第一篇 控制工程基础第四章第一节
控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。
控制工程基础---第四章传递函数

微分环节
惯性环节
一阶微分环节
振荡环节
二阶微分环节
延时环节
第三节传递函数的方块图
一、组成元素
1、方块单元:表示环节或系统的传递函数。
2、叠加点:表示信号的运算及其结果。
3、信号线:带箭头的直线或折线。箭头的方向表示信号的流向。
二、基本运算
1、串联
2、并联
3、反馈
三、等效移动原则
1、引出点的移动:保证引出信号不变
2、对于实际的物理系统,
四、概念
1、零点、极点:
零点:系统传递函数分子s多项式为零的根。
极点:系统传递函数分母s多项式为零的根。
2、传递系数: 。
3、特征方程:传递函数分母s多项式。
4、阶:系统特征方程s的最高指数。
例3、以例1、例2的结果为例。
第二节典型环节及其传递函数
名称
微分方程
传递函数
比例环节
例:系统方块图如图示,简化求传递函数。
将a点后移
五、方块图的建立
1、步骤:
建立系统微分方程组。
对微分方程图连接。
2、举例
例1:建立电路的方块图,并传递函数。
解:
例2、建立图示系统的方块图,求传递函数。
解:设中间变量为x(t),其力平衡方程为
例3、建立直流电动机的方块图,求传递函数。
第四章传递函数
第一节传递函数
一、定义:系统初始状态为零,系统输出与输入的拉氏变换之比。
二、求法:
1、由微分方程求取。
若系统的微分方程为
对微分方程的两端求拉氏变换
例1:系统微分方程为 ,求系统的传递函数。
解:由给定的微分方程,
例2:求R-C电路的传递函数。
控制工程基础课件第4章

(t 0)
当 t 时,对稳定的系统而言,上式中的
于零。因此
css (t) c(t) ae jt ae jt
t
用部分分式法求得
es1t ,es2t ,∙∙∙,esnt 均趋近
a
G(s)
R0 s2 2
(s
j)
s j
R0G( j)
2j
a
G(s)
R0 s2 2
(s
j)
s j
R0G( j)
2j
位为rad,若化为º则为
G( j) 180 T 57.3T
π
延时环节频率特性的幅值为1,
相位57与.3T 成线性关系,故延时环节
的 Nyquist 曲线为一单位圆点。
延时环节频率特性
4.2 频率特性图形表示法
17
4.2.1 Nyquist图
例4-2 某系统的传递函数为 G(s) e s ,试绘制其 Nyquist 图。 1 Ts
4.2 频率特性图形表示法
9
前言
在相应的坐标系中将频率特性绘成曲线,可直观地看出幅值比与相位 差随频率变化的情况。
以图形来描述系统的频率特性,通常采用以下两种形式: 1) Nyquist图 2) Bode图 本节主要介绍基本环节频率特性、开环频率特性的绘制、最小相位系 统的概念及重要特性。
4.2 频率特性图形表示法
解
G( j) e j 1 jT
G( j) e j 1
1
1 jT 1 (T)2
G( j) e j 1 57.3 arctanT 1 jT
e j 1 57.3 arctanT 1 jT
0,G( j) 1,G( j) 0 ,G( j) 0,G( j)
孔祥东控制工程基础课新版件第四章

n i1
pi
m
j 1
zj
s nm1
在 n m的条件下,当 K1 时,有 n m条根轨迹分支趋向无穷
远处,即 s 。这时可以只考虑高次项,将上式近似写为
G(s)H (s)
K1
s
snm
n i1
P(s)
K1
(s a )nm
s nm
K1
(n m)( a )snm1
不难看出,此系统的根轨迹有 n-m 条分支,它们都是由(σa,j0)出
发的射线,其相角为
a
180 (2q 1) nm
第四章 根轨迹法
§4-2 常规根轨迹
如果选择
(n
m)(
以上两式是满足特征方程的幅值条件和相角条件,是绘制根轨迹的重要 依据。在s平面的任一点,凡能满足上述幅值条件和相角条件的,就是系 统的特征根,就必定在根轨迹上。
第四章 根轨迹法
§4-2 常规根轨迹
系统开环传递函数通常可以写成两种因子式
m
K1 (s z j )
G(s)H (s)
