九年级数学培优材料10

合集下载

九年级数学培优材料10.docx

九年级数学培优材料10.docx

九年级数学培优材料(10)-----元月调考模拟测试一、选择题1、二次根式越有意义,x的取值范围为()3 2 3A、x20B、x三㊁C、D、2、下列各式中为最简二次根式的是()A、y/12B、C、±D、y/53、将一元二次方程x?+3=x化为一般形式后,二次项系数和一次项系数分别为()A、0、3B、0、1C、1、3D、1、-14、如图,在ZXOAB绕点O逆时针旋转70°得到△ OCD,若ZA=100° , ZD=50°,贝iJZAOD 的度数是()A、20°B、30°C、40°D、50°5、如图,已知AB 为(DO 直径,AB=20cm,弦AB=20cm,弦CD丄AB 于M,若OM: 0B=3:5, 则CD的长为()A、8cmB、10cmC、14cmD、16cm6、下列格式中计算正确的是()A、^J|=3V15B、辰±2C、V^b=a2VbD、7、在一个不透明的口袋中,装有3个红球和a个黄球,它们除了颜色不同外其余均相同,若2从中随机摸出一个球,摸到黄球的概率为予则口袋中球的总数为()A、2 个B、6 个C、9 个D、12 个8、如图,正方形ABCD的边长为4,点E是AB上一点,将ZXBCE沿着CE折叠至Z\FCE, 若CF、CE恰好与正方形ABCD的中心为圆心的(DO相切,则折痕CE=()A、5羽B、5C、D、以上都不对9、如图,MN是00的直径,MN=2,点A在OO上,ZAMN=30° , B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值是()A、2^2B、迄C、2D、110、已知四边形ABCD是矩形,AB是的直径,E是00 ±一点,过点E作EF丄DC于点F,若DF=EF=10,且心=*©,则矩形ABCD中AD的长度为()A、10(^3-1)B、10(01)C、20 或10(^3-1)D、10 (^3-1)或10 (羽+1)二、填空题11、计算莎-辰= _______ ;12、点A(a,l)与点B(5,b)关于点P(l,l)对称,则a-b的值为________ 。

初中数学九年级培优教程整理(全)

初中数学九年级培优教程整理(全)

