中考数学一轮复习代数篇二次函数

合集下载

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。

中考数学一轮专练:二次函数(二)

中考数学一轮专练:二次函数(二)

中考数学一轮专练:二次函数(二)一、单选题1.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A.1个单位B.√3个单位C.52个单位D.32个单位2.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578B.800(1﹣a%)2=578C.800(1﹣2a%)=578D.800(1﹣a2%)=5783.把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)24.二次函数y=ax2+bx+c的自变量x和函数y的部分对应值如表:则该二次函数y在所给自变量x(﹣2≤x≤2)的取值范围内的最小值是()A.﹣45B.﹣20C.﹣4D.05.已知一次函数y=ax+b和二次函数y=ax2,其中a≠0,b<0,则下面选项中,图象可能正确的是()A.B.C.D.6.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15 x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m7.若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx()A.有最大值m4B.有最大值﹣m4C.有最小值m4D.有最小值﹣m48.在平面直角坐标系中,将二次函数y=x2的图象向上平移2个单位,所得图象的解析式为()A.y=x2﹣2B.y=x2+2C.y=(x﹣2)2D.y=(x+2)29.将抛物线y=x2+2向左平移1个单位,再向下平移3个单位得到的解析式是()A.y=(x+1)2−1B.y=(x−1)2−1C.y=(x+1)2+1D.y=(x−1)2+110.对于二次函数y=3x2+2,下列说法错误的是()A.其最小值为2B.其图象与y轴没有公共点C.当x<0时,y随x的增大而减小D.其图象的对称轴是y轴二、填空题11.已知点A(﹣2,y1),B(√2,y2),C(4,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1,y2,y3的大小关系是.(用“>”号连接)12.函数y=(m−1)x m2+1−2mx+1的图象是抛物线,则m= .13.小明在研究抛物线y=−(x−ℎ)2−ℎ+1(ℎ为常数)时,得到如下结论:①无论x取何实数,y的值都小于0;②该抛物线的顶点始终在直线y=-x+1上;③当x<2时,y随x的增大而增大,则ℎ<2;④该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2>2ℎ,则y1>y2 .其中一定正确的是(填序号即可).14.老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图象不经过第三象限;乙:函数的图象经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0;已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数 .15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=12x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.16.函数y=(m−3)x m2−2m−1的图像是开口向下的抛物线,则.17.在平面直角坐标系中,已知A(−1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为.18.若二次函数y=kx2−4x+3的函数值恒大于0,则k取值范围是.三、解答题19.已知二次函数y=12x2−3x+4 ,将其配方成y=a(x−k)2+ℎ的形式,并写出它的图象的开口方向、顶点坐标、对称轴.20.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.21.若二次函数y =x 2+bx −3的对称轴为直线x =1,求关于x 的方程x 2+bx −3=5的解.22.已知二次函数y=a (x ﹣h )2+k 当x=﹣1时,有最小值﹣4,且当x=0时,y=﹣3,求二次函数的解析式.23.设x i (i=1,2,3,…,n )为任意代数式,我们规定:y=max{x 1,x 2,…,x n }表示x 1,x 2,…,x n 中的最大值,如y=max{1,2}=2. (1)求y=max{x ,3};(2)借助函数图象,解不等式max{x+1,1x}≥2;(3)若y=max{|1﹣x|,12x+a ,x 2﹣4x+3}的最小值为1,求实数a 的值.答案解析部分1.【答案】C 2.【答案】B 3.【答案】D 4.【答案】B 5.【答案】C 6.【答案】A 7.【答案】B 8.【答案】B 9.【答案】A 10.【答案】B 11.【答案】y1>y 3>y 212.【答案】-1 13.【答案】②④14.【答案】y=(x ﹣2)2+1 15.【答案】-2<k <1216.【答案】-1 17.【答案】4 18.【答案】k >4319.【答案】解: y =12x 2−3x +4=12(x −3)2−12开口方向向上顶点坐标是 (3,−12)对称轴是直线 x =320.【答案】解:(1)①当m=1,n ≠﹣2时,函数y=(n+1)x m +mx+1﹣n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y=0时,(n+1)x m +mx+1﹣n=0,∴x=1−n n+2,∴函数y=(n+1)x m +mx+1﹣n (m ,n 为实数)与x 轴有交点;②当m=2,n ≠﹣1时,函数y=(n+1)x m +mx+1﹣n (m ,n 为实数)是二次函数, 当y=0时,y=(n+1)x m +mx+1﹣n=0,即:(n+1)x 2+2x+1﹣n=0, △=22﹣4(1+n )(1﹣n )=4n 2≥0;∴函数y=(n+1)x m +mx+1﹣n (m ,n 为实数)与x 轴有交点;③当n=﹣1,m ≠0时,函数y=(n+1)x m +mx+1﹣n 是一次函数,当y=0时,x=n−1m ,∴函数y=(n+1)x m +mx+1﹣n (m ,n 为实数)与x 轴有交点; (2)①假命题,若它是一个二次函数, 则m=2,函数y=(n+1)x 2+2x+1﹣n , ∵n >﹣1,∴n+1>0, 抛物线开口向上,对称轴:﹣b 2a=−22(n+1)=﹣1n+1<0,∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小, ②当x=1时,y=n+1+2+1﹣n=4. 当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).21.【答案】解:∵二次函数y =x 2+bx −3的对称轴为直线x =1,∴x =−b 2a =−b2×1=1, 解得b =−2.将b =−2代入x 2+bx −3=5中,得:x 2−2x −3=5, 解得x 1=−2,x 2=4.22.【答案】解:设y=a (x+1)2﹣4则﹣3=a (0+1)2﹣4 ∴a=1,∴二次函数的解析式为:y=(x+1)2﹣4 23.【答案】解:(1)y={x (x ≥3)3(x <3);(2)①由图可知,不等式式max{x+1,1x }≥2的解集为0<x ≤12或x ≥1;②由图可知,最小值为y=12x+a与抛物线y=x2﹣4x+3的交点,∴x2﹣4x+3=1,解得x1=2﹣√2,x2=2+√2(舍去),∴12×(2﹣√2)+a=1,解得a=√22.。