j 1 n
第四章 根轨迹法
Gp1(s) 0 K1 s(s 2a)
§4-1 根轨迹的基本概念
一、根轨迹的基本概念
根轨迹 是指系统特征根(闭环极点)随系统参量变化在s平面上运动而形
成的轨迹。通过根轨迹图可以看出系统参量变化对系统闭环极点分布的 影响,以及它们与系统性能的关系。
下面结合图4-1所示的二阶系统
第四章 根轨迹法
§4-1 根轨迹的基本概念
综上所述,根轨迹是指系统特征根(闭环极点)随系统参量变化在s平面上 运动而形成的轨迹。通过根轨迹图可以看出系统参量变化对系统闭环极 点分布的影响,以及它们与系统性能的关系。
《控制工程基础》电子教案

《控制工程基础》电子教案第一章:绪论1.1 课程介绍解释控制工程的定义、目的和重要性概述控制工程的应用领域和学科范围1.2 控制系统的基本概念介绍控制系统的定义和组成解释输入、输出、反馈和控制器的概念1.3 控制工程的历史和发展回顾控制工程的发展历程和重要里程碑讨论现代控制工程的挑战和发展趋势第二章:数学基础2.1 线性代数介绍矩阵、向量的基本运算和性质讲解线性方程组的求解方法2.2 微积分复习微积分的基本概念和公式讲解导数和积分的应用2.3 离散时间信号介绍离散时间信号的定义和特点讲解离散时间信号的运算和处理方法第三章:连续控制系统3.1 连续控制系统的概述介绍连续控制系统的定义和特点解释连续控制系统的应用领域3.2 传递函数讲解传递函数的定义和性质介绍传递函数的绘制和分析方法3.3 控制器设计讲解PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第四章:离散控制系统4.1 离散控制系统的概述介绍离散控制系统的定义和特点解释离散控制系统的应用领域4.2 差分方程和离散传递函数讲解差分方程的定义和求解方法介绍离散传递函数的定义和性质4.3 控制器设计讲解离散PID控制器和模糊控制器的原理和方法讨论控制器设计的考虑因素和优化方法第五章:状态空间方法5.1 状态空间模型的概述介绍状态空间模型的定义和特点解释状态空间模型的应用领域5.2 状态空间方程讲解状态空间方程的定义和求解方法介绍状态空间方程的稳定性分析5.3 状态控制器设计讲解状态控制器的原理和方法讨论状态控制器设计的考虑因素和优化方法第六章:频域分析6.1 频率响应介绍频率响应的定义和作用讲解频率响应的实验测量方法6.2 频率特性分析系统频率特性的性质和图形讨论频率特性对系统性能的影响6.3 滤波器设计讲解滤波器的基本类型和设计方法分析不同滤波器设计指标的选择和计算第七章:数字控制系统7.1 数字控制系统的概述介绍数字控制系统的定义和特点解释数字控制系统的应用领域7.2 数字控制器设计讲解Z变换和反变换的基本原理介绍数字PID控制器和模糊控制器的设计方法7.3 数字控制系统的仿真与实现讲解数字控制系统的仿真方法和技术讨论数字控制系统的实现和优化第八章:非线性控制系统8.1 非线性系统的概述介绍非线性系统的定义和特点解释非线性系统的应用领域8.2 非线性模型和分析方法讲解非线性系统的建模方法和分析技术分析非线性系统的稳定性和可控性8.3 非线性控制策略讲解非线性PID控制器和模糊控制器的原理和方法讨论非线性控制策略的设计和优化第九章:鲁棒控制9.1 鲁棒控制的概述介绍鲁棒控制的定义和目的解释鲁棒控制在控制工程中的应用领域9.2 鲁棒控制设计方法讲解鲁棒控制的基本设计和评估方法分析不同鲁棒控制策略的性能和特点9.3 鲁棒控制在实际系统中的应用讲解鲁棒控制在工业和航空航天等领域的应用案例讨论鲁棒控制在实际系统中的挑战和限制第十章:控制系统的设计与实践10.1 控制系统的设计流程讲解控制系统设计的基本流程和方法分析控制系统设计中的关键环节和技术选择10.2 控制系统实践案例分析不同控制系统实践案例的设计和实现过程讲解控制系统实践中的注意事项和优化方法10.3 