【例1】(荆州)下列根式中属最简二次根式的是()A. a 2 1B. 12C. 8D. 27初中数学九年级培优目录第1 讲二次根式的性质和运算(P2 --- 7)第2 讲二次根式的化简与求值(P7 --- 12)第3 讲一元二次方程的解法(P13 --- 16)第4 讲根的判别式及根与系数的关系(P16 --- 22)第5 讲一元二次方程的应用(P23 --- 26)第6 讲一元二次方程的整数根(P27 --- 30)第7 讲旋转和旋转变换(一)(P30 --- 38)第8 讲旋转和旋转变换(二)(P38 --- 46)第9 讲圆的基本性质(P47--- 51)第10 讲圆心角和圆周角(P52 --- 61)第11 讲直线与圆的位置关系(P62 --- 69)第12 讲圆内等积证明及变换((P70 --- 76)第13 讲弧长和扇形面积(P76 --- 78)第14 讲概率初步(P78 --- 85)第15 讲二次函数的图像和性质(P85 --- 91)第16 讲二次函数的解析式和综合应用(P92 --- 98)第17 讲二次函数的应用(P99 --- 108)第18 讲相似三角形的性质(P109 --- 117)第19 讲相似三角形的判定(P118---- 124)第20 讲相似三角形的综合应用(P124 ---- 130)考点·方法·破译第1 讲二次根式的性质和运算1. 了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2. 掌握二次根式有关性质,并能熟练运用性质进行化简;3. 会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B 中含分母,C、D 含开方数4、9,故选 A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()A. 10B. 8C. 6D. 2⑵①a2b2 ;②x;③5x2 xy ;④27 abc ,最简二次根式是()A .①,②B .③,④C.①,③ D .①,④【例2】( 黔东南) 方程4x 8x y m 0 ,当y>0 时,m 的取值范围是()A .0<m<1 B.m≥2 C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0 的结论. 由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选 C.【变式题组】2.(宁波)若实数x、y 满足x 2 ( y 3) 20 ,则xy 的值是.3.(荆门)若x 1 1 x (x y)2 ,则x-y 的值为()A .- 1B .1 C.2 D.34.(鄂州)使代数式x 3有意义的x 的取值范围是()x 4A .x>3 B.x≥3 C.x>4 D.x≥3 且x≠45. (怀化) a 2 b 3 (c 4) 0 ,则a-b-c=.【例3】下列二次根式中,与24 是同类二次根式的是()A .18 B.30 C.48 D.54【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样.A .18 3 2 ;B .30 不能化简; C. 48 4 3 ;D.54 3 6 ,而24 2 6 .故本题应选 D.【变式题组】6. 如果最简二次根式3a 8 与17 2a 是同类二次根式,则a=.7. 在下列各组根式中,是同类二次根式的是()A . 3 和18B . 3 和13C.a2 b和ab2 D . a 1 和 a 18. 已知最简二次根式 b a 3b 和2b a 2 是同类二次根式,则a=,b=. 【例4】下列计算正确的是()A . 5 3 2B .8 2 4C.27 3 3 D.(1 2)(1 2) 122 a(a>0)【解法指导】正确运用二次根式的性质①( a) 2a(a≥0) ;② a 2 a0(a 0) ;③ab a b( a≥0, b≥0) ;④b b(b≥0, a>0)a aa(a<0)进行化简计算,并能运用乘法公式进行计算. A 、 B 中的项不能合并.D.(1 2)(1 2) 1 ( 2) 2【变式题组】1..故本题应选 C.9. (聊城)下列计算正确的是()A .2 3 4 2 6 5B .8 4 2C.27 3 3 D.( 3)2 310. 计算:( 15 4) 2007(4 15) 200711.(2 3 3 2) 2 (2 3 3 2) 212. ( 济宁) 已知 a 为实数,那么a2 =()A .aB .-a C.-1 D.013. 已知a>b>0,a+b=6 ab ,则a ba b的值为()2 1A .B .2 C. 2 D.2 2【例5】已知xy>0,化简二次根式xy的正确结果为()x2A .yB .y C.y D.y【解法指导】先要判断出y<0,再根据xy>0 知x<0. 故原式xyx【变式题组】y . 选D. 14. 已知a、b、c 为△ ABC三边的长,则化简 a b c ( a b c) 2的结果是.15. 观察下列分母有理化的计算:并利用这一规律计算:1 12 1 ,2 13 213 2 ,4 34 3 ,算果中找出规律,(1 1L1) ( 2006 1) .2 13 2 2006 200516.已知,则0<x<1,则( x 1)2 4 ( x1) 2 4 .x x1 1 b 5 1 5 1【例6】(辽宁)⑴先化简吗,再求值:,其中 a ,b .a b b a(a b) 2 22⑵已知 x3 2 , 32y3 2 ,那么代数式 32xy (x y)2 xy (x y)2值为 .【解法指导 】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x + y 的值,再代入求值 .ab a( a b) b 2(a b)2a b 5 1 5 1 【解】⑴原式=,当 a, b时, ab = 1,a + b = 5 ,原式= 5 .ab(a b)ab (a b)ab22⑵由题意得: xy = 1, x + y = 10, 原式= .【变式题组 】17.(威海)先化简,再求值:(a + b)2+ (a - b)(2a + b)- 3a 2,其中 a2 3 , b3 2 .a2a 2a 418.(黄石)已知 a 是 43 的小数部分,那么代数式 ( 22) (a ) 的值为 .a 4a 4 a2a a【例7 】已知实数 x 、y 满足 ( x x22008)( yy22008) 2008,则 3x 2-2y 2+ 3x - 3y - 2007 的值为( )A .- 2008B .2008C .- 1D . 1【解法指导 】对条件等式作类似于因式分解的变形,找出 a 、b 的关系,再代入求值 .解: ∵ ( x x 22008)( y y22008) 2008,∴ ( xx22008)2008 yy 2008 ,( yy22008)yy22008 xx220082008xx22008 ,由以上两式可得 x = y.选 D.∴ ( x x22008) 2008, 解得 x 2=2008,所以 3x 2- 2y 2+ 3x - 3y - 2007= 3x 2- 2x 2+ 3x - 3x - 2007=x 2- 2007= 1,故 【变式题组 】19.若 a >0, b > 0,且a( ab) 3 b( a5 b ) ,求 2a3bab的值 .演练巩固 · 反馈提高a b ab01. 若 m40 4 ,则估计 m 的值所在的范围是()A . 1< m < 2B . 2< m < 3C . 3<m < 4D . 4<m < 502.(绵阳)已知12 n 是正整数,则实数 n 的最大值为()A . 12B .11C . 8D . 303.(黄石)下列根式中,不是..最简二次根式的是()1 A.7 B. 3C.2D. 204.(贺州)下列根式中,不是最简二次根式的是( )1 100 101 1 100992 2A.2 B. 6 C. 8 D. 1005.下列二次根式中,是最简二次根式的是()A.12B.x233 C.D.2a 2b06.(常德)设 a = 20, b = (- 3)2, c 9 , d ( 1) 1 2, 则 a 、b 、 c 、d 、按由小到大的顺序排列正确的是()A .c < a < d <bB . b < d < a < cC . a < c < d <bD . b < c < a < d07.(十堰)下列运算正确的是() A . 32 5 B . 32 6C . ( 3 1)23 1D .52325 308.如果把式子 (1 a)1 根号外的因式移入根号内,化简的结果为()1 aA .1 a B . a 1C .a 1D .1 a09.(徐州)如果式子(x 1)2x 2 化简的结果为 2x - 3,则 x 的取值范围是()A . x ≤ 1B .x ≥ 2C . 1≤ x ≤ 2D . x > 010.(怀化)函数 yx 中自变量的取值范围是.x 211.(湘西)对于任意不相等的两个数a ,b ,定义一种运算 a ※ b =3 2 5 .那么 12※ 4= .3 2a21 a 112.(荆州)先化简,再求值:232,其中 a 3 .a2a 1 a a13.(广州)先化简,再求值:( a培优升级3)( a3) a(a 6) ,其中 a51 .201.(凉山州)已知一个正数的平方根是3x - 2 和 5x + 6,则这个数是 .02.已知 a 、b 是正整数,且满足 2(15 15 ) a b是整数,则这样的有序数对( a ,b )共有 对.03.(全国)设 a5 1 ,则aa42a 3a 2a 23.04.(全国)设 x2 aa1, a 是 x 的小数部分 , b 是 x 的小数部 , 则 a 3 +b 3+ 3ab = .2 105.(重庆)已知yx22 x222 ,则 x +y = .5x 4 4 5x06.