15.4 .3角的平分线(判定)
初中数学 什么是角的平分线定理

初中数学什么是角的平分线定理
角的平分线定理是指:如果一条直线通过一个角的顶点,将这个角分成两个相等的角,那么这条直线称为这个角的平分线。
详细解释如下:
1. 角的平分线:角的平分线是指一条直线,通过一个角的顶点,将这个角分成两个相等的角。
平分线可以从角的内部或外部出发,但必须经过角的顶点。
2. 平分线的性质:如果一条直线是一个角的平分线,那么它具有以下性质:
-平分线将角分为两个相等的部分。
这意味着分割后的两个角的度数相等,它们具有相同的大小和形状。
-平分线与角的两边相交于不同的点。
这些交点分别位于角的两边上,且与角的顶点不重合。
3. 角的平分线定理:根据角的平分线的定义和性质,我们可以得出角的平分线定理,即:"如果一条直线通过一个角的顶点,将这个角分成两个相等的角,那么这条直线称为这个角的平分线。
"
角的平分线定理在几何证明和构造中经常被使用。
它提供了角度分割和角度计算的便利,使我们能够更方便地处理角度相关的问题。
对于初中数学学习者来说,理解角的平分线定理非常重要,它可以帮助他们解决与角有关的几何问题,并在构造角的过程中正确应用平分线的性质。
沪科版数学八年级上册15.4.2角的平分线的判定课件(共26张PPT)

证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边)
QD=QE (已知) ∴ Rt△QDO ≌ Rt△QEO(HL) ∴ ∠QOD=∠QOE(全等三角形对应角相等) ∴点Q在∠AOB的平分线上(角平分线定义)
解:(1)
∵ EP = EQ , EP⊥AM ,EQ⊥AN ,(已知)∴ 点 E 在∠NAM 的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
(2)
归纳小结
知识点1 角平分线的判定定理
定理:角的内部到角两边距离相等的点在角的平分线上.
知识点2 三角形的三条内角平分线交点的性质
定理:三角形三条内角平分线相交于一点, 这点到三角形三边的距离相等.
证明:∵ DE ⊥ AB,DF ⊥ AC, ∴△ BDE 和△ CDF 是直角三角形. ∵ BD=DC, BE=CF, ∴ Rt △ BDE ≌ Rt △ CDF,(HL) ∴ DE = DF. ∵ DE ⊥ AB,DF ⊥ AC,DE = DF, ∴点 D 在∠BAC 的平分线上, 即AD 是△ABC 的角平分线.
Q
M
N
新知引入
知识点2 三角形的三条内角平分线交点的性质
定理:三角形三条内角平分线相交于一点, 这点到三角形三边的距离相等.
如图,在△ ABC 中,AD,BM,CN分别是∠BAC,∠ABC,∠ACB 的平分线,AD,BM,CN 交于一点O,且点O 到三边 BC,AB,AC 的距离 (OE,OG,OF 的长) 相等,即 OE = OG = OF.
第十五章 轴对称图形与等腰三角形
15.4 角的平分线15.4.2 角的平分线的判定
初二数学角的平分线知识点

初二数学角的平分线知识点
关于初二数学角的平分线知识点
初二数学角的平分线知识点
一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。
角的平分线
静态:一条射线把一个角分成两个相等的`角,这条射线叫做这个角的平分线(angular bisector)。
动态:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线(angul-ar bisector)。
三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。
三角形的三条角平分线相交于一点,此点称为三角形的内心,三角形的内心到三条边的距离相等,是三角形内切圆的圆心。
三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。
三角形的角平分线上的点到角两边的距离(垂线)相等。
其实初中我们学过的角的平分线知识要领很简单,只需掌握基础性质就好。
角平分线的性质及判定 角平分线的应用

12.3角平分线的性质及判定第3课时角平分线的应用一、教学目标知识与技能:理解和掌握角平分线性质定理和它的逆定理.能应用这两个性质解决一些简单的实际问题过程与方法:经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.情感态度与价值观:学生通过观察,亲自动手实验获得数学的猜想,体验数学活动充满着探索性和创作性,培养学生克服困难的意志,激发学生的学习兴趣二、教学准备多媒体课件,教学三角板三、重点难点重点:角平分线的性质难点:角平分线的应用四、教学方法讲练结合五、教学过程(一)、复习旧知1、角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
2、角平分线的性质定理:在角平分线上的点到这个角的两条边的距离相等。
3、判定定理:在角的内部到这个角的两边距离相等的点在这个角的角平分线上。
(二)、情境导入在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?(三)探究新知关于三角形三条角平分线的交点问题如图,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB 的平分线,那么:①AP、BQ、CR相交于一点吗?②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,DI、EI、FI 有什么关系?结论:三角形三个内角角平分线的交点一定在三角形的内部. 三角形三条角平分线相交于一点,并且这一点到三边的距离相等. (四)例题精析例1三角形内(外)角平分线夹角结论(1)如图①PB、PC分别平分∠ABC和∠ACB(2)如图②PB、PC分别平分∠ABC和∠ACB的外角(3)如图③PB平分∠ABC、PC平分∠ACB的外角结论:(1)∠P=90°+21∠A(2)∠P=90°-21∠A(3)∠P=21∠A应用:如图在△ABC中,PB平分∠ABC,PC平分∠ACB的外角,若∠BPC=30°,则∠BAC= °例2、在△ABC中,O是角平分线BE和CD的交点,∠A=60°,求证:OD=OE例3、在△ABC中,AD是角平分线,2∠C=∠B, AC-AB=BDDEOBADA课堂练习在正方形ABCD中,∠1=∠2 AE=BE+DF(六)、课堂小结本节课我们学习了什么内容?首先复习了角平分线的定义,性质定理和逆定理。
