:要使两批学生同时到达少年宫,第一班学生步行了全程的几分之几?(学生上下车时间不计)
6.下面是两个1989 位整数相乘:
问:乘积的各位数字之和是多少?。