(全国)已知 a2 1 , a 2 2 6 , a 6 2 ,那么 a 、b 、c 的大小关系是()A . a < b < cB .b < a < cC . c < b < aD .c < a < b35207.(武汉)已知 yx 1 4 x ( x , y 均为实数),则 y 的最大值与最小值的差为()A . 6 3B .3C . 5 3D . 6308.(全国)已知非零实数a 、b 满足 2a 4 b 2(a 3)b 24 2a ,则 a + b 等于()A .- 1B . 0C .1D . 209.(全国) 23 2 2 17 12 2 等于()A . 5 4 2B . 4 2 1C . 5D . 110. 已知 x2 xy y 0( x 0, y0) ,则3x xy y的值为( )1 1 A .B .325x 2 3 C .D .343 xy4 y11.已知 a b 2 a 1 4 b 2 3 c 3 1c 5 ,求 a + b + c 的值 . 212. 已知 913 与 913 的小数部分分别是 a 和 b ,求 ab - 3a + 4b + 8 的值 .考点·方法·破译第 2 讲 二次根式的化简与求值1. 会灵活运用二次根式的运算性质化简求值.2. 会进行二次根式的有理化计算,会整体代入求值及变形求值 .3. 会化简复合二次根式,会在根式范围内分解因式.经典· 考题· 赏析【例1 】(河北)已知x1 2 ,那么x x 的值等于xx3x 12x9 x 1【解法指导 】通过平方或运用分式性质,把已知条件和待求式的被开方数都用 1x表示或化简变形 .x解:两边平方得,x1 2 4 , xx1 2 ,两边同乘以 x 得, xx21 2 x ,∵ x 23x 1 5 x , x29 x 1 11x ,22∴原式 = 1 1 511【变式题组 】5 11 =5111. 若 a1 14 (0< a <1),则 a a a2. 设x1aa ,则 4x x 2的值为()A. a1aB.1 aaC. a1 aD .不能确定【例2 】(全国)满足等式x y y x2003x2003y 2003xy= 2003 的正整数对( x, y )的个数是() A . 1B . 2C . 3D .4【解法指导 】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解 .解:可化为xy( x y) 2003( x y) 2003( xy 2003) 0 ,∴ (xy 2003)( x y2003) 0∵xy2003 0 ,∴ xy2003 0,则 xy =2003,且 2003 是质数,∴正整数对( x, y )的个数有 2 对,应选 B. 【变式题组 】3.若 a > 0, b > 0,且 a( a 4 b ) 3 b( a 2 b ) ,求 2a 3b ab 的值 .【例3 】(四川)已知:xa1 (0 aa 1) ,求代数式a b abx2x 6 x 3 x 2 2x 2 4x 的值 . xx2 x x 2x24x【解法指导 】视 x - 2,x 2-4 x 为整体,把xa约.1 平方,移项用含 a 的代数式表示 x - 2,x 2-4 x ,注意 0<a <1 的制 a解:平方得,x a1 2 ,∴ x 2 aa 1 , x2a4x 4 a21 2 ,a2x4x a1 2 ,a( x 3)(x 2)x( x 2) x 2x 24x∴化简原式=g x x 3 x 2 x 24xa 1 ( 1 a)= (a 1 )2 a a a 2 2 a a 1 ( 1 a) a a【变式题组 】2, 4.(武汉)已知 xx 31 232 1,求代数式x 3 ( 52 x 4 x 2x 2) 的值.5.(五羊杯)已知 m 12 , n 12 ,且 (7 m 2 14m a)(3n 26n 7) 8 ,则 a 的值等于()A .- 5B . 5C .- 9D .9【例4 】(全国)如图,点 A 、C 都在函数 y等边三角形,则点 D 的坐标为.3 3 ( xx0) 的图像上,点 B 、D 都在 x 轴上,且使得△ OAB 、△ BCD 都是 【解法指导 】解:如图,分别过点 A 、C 作 x 轴的垂线,垂足分别为E 、F. 设OE=a ,BF=b ,则 AE= 3 a ,CF = 3 b ,所以,点 A 、C 的坐标为( a, 3 a )、( 2a + b, 3 b ),所以3a23 3ya 3 ,解得,3b (2 a b) 3 3因此,点 D 的坐标为( 2 6 ,0) 【变式题组 】6.(邵阳)阅读下列材料,然后回答问题.b63ACOE BF Dx在进行二次根式化简时,我们有时会碰上如52 2 ,3 3 3一样的式子,其实我们还可以将其进一步化简: 15 5 3 3 33 5 3 ; (一)3 2 2 3 33 36 ; (二)3223 13 3 11 3 13 1 ;(三)以上这种化简的步骤叫做分母有理化,2还可以用以下方法化简:2 3 1 3 13 123 13 3 13 1 1 3 13 13 1;(四)( 1)请你用不同的方法化简2;53①参照(三)试得:2=;(要有简化过程) 5 3②参照(四)试得: 2 =;(要有简化过程)53 ( 2)化简:1 1 1L1 3 153752n 12 n 1【例5 】(五羊杯)设 a 、b 、c 、d 为正实数, a < b , c < d ,bc > ad ,有一个三角形的三边长分别为a2c 2 , b2d 2,(b a)2(d c)2,求此三角形的面积 .【解法指导 】虽然不能用面积公式求三角形面积 ( 为什么 ?) ,a2边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.c 2的几何意义是以 a 、c 为直角边的直角三角形的斜解:如图,作长方形 ABCD ,使 AB = b - a , AD =c ,延长 DA 至 E ,使 DE =d ,延长 DC 至 F ,使 DF = b ,连结 EF 、FB 、EB , 则BF =a2c2, EF =b2d2,BE=(b a)2(d c)2,从而D知△ BEF 就是题设的三角形, 而 S △ BEF =S 长方形 ABCD + S △ BCF + S △ ABE baCF - S △ DEF = ( b - a) c + 1 2( d -1 1c)( b - a) - bd = ( bc -ad)d 22A cE【变式题组 】7. ( 北京 ) 已知 a 、b 均为正数,且 a +b = 2,求 U =a24b21演练巩固 · 反馈提高3 2 3 2xy x 2y2 01. 已知 x, y32,那么代数式32xy x2值为y202. 设 a7 1,则 3a312a26a 12 =()A . 24B . 25C . 4 7 10D . 4 7 1203.(天津)计算 ( 3 1)20012( 3 1)20002( 3 1)1999200104.(北京)若有理数 x 、 y 、z 满足xy 11 z 2( x y z) ,则 2( x yz)205.(北京)正数 m 、 n 满足 m 4 mn 2 m 4 n4n 3 0 ,则m 2 m 2 n n 8200206.(河南)若 x3 1 ,则 x3(2 3) x2(1 2 3) x 3 5 的值是()A . 2B . 4C . 6D . 807. 已知实数 a 满足 2000a a 2001 a ,那么 a 20002的值是()A . 1999B . 2000C . 2001D . 200208. 设 a1003 997 , b 1001 999 , c 2 1000 ,则 a 、b 、c 之间的大小关系是()A . a < b < cB . c < b < aC . c < a < bD . a < c < b09. 已知 1 ( x 1)2x ,化简 x21 x x21 x44B3 32003培优升级01.(信利)已知 x1 3 ,那么1x 21 1 x 24 x 202.已知 a 4a 1 5 ,则 6 2 a03.(江苏)已知( xx22002)( yy22002) 2002 ,则 x 23xy 4 y26 x 6 y 5804.(全国)7x 29x 13 7x 25x 13 7x ,则 x =05.已知 x3 2 , y3 2 ,那么 yx32 3 2 x2y206.(武汉)如果a b20022 , ab2002 2 , b3c3b3c ,那么 a 3b3c 的值为()A . 2002 2002B . 2001C . 1D . 007.(绍兴)当 x12002 2时,代数式 (4 x32005 x2001)的值是( )A . 0B .- 1C . 1D . 2200308.(全国)设 a 、b 、c 为有理数,且等式a b 2 c 35 26 成立,则 2a 999b 1001c 的值是()A . 1999B . 2000C . 2001D .不能确定09.计算:( 1)6 4 3 3 2( 63)( 32)( 2)10 14 15 21 10141521( 3)1 1 1L13 35 3 3 5 7 5 5 749 47 47 49( 4)3 2 2 5 2 6 7 2 12 9 2 20 11 2 30 13 2 4215 2 5617 2 722210.已知实数 a 、 b 满足条件a bb1 ,化简代数式a (1 1)g a b( a b 1)2,将结果表示成不含 b 的形式 .11.已知 x1 a 2(a a0) ,化简:x 2 x 2x 2 x 212.已知自然数 x 、y 、z 满足等式x 2 6 y z 0 ,求 x + y +z 的值 .考点·方法·破译第 3 讲 一元二次方程的解法1. 掌握一元二次方程根的定义并能应用根的定义解题;2. 掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3. 会应用一元二次方程解实际应用题。