【沪科版】2016版八年级上:15.4.2《角平分线的性质及判定》教案

教学过程一、复习预习角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
二、知识讲解考点1尺规作图画角平分线(1)、以O为圆心,适当长为半径画弧,交OA于M,交OB于N。
(2)、分别以M、N为圆心,大于1/2MN的长为半径画弧,两弧在∠AOB的内部交于点C。
(3)、画射线OC。
射线OC即为所求.考点2 角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图,已知OE是∠AOB的平分线,F是OE上一点,若CF⊥OA于点C,DF⊥OB于点D,则CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;考点3 角平分线性质定理的逆定理:角平分线性质定理的逆定理:在角的内部,且到角的两边距离相等的点在这个角的角平分线上. 定理的数学表示:如图5,已知点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,若PC=PD,则点P 在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与逆定理的区别和联系 .考点4 关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:①AP、BQ、CR相交于一点I;②若ID、IE、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.三、例题精析【例题1】【题干】在△ABC中,∠C是直角,AD平分∠BAC,交BC于点D。
如果AB=8,CD=2,那么△ABD的面积等于。
角平分线的性质和判定角平分线画法角平分线的三个基本公式

一、角的平分线性质定理1.角平分线上的点到这个角的两边的距离相等。
2.到一个角的两边距离相等的点在这个角的平分线上。
3.三角形的三条角平分线交于一点,称作内心。
内心到三角形三边的距离相等;4.三角形一个角的平分线,把对边所分成的两条线段与这个角的两邻边对应成比例。
判定:角的内部到角的两边距离相等的点,都在这个角的平分线上。
二、角平分线画法方法11、以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M、N。
2、分别以点M、N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3、作射线OP。
射线OP即为角平分线。
方法21、在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD。
2、连接CN与DM,相交于P。
3、作射线OP。
射线OP即为角平分线。
三、角平分线定义1、从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
2、三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。
三角形的角平分线是一条线段。
由于三角形有三个内角,所以三角形有三条角平分线。
三角形的角平分线交点一定在三角形内部。
三角形三条角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
四、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
1、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
五、角平分线的性质:角平分线上的点,到角两边的距离相等定理:角平分线上的任意一点,到角两边的距离相等。
垂直于两边为最短距离。
角平分线能得到相同的两个角。
三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:到角两边的距离相等的点在角平分线上。
沪科版-数学-八年级上册-15.4 角的平分线 教案
∴PQ=PM.(角平分线上的点到角两边的距离相等)
同理,PN=PM.
∴PN=PQ.(等量代换)
∴AP平分∠BAC.(角的内部到角两边距离相等的点在角的平分线上)
Ⅲ.随堂练习
1.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C.D.
(1)求证:∠PCD=∠PDC;
看看条件够不够.
AB=AD
BC=DCAC=AC
所以△ABC≌△ADC(SSS).
所以∠CAD=∠CAB,即射线AC就是∠DAB的平分线.
作已知角的平分线的方法:
已知:∠AOB.
求作:∠AOB的平分线.
作法:
(1)以O为圆心,适当长为半径作弧,分别交OA.OB于M、N.
(2)分别以M、N为圆心,大于 MN的长为半径作弧.两弧在∠AOB内部交于点C.
猜想与论证:
(1)引导学生把实际问题抽象为数学问题:就是在∠AOB内确定一点P,市场P的位置应满足的两个条件:
①OP=1000米;
②到两条路OA.OB的距离相等.
(2)猜想P能否在∠AOB的平分线上?并利用三角形全等学生自证,教师板书过程.
(3)归纳角的平分线判定定理:角的内部到角的两边的距离相等的点在角的平分线上.
3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.
4.这种作法的可行性可以通过全等三角形来证明.
练一练:
任意画一角∠AOB,作它的平分线.