控制系统的发展趋势讨论控制系统未来的发展方向和挑战分析新兴控制技术和方法在控制系统中的应用前景重点和难点解析重点环节1:控制系统的基本概念和组成控制系统定义和组成的理解输入、输出、反馈和控制器的相互作用重点环节2:传递函数和控制器设计传递函数的定义和性质PID控制器和模糊控制器的设计方法和应用重点环节3:差分方程和离散传递函数差分方程的求解方法离散传递函数的定义和性质重点环节4:状态空间模型的建立和分析状态空间方程的定义和求解状态空间模型的稳定性和可控性分析重点环节5:频率响应和滤波器设计频率响应的实验测量和分析滤波器设计方法和应用重点环节6:数字控制系统和控制器设计Z变换和反变换的应用数字PID控制器和模糊控制器的设计方法重点环节7:非线性系统的建模和控制策略非线性系统的建模方法非线性控制策略的设计和优化重点环节8:鲁棒控制的设计和评估鲁棒控制的基本设计和评估方法鲁棒控制策略的性能和特点重点环节9:控制系统的设计流程和实践案例控制系统设计的基本流程和方法控制系统实践案例的设计和实现过程重点环节10:控制系统的发展趋势和新兴技术控制系统未来的发展方向新兴控制技术和方法在控制系统中的应用前景本教案涵盖了控制工程基础的十个重点环节,包括控制系统的基本概念和组成、传递函数和控制器设计、差分方程和离散传递函数、状态空间模型的建立和分析、频率响应和滤波器设计、数字控制系统和控制器设计、非线性系统的建模和控制策略、鲁棒控制的设计和评估、控制系统的设计流程和实践案例以及控制系统的发展趋势和新兴技术。
控制工程基础董景新第四版

控制工程基础董景新第四版简介《控制工程基础董景新第四版》是董景新教授所著的一本控制工程入门教材,通过全面介绍控制工程的基本概念、基本理论和基本方法,帮助读者建立起对控制工程的基础知识和基本技能的理解和掌握。
内容第一章:引言本章主要介绍控制工程的基本概念和发展历程,为后续章节的学习奠定基础。
首先对控制系统和控制工程的定义进行了阐述,并介绍了控制工程的主要任务和发展方向。
其次,对控制系统的分类进行了介绍,包括开环控制系统和闭环控制系统。
最后,介绍了控制系统的相关术语和符号,为后续章节的学习做好铺垫。
第二章:数学基础本章主要介绍控制工程所需要的数学基础知识。
首先介绍了常见的数学函数和符号,包括常用数学函数、求和符号、积分符号等。
其次,介绍了常用的数学运算法则,包括加法、乘法、指数运算等。
最后,介绍了常见的数学方程和常用的数学方法,包括线性方程组、矩阵运算、微积分等。
第三章:信号与系统本章主要介绍信号与系统的基本概念和分析方法。
首先介绍了信号的定义和分类,包括连续信号和离散信号、周期信号和非周期信号。
其次,介绍了信号的表示与分解方法,包括傅里叶级数和傅里叶变换。
最后,介绍了系统的定义和分类,包括线性系统和非线性系统、因果系统和非因果系统。
同时,介绍了系统的时域分析方法和频域分析方法。
第四章:传递函数与系统响应本章主要介绍传递函数和系统的响应特性。
首先介绍了传递函数的定义和性质,包括零极点分布和传递函数的单一性。
其次,介绍了系统的稳定性和系统的稳定判据,包括极点位置的判断和Nyquist判据。
最后,介绍了系统的时域响应和频域响应,包括单位冲击响应、单位阶跃响应、频率响应等。
第五章:控制系统的稳定性分析本章主要介绍控制系统的稳定性分析方法。
首先介绍了控制系统的稳定性的概念和判据,包括极点位置的判断和Nyquist稳定性判据。
其次,介绍了控制系统的根轨迹法和频率响应法,用于稳定性分析和设计。
最后,介绍了控制系统的相角裕度和增益裕度的概念和计算方法。
控制工程基础(第四章,控制系统的时域响应分析)

2、系统稳定的充要条件
系统稳定、不稳定时根的分布
3、系统稳定性的判断 (1)稳定判断的必要条件
令系统特征方程为:
a0 s n a1s n1 an1s an 0, a0> 0
如果方程所有的根均位于S平面的左方,则方程中多项系 数均为正值,且无零系数。
对于一阶和二阶系统,其特征方程式的多项系数全为正值 是系统稳定的充分和必要条件。对三阶及三阶以上系统, 特征方程的多项系数均为正值仅是系统稳定的必要条件而 非充分条件。
s2 2knk s
2 nk
j 1
k 1
2
A0 q
Aj
r Bk
s j1 s p j k1
s knk Cknk s2 2knk s
1
2 nk
k
即:
C t
A0
q j1
Aje pjt
r
eknkt
k 1
Bk
cos
nk
1
2
t
k
r k 1