苏教科版初中数学九年级上册提优10

苏教科版初中数学九年级上册提优10

苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!1.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.2.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.3.已知抛物线y=x2-2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D 点,点A的坐标为(-1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(-4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.4.如图(1),抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).(1)k ,点A的坐标为 ,点B的坐标为 ;(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

九上数学培优10

九上数学培优10

九年级数学培优(10)班级:姓名:例1.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.练习:1.有下列说法:①半径是弦;②任意一个三角形有且只有一个外接圆;③平分弦的直径垂直于弦;④半圆所对的圆周角是90°;⑤相等的圆周角所对的弧相等,其中正确的个数有()A.2个B.3个C.4个D.5个2.矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是()A.点B,C均在圆P外B.点B在圆P外,点C在圆P内C.点B在圆P内,点C在圆P外D.点B,C均在圆P内3.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.4.如图,O是△ABC的内心,过点O作EF∥AB,与AC、BC分别交E、F,若AE=3,BF=2,则EF的长是.(2题)(3题)(4题)5.一个直角三角形的两条边长是方程x2﹣7x+12=0的两个根,则此直角三角形的外接圆的直径为.例2.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.练习:6.在△ABC中,BC=6cm,∠B=30°,∠C=45°,以A为圆心作⊙A,当半径r 时所作的⊙A与BC相离:7.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE ⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=2,CD=2,求弦AD的长.8.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC 于点E,过点C作CG⊥AB,垂足为G,交AE于点F,过点E作EP⊥AB,垂足为P,∠EAD=∠DEB.(1)求证:BC是⊙O的切线;(2)若CE=EP,CG=12,AC=15,求四边形CFPE的面积.例3.如图,在梯形ABCD中,AD∥BC,∠B=90°,以AB为直径作⊙O,恰与另一腰CD 相切于点E,连接OD、OC、BE.(1)求证:OD∥BE;(2)若梯形ABCD的面积是48,设OD=x,OC=y,且x+y=14,求CD的长.练习:9.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A,B,DE 切⊙O于E,交AM于D,交BN于C,设AD=x,BC=y,则y与x的函数关系式为;10.如图,P A、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=70°.求:P A=;∠COD的度数为;.(9题)(10题)。

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数

九年级数学下册2023年中考专题培优训练(培优篇):函数一、单选题1.下列曲线中不能..表示y 是x 的函数的是( ) A . B .C .D .2.如图,直线1:3L y x =+与直线2:L y ax b =+相交于点()4A m ,,则关于x 的不等式3x ax b +≤+的解集是( ).A .4x ≥B .4x ≤C .1x ≥D .1x ≤3.若直线3y x =与x 轴所夹的锐角为α,则sin α的值为( ) A 3B .12C 3D 34.下列四个选项中,不符合直线3y x =--的性质特征的选项是( ) A .经过第二、三、四象限 B .y 随x 的增大而减小 C .与x 轴交于()3,0 D .与y 轴交于()0,3-5.已知反比例函数()0ky k x=≠,当21x -≤≤-时,y 的最大值是6,则当2x ≥时,y 有( )A .最小值6-B .最小值3-C .最大值6-D .最大值3-6.如图,正比例函数y ax =(a 为常数,且0a ≠)和反比例函数ky x=(k 为常数,且0k ≠)的图像相交于)(2,A m -和B 两点,则不等式kax x<的解集为( )A .<2x -或2x >B .22x -<<C .20x -<<或2x >D .<2x -或02x <<7.对于反比例函数2023y x=,下列说法正确的是( ) A .图象分布在第二、四象限内 B .图象经过点()1,2023-- C .y 随x 的增大而减小 D .0x <时,y 随x 的增大而增大8.如图,P 是反比例函数()50y x x=>的图象上一点,PA x ⊥轴于点A ,动点B 从原点O 出发,沿y 轴正方向移动,连接AB ,BP .在点B 移动过程中,PAB 的面积( )A .越来越大B .不变C .越来越小D .先变大后变小9.对于二次函数()222y x =-+的图像,下列说法正确的是( ) A .对称轴为直线2x =- B .最低点的坐标为()2,2 C .与x 轴有两个公共点D .与y 轴交点坐标为()0,210.如图,在平面直角坐标系中,点()12,A m y -,()2,B m y 都在二次函数()21y x n =-+的图象上.若12y y >,则m 的取值范围是( )A .1m <B .1m >C .2m <D .>2m11.如图,一场篮球比赛中,一名篮球运动员投篮,球沿抛物线20.2y x bx c =-++运行,然后准确落入篮筐内,已知球出手时离地面高2.25米,距篮筐中心的水平距离OH 是4米,篮筐的中心离地面的高度为3.05m ,该抛物线的表达式为( )A .20.2 2.25y x x =--+B .20.2 2.25y x x =-++C .20.22 2.25y x x =--+D .20.22 2.25y x x =-++12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,其对称轴为直线12x =-,且与x轴的一个交点坐标为()2,0-.下列结论:①0abc >;①a b =;①930a b c -+>;①20a c +=;①关于x 的一元二次方程20ax bx c ++=有两个相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题13.如图,点A 是反比例函数ky x=图象上一点,过点A 作AH x ⊥轴,垂足为H ,连接OA ,已知AOH △的面积是6,则k 的值是__________.14.把抛物线2(1)3y x =-++向左平移2个单位长度,然后向下平移3个单位长度,平移后抛物线的表达式为__________.15.一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系kt v=,其图象为如图所示的一段曲线,且端点为()40,1A 和(),0.5B m .若行驶速度不得超过60km/h ,则汽车通过该路段最少需要_________h ?16.反比例数4y x =-,当4y <时,x 的取值范围是______.17.如图,在平面直角坐标系中,OAC 的顶点A 在反比例函数ky x=的图象上,点C 在x 轴上,AC 边交反比例函数图象于点B ,若2BOCS=,且2AB BC =,则k 的值为___________.18.如图,直线334y x =--与x 轴、y 轴分别交于点A 和点B ,点C 是x 轴上的一个动点,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,则点C 的坐标为______.三、解答题19.如图,直线1l :23y ax =+与x 轴和y 轴分别交于B ,C 两点,直线2l :23y x b =-+与x轴交于点A ,并且这两直线交点P 的坐标为()22,.(1)求两直线的解析式; (2)求四边形AOCP 的面积.20.李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (①)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 ①.(2)求乙壶中水温y 关于加热时间x 的函数解析式. (3)当甲壶中水温刚达到80①时,乙壶中水温是 ①.21.如图,直线2y ax =+与x 轴、y 轴分别相交于A 、B 两点,与双曲线()0k y x x=>相交于点P ,PC x ⊥轴于点C ,且4PC =,点A 的坐标为()4,0-.(1)求一次函数的解析式; (2)求双曲线的解析式;(3)若点Q 为双曲线上点P 右侧的一点,且QH x ⊥轴于H ,当以点Q 、C 、H 为顶点的三角形与AOB 相似时,求点Q 的坐标. 22.如图,已知一次函数112y x =-与反比例函数()0k y k x =≠相交于点(),1A m 、()2,B n -.过点A 分别向x 轴、y 轴作垂线,垂足分别为点M 、N .连接,,OA OB AB .(1)求反比例函数的解析式;(2)若四边形OMAN 的面积记作1S ,AOB 的面积记作2S ,求12S S 的值. 23.为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y (单位:3mg/m )与时间x (单位:min )的函数关系如图所示.在进行药物喷洒时y 与x 的函数关系式为2y x =,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为(5,)A n .(1)n 的值为__________;(2)当5x ≥时,y 与x 的反比例函数关系式为__________;(3)当教室空气中的药物浓度不高于31mg/m 时,对人体健康无危害.当教室药物喷洒完成45min 后,学生能否进入教室?请通过计算说明.24.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,增种后果园橙子的总产量为y 个,那么请你求出当果园增种多少棵橙子树时,橙子的总产量最多,并求出此时的总产量.25.如图,抛物线2y ax bx c =++经过点()()2,0,4,0A B -,与y 轴正半轴交于点C ,且2OC OA =,抛物线的顶点为D ,直线y mx n =+经过B ,C 两点,与对称轴交于点E .(1)求抛物线及直线BC 的函数表达式;(2)点M 是直线BC 上方抛物线上的动点,连接,MB ME ,得到MBE △,求出MBE △面积的最大值及此时点M 的坐标;(3)直线()0y kx k =>交线段BC 于点H ,若以点O ,B ,H 为顶点的三角形与CDE 相似,求k 的值;(4)点N 在对称轴上,满足BNC ABC ∠=∠,求出点N 的坐标.。