探索活动
按以下步骤折纸
1.在准备好的三角形的每个顶点上标好字母;A.B.C.把角A对折,使得这个角的两边重合.
2.在折痕(即平分线)上任意找一点C.
5道判定平分线
5道判定平分线五道判定平分线一、什么是平分线平分线是指将一个角平分为两个相等的角的线段。
在几何学中,平分线是一种重要的概念,它可以帮助我们解决一些与角度有关的问题。
二、如何判定平分线1. 通过角度相等判定:如果一条线段将一个角分成两个相等的角,那么这条线段就是这个角的平分线。
2. 通过垂直相等判定:如果一条线段与另外两条垂直线段相交,且与其中一条垂直线段的两个交点到另一条垂直线段的距离相等,那么这条线段就是这两条垂直线段所夹角的平分线。
3. 通过三角形内角相等判定:如果一条线段与三角形的两边相交,且与其中一条边的两个交点到另一条边的距离相等,那么这条线段就是这个三角形内角的平分线。
4. 通过三角形外角相等判定:如果一条线段与三角形的一边相交,且与另一条边的延长线上的一点和这条边的另一点连线的角度相等,那么这条线段就是这个三角形外角的平分线。
5. 通过对称性判定:如果一条线段与一个图形的两个对称点相连,那么这条线段就是这个图形的平分线。
三、平分线的性质1. 平分线与所分角的两边相交的点与角的顶点在同一直线上。
2. 平分线将所分角分成两个相等的角。
3. 平分线与所分角的两边相交的角度相等。
4. 平分线与所分角的两边相交的点到顶点的距离相等。
5. 平分线与所分角的两边相交的点与角的对顶点的距离相等。
6. 平分线与所分角的两边相交的点与两边的交点到顶点的距离的比等于所分角两边的比值。
四、平分线的应用1. 在解决角度问题时,可以利用平分线的性质来简化计算,减少出错的概率。
2. 在解决三角形问题时,平分线可以帮助我们判断三角形的形状和性质,进而推导出一些结论。
3. 在解决对称性问题时,平分线可以帮助我们找到图形的对称中心,从而分析图形的对称性质。
4. 平分线的概念也可以应用于其他几何图形,如四边形、多边形等,帮助我们解决与角度有关的问题。
5. 平分线的概念还可以应用于物理学和工程学等领域,例如在光学中,平分线可以用来解决光线的反射和折射问题。
角的平分线的性质(基础)知识讲解
角的平分线的性质(基础)责编:杜少波【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】【高清课堂:388612 角平分线的性质,知识要点】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.(2015春•启东市校级月考)如图,已知BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM⊥AD 于M ,PN⊥CD 于N ,求证:PM=PN .【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD,在△ABD 和△CBD 中,,∴△ABD≌△CBD(SAS ),∴∠ADB=∠CDB,∵点P 在BD 上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.2、(2016春•潜江校级期中)如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD= BE+CD+BD = BE+BC =BE+AC=BE+AE =AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:AB AC=ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:的面积之比为()A.3:2 B C.2:【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB AC=ABD与△ACD:3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD =PE ,再根据“HL ”定理证明△OPD ≌△OPE ,从而得到∠OPD =∠OPE ,∠DPF =∠EPF .再证明△DPF ≌△EPF ,得到结论.【答案与解析】解:DF =EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD =PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定【高清课堂:388612 角平分线的性质,例3】4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC≌△EFB(AAS)∴DF=EF(全等三角形对应边相等)∵FE⊥AB,FD⊥AC(已知)∴点F在∠BAC的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF为∠BAC的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】(2014秋•肥东县期末)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【答案】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.。
数学沪科版八年级(上册)15.4第2课时角平分线的性质及判定
解:(1)DC=DE.理由如下:角平分线上的
点到角两边的距离相等.
(2)在Rt△CDB和Rt△EDB中, DC=DE,DB=DB, ∴Rt△CDB≌Rt△EDB(HL),
A
E
10
6
D
∴BE=BC=8. ∴ AE=AB-BE=2.
B
8
C
∴△AED的周长=AE+ED+DA=2+6=8.
5.如图,已知AD∥BC,P是∠BAD与 ∠ABC的平分线的
任意一点
1. 操作测量:取点P的三个不同的位置,分别过点P作
PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长.
将三次数据填入下表:
A
PD PE
D
C
第一次
p
第二次
O
第三次
E
B
2. 观察测量结果,猜想线段PD与PE的大小关系,写
出猜结想::_角P_D_的_=_平P_E_分__线_ 上的点到角的两边的距离相等.
判定定理: 角的内部到角的两边的距离相等的点在角的平分线上.
应用所具备的条件: (1)位置关系:点在角的内部;
(2)数量关系:该点到角两边的距离相等.