Ck
sin
nk
1
(2)系统瞬态分量的形式由极点的性质决定,调整时间的长 短主要取决于最靠近虚轴的闭环极点;闭环零点只影响瞬态分 量幅值的大小和符号的正负。
(3)如果传递函数中有一极点距坐标原点很近,设为A,而其 余极点与虚轴距离大于5A,称为远极点,则其产生的瞬态分量 可略去不计。 (4)如果有一对(或一个)极点距离虚轴最近,且其附近没有 零点,而其它极点与虚轴的距离都比该极点与虚轴距离大5倍以 上,则称此对极点为系统的主导极点。 (5)如果传递函数中有一个极点与一个零点十分靠近,称为偶 极子,则该极点所对应的瞬态分量幅值小,也可略去。 (6)如果所有极点均具有负实部,则所有的瞬态分量将随着时 间的增长面不断衰减,最后只有稳态分量。极点均位于S左半平 面系统,称为稳定系统。
《控制工程基础》电子教案

《控制工程基础》电子教案第一章:绪论1.1 课程介绍了解控制工程的概念、内容和研究方法理解控制工程在工程实践中的应用和重要性1.2 控制系统的基本概念定义系统、输入、输出和反馈区分开环系统和闭环系统1.3 控制工程的目标掌握稳定性、线性、非线性和时变性等控制系统的特性学习控制系统的设计方法和步骤第二章:数学基础2.1 线性代数基础掌握向量、矩阵和行列式的基本运算学习线性方程组和特征值、特征向量的求解方法2.2 微积分基础复习极限、连续性和微分、积分的基本概念和方法应用微积分解决实际问题2.3 复数基础了解复数的概念、代数表示法和几何表示法学习复数的运算规则和复数函数的性质第三章:控制系统分析3.1 传递函数定义传递函数的概念和性质学习传递函数的绘制和解析方法3.2 频率响应分析理解频率响应的概念和特点应用频率响应分析方法评估系统的性能3.3 根轨迹分析掌握根轨迹的概念和绘制方法分析根轨迹对系统稳定性的影响第四章:控制系统设计4.1 控制器设计方法学习PID控制器的设计原理和方法了解模糊控制器和神经网络控制器的设计方法4.2 控制器参数调整掌握控制器参数调整的目标和方法应用Ziegler-Nichols方法和频域方法进行参数调整4.3 系统校正和优化理解系统校正的概念和目的学习常用校正方法和优化技术第五章:现代控制理论5.1 状态空间描述了解状态空间的概念和表示方法学习状态空间方程的求解和状态反馈控制5.2 状态估计和最优控制掌握状态估计的概念和方法学习最优控制的目标和求解方法5.3 鲁棒控制和自适应控制理解鲁棒控制的概念和特点了解自适应控制的设计方法和应用场景第六章:线性系统的稳定性分析6.1 稳定性的定义和性质理解系统稳定性的概念和重要性学习稳定性分析的基本方法6.2 劳斯-赫尔维茨准则掌握劳斯-赫尔维茨准则的原理和应用应用劳斯-赫尔维茨准则判断系统的稳定性6.3 李雅普诺夫方法了解李雅普诺夫方法的原理和分类学习李雅普诺夫第一和第二方法判断系统的稳定性第七章:线性系统的控制器设计7.1 控制器设计概述理解控制器设计的目标和重要性学习控制器设计的基本方法7.2 PID控制器设计掌握PID控制器的设计原理和方法应用PID控制器进行系统控制7.3 状态反馈控制器设计了解状态反馈控制器的设计原理和方法学习状态反馈控制器的设计和应用第八章:非线性控制系统分析8.1 非线性系统概述理解非线性系统的概念和特点学习非线性系统分析的基本方法8.2 非线性系统的描述方法学习非线性系统的数学模型和描述方法应用非线性系统分析方法研究系统的性质8.3 非线性控制系统的应用了解非线性控制系统在工程实践中的应用学习非线性控制系统的设计和优化方法第九章:鲁棒控制理论9.1 鲁棒控制概述理解鲁棒控制的概念和重要性学习鲁棒控制的基本方法9.2 鲁棒控制设计方法掌握鲁棒控制设计的原则和方法应用鲁棒控制设计方法设计控制器9.3 鲁棒控制在控制系统中的应用了解鲁棒控制在实际控制系统中的应用学习鲁棒控制在控制系统中的设计和优化方法第十章:控制系统仿真与实验10.1 控制系统仿真概述理解控制系统仿真的概念和重要性学习控制系统仿真的基本方法10.2 MATLAB控制系统仿真掌握MATLAB控制系统仿真工具的使用应用MATLAB进行控制系统仿真和分析10.3 