北师大版本数学九年级上册培优精品(全套)

北师大版本数学九年级上册培优精品(全套)

北师大版本初三数学培优教案(精品资源)目录第一讲:相似三角形的判定及模型 (1)模块一:相似三角形的判定与性质 (1)模块二:A字型与8字型 (4)模块三:射影定理 (7)第二讲:相似三角形的计算及证明 (9)模块一:共线三等角 (9)模块二:相似中的比例证明 (13)第三讲:动态几何专题一 (17)模块一:相似三角形 (17)模块二:特殊四边形 (20)第四讲:相似综合计算及应用 (24)模块一:相似应用 (24)模块二:相似的综合计算 (26)第五讲:反比例函数 (29)模块一:反比例函数定义和性质 (29)模块二:反比例函数k值意义初步 (34)第六讲:反比例K意义进阶 (37)模块一:反比例K意义进阶 (37)第七讲:反比例函数综合及应用 (45)模块一:函数应用 (45)模块二:函数综合 (48)第八讲:一元二次方程及其应用 (55)模块一:一元二次方程 (55)模块二:一元二次方程的应用 (60)第一讲:相似三角形的判定及模型模块一:相似三角形的判定与性质1.相似三角形的判定(1)三边法:三组对应边的比相等的两个三角形相似.(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.(3)两角法:有两组角对应相等的两个三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.(3)相似三角形的面积的比等于相似比的平方.(4)由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.例题精讲知识点一:相似三角形的判定例1.(1)如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:△△AED=△B ,△△ADE=△C ,△BC DE AB AE =,△ABAE AC AD =,△AC 2=AD·AE ,使△ADE 与△ACB 一定相似的有( )A . △△△B .△△△C . △△△△D .△△△△*(2)如图,已知△ABC,AB=AC,点E、F在边BC上,满足△EAF=△C,若BF=6,CE=4,则AC的值为.训练1-1.如图,已知△1=△2,若再增加一个条件不一定能使结论△ADE△△ABC成立,则这个条件是()A.△D=△B B.C.D.△AED=△C训练1-2.如图,在四边形ABCD中,如果△ADC=△BAC,那么下列条件中不能判定△ADC 和△BAC相似的是()A.△DAC=△ABC B.AC是△BCD的平分线C.AC2=BC•CD D.=训练1-3.如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为.知识点二:相似三角形的性质例2.如图,在平行四边形ABCD中,AB=6,AD=9,△BAD的平分线交BC于E,交DC 的延长线于F,BG△AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.8训练2-1.如图,在△ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A.B.C.D.训练2-2.若△ADE△△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.模块二:A字型与8字型1.A 字型及其变形:EC AE DB AD =,BCDE AC AE AB AD == AB AE AC AD ⋅=⋅2.8字型及其变形:CD AB CO BO DO AO == CDAB DO BO CO AO ==例题精讲知识点一:A 字型例1.(1)如图,在△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另外两个顶点G 、H 分别在AC 、AB 上,BC=15,BC 边上的高是10,则正方形的面积为( )A .6B .36C .12D .49(2)如图,已知△ABC 、△DCE 、△FEG 、△HGI 是4个全等的等腰三角形,底边BC 、CE 、EG 、GI 在同一直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,则QI= .训练1-1.(1)如图,要在一起△ABC 的纸片上截取正方形DEFG 模型,其中G 、F 在BC 边上,D 、E 分别在 AB 、AC 边上,AH△BC 交于DE 于M ,若BC=12,AH=8,则正方形DEFG 的边长为( )A .524 B .4 C .724D .5训练1-2.如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B 2D 1C 1面积为S 1,△B 3D 2C 2面积为S 2,…,△B n+1D n C n 面积为S n ,则S n 等于( )A .B .C .D .知识点二:8字型例2.(1)如图,点D 是AB 边的中点,AF△BC ,CG:GA=3:1,BC=8,则AF= .(2)如图,已知△ABC△△DCE△△HEF,三条对应边BC、CE、EF在同一条直线上,连接BH,分别交AC、DC、DE于点P、Q、K,其中S△PQC=1,则图中三个阴影部分的面积和为.训练2.(1)如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=.(2)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)模块三:射影定理1.射影定理射影定理图模:如右图所示,图中所有的直角三角形都是相似的,则有:AC2=AD·AB;CD2=AD·DB;BC2=BD·AB.2.广义射影定理图模如右图所示,当△ACD=△B时,△ACD△△ABC,则有:AC2=AD·AB例题精讲知识点一:射影定理例1.(1)如图,Rt△ABC在中,△C=90°,CD△AB于点D,且AD:BD=9:4,AC:BC的值为.(2)如图,在矩形ABCD中,F是AB的中点,且CF△BD于G,DG=2,CG值为,CD值为.(3)如图,已知△ACP=△B,AC=4,AP=2,则AB=.3,则训练1-1.(1)如图,Rt△ABC在中,△C=90°,CD△AB于点D,且AD=6,AC=6CB=.(2)如图,在矩形ABCD中,AF:BF=2:1,且CF△BD于G,DG=3,CG值为,CD值为.(3)如图,已知△ACD=△B,AC=5,AD=3,则AB=.第二讲:相似三角形的计算及证明模块一:共线三等角1.三垂直及斜K模型△ABE△△ECD △ AB·CD = BE·EC2.共线三等角拓展模型特别地,当点E 是BC 的中点时,△ABE△△ECD△△AED,AE、DE 分别平分△ABD、△ADE.3.手拉手模型:结论:△ABC△△ADE△ABD△△ACE例题精讲知识点一:三垂直例1.(1)在矩形ABCD中,由8个边长均为1的正方形组成的“L 型”模板如图2放置,则BC边的长度为.(2)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为.训练1-1.(1)如图,正方形ABCD的边长为10,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则DE 的长为.(2)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2△P2P3,P2P3△P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为.训练1-2.(1)如图为两正方形ABCD 、BEFG 和矩形DGHI 的位置图,其中G 、F 两点分别在BC 、EH 上.若AB=5,BG=3,则△GFH 的面积为何?( )A .10B .11C .D .(2) 如图,直线y=﹣2x+2与坐标轴交于A ,B 两点.以AB 为短边在第一象限作一个矩形ABCD ,使得AB :AD=1﹕2.则D 点的坐标为 .知识点二:斜K 模型例2.如图,四边形ABCD ,M 为BC 边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则BC 的长为 .训练2.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=34,则△ABC 的周长为 .知识点三:手拉手模型例3.(1)如图,△ABC 中,AC=3,分别以BC 、AB 为底边作顶角为120°的等腰△BDC 和△AEB ,D 在△ABC 内,E 在△ABC 外,那么ED 的长等于 .(2)如图,Rt△ABC 中,△BCA=90°,AB=AC ,AC 边上有点 D ,连结BD ,以BD 为腰作等腰直角三角形的BDE ,DE 交BC 于F ,那么下面结论:△△ABD△△CBE ; △△BCE=90°△DF·EF=BF·CF ; △BC -CE=2CD .其中正确的有( )A .△△B .△△△C .△△△D .△△△△训练3.(1)如图,△ABC 中,AC=5,分别以BC 、AB 为底边作等边△BDC 和△AEB ,D 在△ABC 内,E 在△ABC 外,那么ED 的长等于( )A .5B .52C .55D .5(2)如图,在同一平面内将两个全等的等腰Rt△ABC和△AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合).若BD=4,,DE=5,CE=3,则AD= ,AE= .模块二:相似中的比例证明例题精讲例4.(1)如图,已知正方形ABCD中,BE平分△DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.①求证:△BDG△△DEG;②若EG•BG=4,求BE的长.(2)如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF△DE,垂足为F,BF交边DC于点G,求证:GD•AB=DF•BG.(3)如图,已知DE△BC,AO,DF交于点C.△EAB=△BCF,求证:OB2=OE•OF.训练4.(1)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D对应点为C,点A的对应点为F,过点E作ME△AF交BC于点M,交BD于点N,现有下列结论:△AM=AD+MC;△AM=DE+BM;△DE2=AD•CM;△点N为AM的中点其中正确的结论为.(4)如图,已知在△ABC中,△BAC=2△B,AD平分△BAC,DF△BE,点E在线段BA的延长线上,联结DE,交AC于点G,且△E=△C.①求证:AD2=AF•AB;②求证:AD•BE=DE•AB.(3)如图,已知A、B、C三点在同一条直线上,△ABD与△BCE都是等边三角形,其中线段AE交DB于点F,线段CD交BE于点G.求证:=.拓展(辅助线)△ABC,点D是AB的中点,过点D任作一条直线DF,交BC的延长线于F点,交AC于E点;求证:AE•CF=BF•EC.第三讲:动态几何专题一模块一:相似三角形例题精讲知识点一:直角相似例1.如图,在Rt△ABC中,△ACB=90°,AC=8,BC=6,CD△AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?训练1-1.如图所示,已知直线l的表达式为y=﹣x+8,且l与x轴、y轴分别交于A、B 两点,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向A移动,同时动点P 从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,其中一点停止运动,另一点也随之停止运动,设点Q、P移动时间为t秒.(1)求点A、B的坐标(2)当t为何值时,△APQ与△AOB相似;(3)当t为何值时,△APQ的面积最大,最大面积是多少?知识点二:非直角相似例2.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD△y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,△BAC=45°.(1)求点A,C的坐标;(2)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.模块二:特殊四边形例题精讲(菱形+直角三角形)例3.如图,在Rt△ABC中,△B=90°,AC=60,AB=30.D是AC上的动点,过D作DF△BC 于F,过F作FE△AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.训练3.如图,在△ABC中,AB=AC,AD△BC于点D,BC=10cm,AD=8cm.点P从点B 出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)连接DE、DF,当四边形AEDF为菱形,请求出此时t的值;(2)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.(面积+平行四边形)例4.如图△,矩形OABC的边OA、OC分别在坐标轴上,点B在第二象限,且点B的横、纵坐标是一元二次方程m2+m﹣12=0的两个实数根.把矩形OABC沿直线BE折叠,使点C落在AB边上的点F处,点E在CO边上.(1)直接填空:B(,),F(,);(2)如图△,若△BCE从该位置开始,以固定的速度沿x轴水平向右移动,直到点C与原点O重合时停止.记△BCE平移后为△B′C′E′,△B′C′E′与四边形OABE重叠部分的面积为S,请求出面积S与平移距离t之间的函数关系式,并直接写出t的取值范围;(3)如图△,设点G为EF中点,若点M在直线CG上,点N在y轴上,是否存在这样的点M,使得以M、N、B、G为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.训练4.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC 与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.第四讲:相似综合计算及应用模块一:相似应用例题精讲例1.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB是多少?训练1.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=.例2.(1)如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.(2)如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上,已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m与2m,那么塔高AB为m.训练2.(1)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为.(2)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12m,DE=18m,小明和小华的身高都是1.5m,同一时刻小明站在E处,影子落在坡面上,影长为2m,小华站在平地上,影子也落在平地上,影长为1m,则塔高AB是米.模块二:相似的综合计算深圳中考真题训练1.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是 .2.