A
定理的作用:判断点是否在角平分线上. D
C
应用格式:
P
∵ PD⊥OA,PE⊥OB,PD=PE. O
E
B
∴点P 在∠AOB的平分线上.
例4 如图,某地有两所大学和两条交叉的公路.图
A
D
N
F
P
M
∵PD=PE=PF.(已证)
∴PD=PF(等量代换) B
C E
∴AP平分∠BAC.(角平分线上的点到角两边的距
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线的判定的应用书写格式:
D
A
∵
PD ^ OA
PE ^ OB
O
P
PD= PE
\OP 是 AOB的平分线(到一个角的
E
B 两边的距离相等的点, 在这个角的平分线上)
角平分线的性质:在角的平分线上的点到这
个角的两边的距离相等。
D
A C
∵ \
OP 是 AOB 的平分线
PD ^ OA
PE ^ OB
证明:过点P作PD⊥AB于D,PE⊥BC于E, PF⊥AC于F
A F M
C
随堂练习3
已知:如图,△ABC 的∠B的外角的平分 线BD和∠C的外角平 分线CE相交于点P。 求证:点P在∠BAC的 平分线上。
A
B
C
E P
D
练习: 8、如图,三条公路相交,现在要修 建一加油站,使加油站到三条公路的距 离相等,问加油站该选在什么位置上?
例1.如图,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别是E、F, 且BE=CF。求证:AD是△ABC的角平分线。
A
E B
F
D
C
课堂练习
已知:如图,BE⊥AC于E, CF⊥AB于F, BE、CF相交于D, BD=CD 。 求证: AD平分∠BAC 。
B
F
A
E
D
C
拓展与延伸
3、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE 交点F,CF=BF,求证:点F在∠A的平分线上.
M D C F A E B N
3、已知PA=PB, ∠1+ ∠2=1800, 求证:OP平分∠AOB E
A
1 P
2 O F B
例题2.如图,△ABC的角平分线BM、CN相交 于点P。求证:点P也在∠A的平分线上。
• 证明:过点P作PD 、PE、PF分别垂直 于AB、BC、CA,垂足为D、E、F • ∵BM是△ABC的角平分线,点P在 BM上(已知) D • ∴PD=PE N • (在角平分线上的点到角的两边的距离相等) • 同理 PE=PF. • ∴ PD=PE=PF. P • 即点P到边 B E • AB、BC、CA的距离相等
O
E
P
PD = PE
用途:证线段相等
B
角平分线的判定到一个角的两边的距离相等的
点, 在这个角的平分线上。
∵ \
PD ^ OA
PE ^ OB
PD = PE OP 是 AOB 的平分线
用途:判定一条射线是角平分线
பைடு நூலகம்
A
练一练
填空: (1). ∵∠1= ∠2,DC⊥AC, DE⊥AB DC=DE ∴___________
A
O E
P
证明: 作射线OP
∵
PD ^ OA
\
PE ^ OB
B
PDO PEO 90
OP = OP (公共边) PD = PE ( 已 知 )
在 Rt△PDO 和Rt△PEO 中,
\ RtPDO≌ RtPEO ( HL) \ AOP BOP (全等三角形的对应角相等) \ 点P在 AOB 角的平分线上
C
1 2
E
D B
(___________________________________________) 在角平分线上的点到角的两边的距离相等 (1). ∵DC⊥AC ,DE⊥AB ,DC=DE
∠1= ∠2 ∴__________
(_到一个角的两边的距离相等的点,在这个角平分线上。 ______________________________________________)
1:画一个已知角的角平分线; 及画一条已知直线的垂线;
2:角平分线的性质:
角的平分线上的点到角的两边的距离相等. 3:角平分线的判定结论: 到角的两边的距离相等的点在角平分线上。
判定:到角的两边的距离相 等的点在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE ∴点Q在∠AOB的平分线上. 性质:角的平分线上的点到角的两边的距离 相等. 用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
到一个角的两边的距离相等 的点, 在这个角的平分线上。
已知:如图, PD ^ OA ,
PE ^ OB ,垂足分别是
D
A
O E
P
A、B,PD=PE , 求证:点P在AOB 的角平分线上。 B
角平分线 到角的两边的距离相等的点 在角 的判定的平分线上。 D
已知:如图,PD ^ OA, ^ OB , PE 垂足分别是 D、E,PD=PE, 求证:点P在 AOB的角平分线上。
角平分线的性质: 角的平分线上的点到角的两边的距离相等。 几何语言描述:∵ OC平分∠AOB, 且PD⊥OA, PE⊥OB ∴ PD= PE 不必再证全等
D
A C
P到OA的距离
角平分线上的点
P
O
E
B
P到OB的距离
如图,由 PD ^ OA 于点 D , PE ^ OB 于点 E,PD= PE , 可以得到什么结论 ?