控制系统实验了解控制系统实验的目的和重要性学习控制系统实验的方法和技巧重点和难点解析重点环节1:控制系统的基本概念和特性控制系统的基本概念,包括系统、输入、输出和反馈区分开环系统和闭环系统掌握稳定性、线性、非线性和时变性等控制系统的特性重点环节2:传递函数和频率响应分析传递函数的概念和性质,传递函数的绘制和解析方法频率响应的概念和特点,频率响应分析方法分析根轨迹对系统稳定性的影响重点环节3:控制器设计方法和参数调整控制器设计方法,包括PID控制器、模糊控制器和神经网络控制器的设计原理和方法控制器参数调整的目标和方法,应用Ziegler-Nichols方法和频域方法进行参数调整重点环节4:状态空间描述和最优控制状态空间的概念和表示方法,状态空间方程的求解和状态反馈控制状态估计和最优控制的目标和求解方法重点环节5:非线性控制系统分析和鲁棒控制理论非线性系统的概念和特点,非线性系统分析的基本方法鲁棒控制的概念和重要性,鲁棒控制的基本方法重点环节6:控制系统仿真与实验控制系统仿真的概念和重要性,控制系统仿真的基本方法MATLAB控制系统仿真工具的使用,应用MATLAB进行控制系统仿真和分析控制系统实验的目的和重要性,控制系统实验的方法和技巧全文总结和概括:本教案涵盖了控制工程基础的十个章节,主要包括控制系统的基本概念和特性、传递函数和频率响应分析、控制器设计方法和参数调整、状态空间描述和最优控制、非线性控制系统分析和鲁棒控制理论以及控制系统仿真与实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章频率响应法
4-1 频率特性的基本概念
一、频率特性
所谓频率特性是指控制系统对不同频率的谐波信号的响应特性。
研究系统频率响应特性的方法叫频率响应法。
首先举一个例子说明这一概念。
如图所示RC网络,其运动特性的微分方程是:
其传递函数为:
(令T=RC)
在输入端施加一个余弦信号,即令
对上式取拉氏反变换,可得输出端电压信号
式(4-3)中第一项为暂态分量,第二项为稳态分量,当时间t趋于无穷大时,
比较输出信号Uc(t)和输入信号Ur(t)
二者幅值之比为:
二者相位之差是:
二者的频率都是
二、系统输出信号又可写为:
上分析说明,系统的稳态输出的幅值是输入信号幅值的:倍,相
角比输入信号超前。
故函数完整地描述了系统在正弦输入信号作用下,稳态输出信号的幅值和相角随正弦输入信号频率
变化的的规律。
称:为RC网络的频率特性;
为RC网络的幅频特性,而为RC网相频特性。
从上面分析也可以知道,RL网络的频率特性与其传递函数有下列关系:
也就是:
从以上分析可以看出,频率特性与传递函数,系统的微分方程,脉冲响应函数都可以表征系统的动态特性,是系统数字模型的一种形式,这是我们能够利用频率特性研究系统的理论根据。
二、频率特性的图形表示
工程上用频率特性分析系统时经常要用曲线图形来表示频率特性,并根据这些图形的特性进行系统特性的分析研究。
工程上常用频率特性线图有:幅相频率特性图、对数坐标图,对数幅相图。
1、幅相频率特性图
频率特性为复数,可将其写成下面形式,即:
或:
对于给定的,可由式(4-10)计算出的幅值和相位角用这
两个数据可以画出极生标图上的一个点,当从零到无穷大时,可画出
一条以为幅值,为相角的向量矢端极坐标曲线,这条曲线
就是幅相频率特性图。
如式(4-7)、(4-8)表示的RC网络的幅相频率特性曲线可画出下边的图形。
幅相频率特性图又称极生标图或奈奎斯持图。
2、对数频率特性曲线
如果把式(4-7)和式(4-8)分别画成曲线图形,则为系统幅频特性曲线:
和系数相频特性曲线:
对上二图形进行一个对数变换令横生标的分度变换为对数分度,即横坐标按分度
而标以频率的实际数值,即:
则上坐标轴变为:
上述坐标轴的特点是每变化到下一格就成为前一个值的10倍,也
就横坐标轴增加一个单位长度增加10倍。
这样一个频率长度称为一个
十倍频程。
在横生轴确定后,再对纵生标做为下度换:
即:
为对数幅频特性的纵坐标
令
为对数相频特性的纵坐标,即可得出对数幅频及相频特性曲线。
为前所述RC网终的对数幅频及相频曲线如下:
对数幅频及相频特性图又叫波德图。
北京理工大学机械工程与自动化学院。