在Rt ABC ∆中,︒=∠90C ,AD 平分CAB ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC = .3.如图,在Rt△ABC 中,△ABC=90°,AB=3,BC=4,Rt△MPN ,△MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= .4.如图,CB=CA ,△ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG△CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:△AC=FG ;△2:1==CEFG FAB S S 四边形△;△△ABC=△ABF ;△AC FQ AD •=2,其中正确的结论个数是( )A .1B .2C .3D .4例题精讲例3.(1)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH 沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分△CGE时,BM=2,AE=8,则ED=.(2)如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是.训练3.(1)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为.(2)一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为.(3)如图,点E是正方形ABCD的边BC延长线一点,连接AE交CD于F,作△AEG=△AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH△AG于H,连接DH,则DH 的长为.第五讲:反比例函数模块一:反比例函数定义和性质1.反比例函数的定义形如y=(k 为常数,k≠0)的函数称为反比例函数.其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.三种形式:y=(k 为常数,k≠0)、y=kx ﹣1(k 为常数,k≠0)、k y x =⋅(k 为常数,k≠0)2.反比例函数图象的对称性反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:△二、四象限的角平分线y=﹣x ; △一、三象限的角平分线y=x ;对称中心是:坐标原点.3.反比例函数的性质(1)反比例函数y=kx (k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.例题精讲例1.(1)下列函数中,表示y 是x 的反比例函数的是( )A .y=B .y=C .y=2xD .y=(2)函数y=(m+1)x是y 关于x 的反比例函数,则m= .(3)反比例函数y=(2m ﹣1)x ,在每个象限内,y 随x 的增大而增大,则m 的值是.训练1.(1)下列函数是反比例函数的是()A.B.y=x2+x C.D.y=4x+8(2)若函数y=(m+1)是反比例函数,则m的值为.(3)若反比例函数的图象在第二、四象限,m的值为.例2.(1)在同一平面直角坐标系中,函数y=mx+2和y=(m≠0)的图象大致是()A.B.C.D.(2)如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1),若反比例函数y=在第一象限内的图象与△ABC有公共点,则k的取值范围是.训练2.(1)已知一次函数y=mx+n与反比例函数y=其中m、n为常数,且mn<0,则它们在同一坐标系中的图象可能是()A.B.C.D.(2)如图,△ABC的三个顶点分别为A(1,3),B(5,3),C(5,5),若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤15B.3≤k≤15C.3≤k≤25D.15≤k≤25例3.(1)如果直线y=mx与双曲线y=的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为.(2)函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>0训练3.(1)在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx的图象交于点A(1,3)和点B,则点B的坐标为.(2)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.(3)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1例4.(1)已知函数y1=,y2=x+1,若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2 B.﹣1<x<0或x>2C.﹣2<x<0或x>1D.x<﹣2或0<x<1(2)如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.训练4.(1)已知直线y1=ax与双曲线y2=相交,如图所示,y1>y2时x的范围是.(2)如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是.模块二:反比例函数k 值意义初步1.k 的计算方法(1)一点坐标乘积xy=k (2)两点坐标乘积相等,列方程求k(3)三角形面积求k (4)矩形面积求k2.k 的几何意义(1)k =AOBP S 矩形 (2)ABO S △2k =(3)ABC S △=2|k| (4)ABM S △=|k|**3.面积问题中的两种方法(1)几何法:△通过三角形或矩形的面积转化,把要求的面积转化成熟悉的三角形或矩形面积; △充分抓住已知条件中的特殊关系(比值、中点等)△如果找不到或用不上熟悉三角形或矩形,则需要作辅助线,辅助线的做法通常是通过反比例函数图像上的点作x 轴或y 轴的垂线来构造出熟悉三角形或矩形;△最后通过三角形或矩形面积算出k 的值.(2)代数法:△在反比例函数上找一合适的点(跟中点或比值等特殊关系有关的点)并设其坐标为(x ,y );△用x 和y 表示出整块大图形的面积和除已知面积图形外的三角形面积,并将其代入方程:已知部分全S S S =-△解出x 和y ,并通过xy=k 计算出k 的值.例题精讲例5.(1)已知反比例函数图像上有两点A (a ,2)、B(m ,4),已知a 和m 是方程0862=+-x x 的两个不等的解,则该反比例函数的解析式为 .(2)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=的图象上,若点A 的坐标为(﹣2,﹣2),则k 的值为 .训练5.(1)已知反比例函数图像经过二、四象限,并经过两点(a ,a+2)与(1,6a+5),则该反比例函数图像的解析式为 .(2)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .例6.(1)如图,已知函数y=kx 与函数y=的图象交于A 、B 两点,过点B 作BC△y 轴,垂足为C,连接AC.若△ABC 的面积为2,则k 的值为.(2)如图,直线l分别交x轴、y轴于点A、B,交双曲线y=(x>0)于点C,若AB:AC=1:3,且S△AOB=,则k的值为.训练6.(1)如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、C两点,AB△x 轴于B,CD△x轴于D,则四边形ABCD的面积为.(2)如图,已知直线y=﹣2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB 翻折后,设点O的对应点为点C,双曲线y=(x>0)经过点C,则k的值为.第六讲:反比例K 意义进阶模块一:反比例K 意义进阶面积问题中的两种方法(1)几何法:△通过三角形或矩形的面积转化,把要求的面积转化成熟悉的三角形或矩形面积; △充分抓住已知条件中的特殊关系(比值、中点等)△如果找不到或用不上熟悉三角形或矩形,则需要作辅助线,辅助线的做法通常是通过反比例函数图像上的点作x 轴或y 轴的垂线来构造出熟悉三角形或矩形; △最后通过三角形或矩形面积算出k 的值.(2)代数法:△在反比例函数上找一合适的点(跟中点或比值等特殊关系有关的点)并设其坐标为(x ,y );△用x 和y 表示出整块大图形的面积和除已知面积图形外的三角形面积,并将其代入方程:已知部分全S S S =-△解出x 和y ,并通过xy=k 计算出k 的值.中考真题训练1.如图,A B 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )△AOP BOP ∆≅∆;△AOP BOP S S ∆∆=;△若OA OB =,则OP 平分AOB ∠;△若4BOP S ∆=,则16ABP S ∆=.A .△△B .△△C .△△D .△△2.如图,四边形ABCO 是平行四边形,,6,2==AB OA 点C 在x 轴的负半轴上,将 ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上.若点D 在反比例函数)0(y <=x xk 的图像上,则k 的值为_________.3.如图,Rt△ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 的反向延长线交y 轴负半轴于点E ,双曲线xk y =(k >0)的图象经过点A ,若S △BEC =8,则k 等于4.如图,双曲线y=经过Rt△BOC 斜边上的点A ,且满足=,与BC 交于点D ,S △BOD =21,求k= .例题精讲考点一:边长比例类例1.(1)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y 轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.(2)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为.训练1.(1)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴上的正半轴上,BC=2AC,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积为.(2)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,,△AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是.考点二:两个反比例函数例2.(1)双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.(2)如图,点A与点B分别在函数y=与y=的图象上,线段AB 的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是.(3)如图,已知点A是双曲线在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.训练2.(1)如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,且AB△x轴,BC△x轴于点C,则四边形ABCO的面积为.(2)如图,反比例函数y=﹣和y=上分别有两点B、C,且BC△x轴,点P是x轴上一动点,则△BCP的面积是.(3)如图,在Rt△ABC中,△ABC=90°,点B在x轴上,且B(﹣1,0),A点的横坐标是2,AB=3BC,双曲线y=(m>0)经过A点,双曲线y=﹣经过C点,则Rt△ABC 的面积为.考点三:面积综合例3.(1)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD△x轴于点D,过点B作BC△y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.(2)如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x 轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为.(3)如图,△AOB和△BCD均为等边三角形,且顶点A、C均在双曲线y=(x>0),AD 与BC相交于点P,则图中△OAP的面积为.训练3.(1)如图,点E、F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.(2)如图,点A是反比例函数y=(x>0)的图象上一点,OA与反比例函数y=(x>0)的图象交于点C,点B在y轴的正半轴上,且AB=OA,若△ABC的面积为6,则k的值为.(3)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=.拓展题1.如图,△AOB为等边三角形,点B的坐标为(﹣4,0),过点C(4,0)作直线l交AO 于D,交AB于E,点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,那么该反比例函数的解析式为y=.2.如图,已知反比例函数y=(x>0)的图象经过点A(3,4),在该图象上面找一点P,使△POA=45°,则点P的坐标为.第七讲:反比例函数综合及应用模块一:函数应用例题精讲例1.(1)某市一蔬菜生产基础用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20△的新品种,图中是某天恒温系统从开启到关闭及关闭后,大棚内温度y(△)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC是双曲线y=的一部分.请根据图中的信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大鹏温度在15△及15△以上的时间有多少小时?(2)一般情况下,学生注意力上课后逐渐增强,中间有段时间处于较理想的稳定状态,随后开始分散.实验结果表明,学生注意力指数y随时间x(min)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)上课后第5min与第30min相比较,何时学生注意力更集中?(2)某道难题需连续讲19min,为保证效果,学生注意力指数不宜低于36,老师能否在所需要求下讲完这道题?训练1.(1)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).①根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.②问血液中药物浓度不低于4微克/毫升的持续时间多少小时?(2)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800△,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600△.煅烧时温度y(△)与时间x(min)成一次函数关系;锻造时,温度y(△)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32△.①分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;②根据工艺要求,当材料温度低于480△时,须停止操作.那么锻造的操作时间有多长?。

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换【含答案】

2023年九年级数学下册中考数学综合培优测试卷:一次函数图像与几何变换一、单选题1.在平面直角坐标系中,把直线y=3x 向左平移2个单位长度,平移后的直线解析式是( )A .y=3x+2B .y=3x-2C .y=3x+6D .y=3x-62.若一次函数y=2x-3的图象平移后经过点(3,1),则下列叙述正确的是( )A .沿x 轴向右平移3个单位长度B .沿x 轴向右平移1个单位长度C .沿x 轴向左平移3个单位长度D .沿x 轴向左平移1个单位长度3.在平面直角坐标系中,将直线沿y 轴向下平移6个单位后,得到一条新的直线,该直y =−32x +3线与x 轴的交点坐标是( )A .B .C .D .(0,3)(−2,0)(4,0)(6,0)4.已知直线向下平移2个单位长度后得到直线,且直线与直线关于l 1:y =kx +3l 2l 2l 3:y =−x +1y 轴对称,则k 的值为( ).A .B .1C .2D .3−15.在平面直角坐标系中,将函数 的图象向上平移6个单位长度,则平移后的图象与x 轴的y =3x 交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)6.把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为( )A .y=-x+4B .C .y=x+4D .y=x-27.将直线沿x 轴向左平移3个单位得到直线L ,则直线L 的解析式是( )y =2x +5A .y =2x +2B .y =2x +8C .y =2x -1D .y =2x +118.对于一次函数y =﹣2x+4,下列结论错误的是( )A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1<y 29.将一次函数y =﹣3x 的图象沿y 轴向下平移4个单位长度后,所得图象的函数表达式为( )A .y =﹣3(x ﹣4)B .y =﹣3x +4C .y =﹣3(x +4)D .y =﹣3x ﹣410.在平面直角坐标系中,将直线 先关于 轴作轴对称变换,再将所得直线关于y =−3x +4x y 轴作轴对称变换,则经两次变换后所得直线的表达式是( )A .B .C .D .y =4x−3y =−4x +3y =3x +4y =−3x−411.将直线向上平移2个单位长度,则平移后的直线所对应的函数解析式为( )y =−2x +3A .B .C .D .y =−2x +1y =−4x +5y =−2x +5y =−4x +112.将直线向上平移5个单位长度后得到直线,则下列关于直线的说y =x +1y =kx +b y =kx +b 法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与轴的交点在轴的正半轴x xC .点在函数图象上(−2,4)D .随的增大而增大y x 二、填空题13.直线 +3的图像是由正比例函数  图像向 (填上或下)平移 y =3x 个单位得到或由正比例函数 图像向 (填左或右)平移 个单位得到可以得到的一条直线14.直线 沿 轴平移3个单位,则平移后直线与 轴的交点坐标为  .y =2x−1y y 15.在平面直角坐标系中,把直线y=2x 向左平移1个单位长度,平移后的直线解析式是 .16.将正比例函数y=﹣2x 的图象沿y 轴向上平移5个单位,则平移后所得图象的解析式是 .17.如图,在平面直角坐标系中,A (1,0),B (3,0),点C 在第一象限,∠ABC=90°,AC=25,直线l 的关系式为: .将△ABC 沿x 轴向左平移,当点C 落在直线l 上时,线段AC 扫y =−x−3过的面积为  平方单位.18.已知直线与直线关于y 轴对称,当时,,当y 1=ax +b(a ≠0)y 2=kx +5(k ≠0)x >−52y 1>0时,,则直线 .x >52y 2<0y 1=三、综合题19.如图,直线 与 轴、 轴交于点 、 ,直线 与 轴l 1:y =2x +1x y D A l 2:y =mx +4x y 轴分别交于点 、 ,两直线相交于点 .C B P(1,b)(1)求 , 的值; b m (2)求 的值;S △PDC −S △PAB (3)垂直于 轴的直线 与直线 , 分别交于点 , ,若线段 的长为x x =a l 1l 2M N MN 2,求 的值.a 20.如图,直线y =kx +4的图象与y 轴交于点A ,与x 轴交于点B (2,0),直线AF 交x 轴负半轴于点F ,且OF =2OA .(1)求出k 的值为 ,直线AF 的解析式为 ;(2)若将直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0),与y 轴相交于点D ,且直线CD 与直线AF 交于点E ,求点E 的坐标.21.如图,一次函数 的图象与反比例函数( 为常数且 )的图象相交于y =x +5y =kx k k ≠0 , 两点.A(−1,m)B(1)求反比例函数的表达式;(2)将一次函数 的图象沿 轴向下平移 个单位 ,使平移后的图象与反y =x +5y b (b >0)比例函数的图象有且只有一个交点,求 的值.y =kx b 22.已知反比例函数与正比例函数 相交于 .y 1=kx y 2=x A(2,2)(1)求 值.k (2)画出反比例函数的图象.(3)当 时,直接写出 的范围?y 1>y 2x (4)根据图象,解不等式 .kx <x−323.背景知识:已知两直线 , ,若 ,则m :y 1=k 1x +b 1n :y 2=k 2x +b 2(k 1k 2≠0)m ⊥n ;若 ,则 .k 1k 2=−1m//n k 1=k 2应用:在平面直线坐标系 中,直线 交x 轴于点C ,交y 轴于点D ,若 xoy l 1:y =x−1l 2⊥l 1于点 ,交y 轴于点A ,交x 轴于点B.P(2,1)(1)求直线 的表达式; l 2(2)求 的面积;△ABC (3)若将直线 向下平移 个单位,得到新的直线 ,交y 轴于点E ,交直线 于点F ,l 1q l 3l 2使得 ,求 的值.S △AEF =16q 24.已知:如图1,在平面直角坐标系中,一次函数y = x+3交x 轴于点A ,交y 轴于点B ,点C34是点A 关于y 轴对称的点,过点C 作y 轴平行的射线CD ,交直线AB 与点D ,点P 是射线CD 上的一个动点.(1)求点A ,B 的坐标.(2)如图2,将△ACP 沿着AP 翻折,当点C 的对应点C′落在直线AB 上时,求点P 的坐标. (3)若直线OP 与直线AD 有交点,不妨设交点为Q(不与点D 重合),连接CQ ,是否存在点P ,使得S △CPQ =2S △DPQ ,若存在,请求出对应的点Q 坐标;若不存在,请说明理由.答案解析部分1.【答案】C 2.【答案】B 3.【答案】B 4.【答案】B 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】B13.【答案】y=3x ;上;3;y=3x ;左;114.【答案】(0,2)或(0, )−415.【答案】y=2x+216.【答案】y =-2x+517.【答案】4018.【答案】或2x +55+2x19.【答案】(1)解:∵点 在直线 上,∴ ,P(1,b)l 1:y =2x +1b =2×1+1=3∵ 在直线 上,∴ ,∴P(1,3)l 2:y =mx +43=m +4m =−1(2)解:∵直线 与 轴、 轴交于点 、 ,l 2:y =−x +4x y D A ∴ ,,A(0,1)D(−12,0)∵直线 与 轴、 轴分别交于点 、 ,l 2:y =−x +4x y C B ∴ , ,B(0,4)C(4,0)∴S △PDC −S △PAB =12DC ⋅y P −12AB ⋅x P =12×(12+4)×3−12×(4−1)×1=214(3)解:设直线 与直线 , 分别交于点 , , x =a l 1l 2M N 当 时, ;当 时, ,x =a y M =2a +1x =a y N =4−a ∵ ,∴ ,解得或 ,MN =2|2a +1−(4−a)|=2a =13a =53所以 的值为 或 a 135320.【答案】(1)-2;y =+412x (2)解:∵直线AB 沿y 轴向下平移,平移后的直线恰好经过C (﹣3,0), ∴设直线DC 的解析式为y =﹣2x+d ,把C (﹣3,0)代入得d =﹣6,∴直线DC 的解析式为y =﹣2x﹣6.解得,{y =−2x−6y =12x +4{x =−4y =2∴E (﹣4,2).21.【答案】(1)解:由题意,将点 代入一次函数 得: A(−1,m)y =x +5m =−1+5=4∴A(−1,4)将点 代入得: ,解得 A(−1,4)y =k x k−1=4k =−4则反比例函数的表达式为;y =−4x (2)解:将一次函数 的图象沿 轴向下平移 个单位得到的一次函数的解析式为 y =x +5y b y =x +5−b 联立{y =x +5−by =−4x 整理得: x 2+(5−b)x +4=0一次函数 的图象与反比例函数 的图象有且只有一个交点∵y =x +5−b y =−4x 关于x 的一元二次方程 只有一个实数根∴x 2+(5−b)x +4=0 此方程的根的判别式 ∴Δ=(5−b)2−4×4=0解得 b 1=1,b 2=9则b 的值为1或9.22.【答案】(1)解:∵反比例函数y 1= 与正比例函数y 2=x 相交于A (2,2).kx ∴k=2×2=4(2)解:描出点(1,4),(2,2),(4,1), 用平滑的曲线连接,画出反比例函数的图象如图,(3)解:由图象可知,当0<x<2和x<-2时,y1>y2.(4)解:观察图象,直线y=x向下平移3个单位,与反比例函数的交点为(4,1)和(-1,-4),∴不等式 <x-3的解集为:-1<x <0和x >4.kx 23.【答案】(1)解:由 ,得 ,l 1:y =x−1k 1=1 , ,∵l 2⊥l 1∴k 2⋅k 1=−1,∴k 2=−1设 ,把 代入解析式得:b=3,l 2:y =−x +b P(2,1) ;∴l 2:y =−x +3(2)解:由图象可得:, 与x 轴交于点B 、C , 令y=0,则有 ∵l 2:y =−x +3l 1:y =x−1∴B(3,0),C(1,0),又 与y 轴交于点A , 令x=0,则有 ,∵l 2:y =−x +3∴A(0,3) OA=3,BC=2, ;∴∴S △ABC =12BC ⋅OA =3(3)解: 将直线 向下平移 个单位,得到新的直线 ,∵l 1q l 3 ,令x=0则 , ,∴l 3:y =x−1−q y =−1−q ∴E(0,−1−q) ,∴AE =3−(−1−q)=4+q 交直线 于点F , 解得,∵l 3l 2∴{y =−x +3y =x−1−q {x =4+q 2y =2−q 2 , ,∵S △AEF =12AE ⋅F x =16∴12×(4+q)⋅4+q 2=16解得 (不符题意,舍去).q 1=4,q 2=−12 .∴q =424.【答案】(1)解:令x=0,则y=3,∴B (0,3),令y=0,则 x+3=0,34∴x=﹣4,∴A (﹣4,0);(2)解:∵点C 是点A 关于y 轴对称的点, ∴C (4,0),∵CD ⊥x 轴,∴x=4时,y=6,∴D (4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a ,∴PC'=a ,DP=6﹣a ,在Rt △DC'P 中,a2+4=(6﹣a )2,∴a= ,83∴P (4, );83(3)解:设P (4,m ), ∴CP=m ,DP=|m﹣6|,∵S △CPQ =2S △DPQ ,∴CP=2PD ,∴2|m﹣6|=m ,∴m=4或m=12,∴P (4,4)或P (4,12),∵直线AB 的解析式为y= x+3①,34当P (4,4)时,直线OP 的解析式为y=x ②,联立①②解得,x=12,y=12,∴Q (12,12),当P (4,12)时,直线OP 解析式为y=3x ③,联立①③解得,x= ,y=4,43∴Q ( ,4),43。

数学九年级培优第10讲《旋转作图》

数学九年级培优第10讲《旋转作图》

第二十三章 旋转 第10讲 旋转作图知识导航旋转的三要素:旋转中心,旋转方向,旋转角度;选择不同的旋转中心、不同的旋转角度,会出现不同的旋转效果.【板块一】旋转三要素方法技巧对应点与旋转中心所连线段的夹角等于旋转角,同一旋转图中旋转角是相等的,根据这一性质可以画旋转图形;各对应点到旋转中心的距离相等,通过作两对对应点的中垂线,可以确定旋转中心。

题型一 已知旋转中心与旋转角确定对应点【例1】如图,△ABC 绕B 点旋转后,点O 是点A 的对应点,画出△ABC 旋转后的三角形.C B A C'COBA【解析】要画出△ABC 旋转后的三角形,应找出三方面的关系:①旋转中心B ;②旋转角∠ABO ;③C 点旋转后的对应点C '.【例2】如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点。

已知A (-2,2),C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 的对应点的坐标为( ) A .(2,-2) B .(-5,-3) C .(2,2) D .(3,-1)答案:D .【解析】将点A 右移2个单位,再下移2个单位到原点O ,如图建立直角坐标系,取点D (-1,2),则△ADC 为直角三角形,且AD =1,DC =4,将△ADC 绕点C 顺时针旋转90°到Rt B △A 'D 'C ,则A 'D '=1,CD '=4.即将点C 右移4个单位,然后上移1个单位,得点A '(3,-1).题型二 已知旋转中心及旋转角度画旋转后的图形【例3】如图,四边形ABCD 绕点O 旋转后,顶点A 的对应点为点E ,试确定点B ,点C ,点D 的对应点的位置以及旋转后的四边形。

A BOCDEHGFEDCO BA【解析】如图,点B ,C ,D 的对应点分别是点F ,G ,H ,四边形EFGH 是四边形ABCD 绕点O 旋转后得到的四边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A B
E D A
M N 九年级数学培优材料(10)
-----元月调考模拟测试
一、选择题
1、二次根式2x-3有意义,x 的取值范围为( ) A 、x ≥0 B 、x ≥32 C 、x ≥23 D 、x ≥-3
2 2、下列各式中为最简二次根式的是( ) A 、12 B 、
12 C 、13
D 、 5 3、将一元二次方程x 2+3=x 化为一般形式后,二次项系数和一次项系数分别为( )
A 、0、3
B 、0、1
C 、1、3
D 、 1、-1
4、如图,在△OAB 绕点O 逆时针旋转70°得到△OCD,若∠A=100°,∠D=50°,则∠AOD 的度数是( )
A 、20°
B 、30°
C 、40°
D 、50°
5、如图,已知AB 为⊙O 直径,AB=20cm,弦AB=20cm,弦CD ⊥AB 于M,若OM :OB=3:5,则CD 的长为( )
A 、8cm
B 、10cm
C 、14cm
D 、16cm 6、下列格式中计算正确的是( )
A 、5
3=315 B 、4=±2 C 、a 4b=a 2 b D 、a 2-b 2=a-b
7、在一个不透明的口袋中,装有3个红球和a 个黄球,它们除了颜色不同外其余均相同,若
从中随机摸出一个球,摸到黄球的概率为2
3,则口袋中球的总数为( ) A 、2个 B 、6个 C 、9个 D 、12个
8、如图,正方形ABCD 的边长为4,点E 是AB 上一点,将△BCE 沿着CE 折叠至△FCE ,若CF 、CE 恰好与正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE=( )
A 、5 3
B 、5
C 、8
3 3 D 、以上都不对
9、如图,MN 是⊙O 的直径,MN=2,点A 在⊙O 上,∠AMN=30°,B 为弧AN 的中点,P 是直径MN 上一动点,则PA+PB 的最小值是( ) A 、2 2 B 、 2 C 、2 D 、1
B
D
E A C
B 点F,若DF=EF=10,且⌒AE=
13⌒AB,则矩形ABCD 中AD 的长度为( ) A 、10(3-1) B 、10(3+1)
C 、20或10(3-1)
D 、10(3-1)或10(3+1) 二、填空题
11、计算72-32=_______;
12、点A(a,1)与点B(5,b)关于点P(1,1)对称,则a-b 的值为______。

13、把球放在长方形纸盒内,球的一部分露在盒外面,其截面如图所示,已知EF=CD=16cm,则球的半径为_______cm.
14、同时掷两个质地均匀的骰子,两个骰子的点数和为6,的概率为_________。

15、一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为____; 16、如图,在等腰Rt △ABC 中,∠C=90°,CD=2,BD=3,D 、E 分别是BC 、AC 边上的点,将DE 绕D 点顺时针旋转90°,E 点刚好落在AB 边上的F 处,则CE 的长度为_________。

三、解答题 17、(6分)解方程:3(x-1)2=x(x-1) 18、(6分)如图,点A 、B 、C 是⊙O 上的三点,BO 平分∠ABC,求证:BA=BC;
19、(6分)在一个不透明的盒子中,共有“1白3黑”四枚围棋子,它们除颜色外无其它区别。

(2)随机地从盒子中取出1枚,不放回取出第二枚,请用画树状图或列表的方式表示出所有等可能的结果,并求出恰好“两枚棋子颜色不相同”的概率是多少? 20、(7分)如图,点P 是等边△ABC 外一点,PA=3,PB=4,PC=5.
(1)将△APC 绕点A 逆时针旋转60°,得到△P 1AB 1,画出旋转后的图形。

(2)在(1)的条件下,∠APN 的度数为________°。

C
B
P
A
21、(7分)设x 1、x 2是关于x 的方程x 2+(2a-1)x+a 2=0的两个实数根. (1)求a 的取值范围;
(2)当(x 1+1)(x 2+1)=11时,求a 的值;
22、(8分)如图,半径为4的⊙O 中直径AB 垂直弦CD 于E,过C 作⊙O 的切线CP 交AB 的延长线于P ,连结DB 并延长交CP 于F,连结AC,AD,PD,OF . (1)求证:PD 是⊙O 的切线;
(2)若E 为半径 OB 的中点,求线段OF 的长度.
23、(10分) 如图,小芹从市场上买回一块矩形铁皮,她将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问小芹购回这张矩形铁皮共花了多少元钱?
24、(10分)如图1、以△ABC 的边AB 、AC 为直角边向外作等腰直角△ABE 和△ACD ,M 是BC 上的一点。

(1) 当∠BAC=90°时(如图1)线段AM 与线段ED 的数量关系是: ; (2) 当∠BAC >90°时(如图2),线段AM 与线段ED 的数量关系是: ; (3) 如图3,若以△ABC 的边AB 、AC 为直角边,向内作等腰直角△ABE 和△ACD ,其它条
件不变,试探究线段AM 与D E 之间的数量关系。

证明你的结论。

D
B
D
C
B
C
A
25、(12分)如图,以y 轴正半轴上一点1O 为圆心的圆分别交x 轴于A 、B 两点,交y 轴于
(0,2F 、2)G (1)求点A 的坐标;
(2)N (a,b )为⊙1O 上第二象限内一点,且a 、b 为方程2
(2)20x k x k +--=的两根,且P 是劣弧NF 上一点,PG PF
NP
-的值是否为定值,若为定值,求出此值;若不是定值,求出其变化的范围;
(3)点C 是弧AB 上的一个动点(不与点A 、B )重合,1O D BC ⊥、1O E
AC ⊥,垂足分
别为D 、E ,设BD=t,1DO E ∆的面积为S ,求S 关于t 的函数关系式,并写出它的自变量取值范围.。

相关文档
最新文档