二次函数-2023年中考数学第一轮总复习课件(全国通用)

二次函数-2023年中考数学第一轮总复习课件(全国通用)

A.x1=1,x2=-1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3
(2)如图,二次函数y=ax2+bx+c的图象则不等式的ax2+bx+c<0解集是( C )
A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3 y
-1 O 3 x
课堂小结
二次函数
知识梳理
强化 训练
二次函数图象与性质
查漏补缺
5.抛物线y=(x+3)(x-1)的对称轴是直线_x_=_-_1___. 6.若抛物线y=x2-8x+c的顶点在x轴上,则c=_-_1____.
7.若抛物线y=x2-4x+k的顶点在x轴下方,则k的取值范围是_k_<__4__.
8.若抛物线yy==xk2x-22-x6+xm+-34与x轴有交点,则m的取值范围是_k_m≤_≤_3_5且__k_≠__0__. 9.若抛物线y=x2+2x+c与坐标轴只有两个交点,则c的值为__0_或__1_.
1.下列关于抛物线的y=ax2-2ax-3a(a≠0)性质中不一定成立的是( C )
A.该图象的顶点为(1,-4a); B.该图象与x轴的交点为(-1,0),(3,0);
C.当x>1时,y随x的增大而增大;D.若该图象经过(-2,5),一定经过(4,5).
2.抛物线y=(x-t)(x-t-2)(t为常数)与x轴交于A,B两点(点A在点B的左边),
当堂训练
二次函数的基本性质
查漏补缺
1.抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( B )
A.m>1
B.m>0

人教版初中数学中考复习 一轮复习 二次函数及其应用2(课件)

人教版初中数学中考复习  一轮复习   二次函数及其应用2(课件)

解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系

中考数学复习专题二次函数知识点归纳

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。

总结:2. 2y ax c =+的性质:结论:上加下减。

a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。

总结:4. ()2y a x h k =-+的性质:总结: a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。

2023年中考数学一轮复习考点过关:二次函数最值问题

2023年中考数学一轮复习考点过关:二次函数最值问题

2023年中考数学一轮复习考点过关 二次函数最值问题1. 已知:如图,抛物线y =ax 2+bx +c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.2. 已知点A (2,-3)是二次函数2(21)2y x m x m =+--图象上的点.(1)求二次函数图象的顶点坐标:(2)当14x -≤≤时,求函数的最大值与最小值的差:(3)当3t x t +≤≤时,若函数的最大值与最小值的差为4,求t 的值.3. 如图,某学校要建一个中间有两道篱笆隔断的长方形花圃,花圃的一边靠墙(墙的最大可利用长度为10m ),现有篱笆长24m .设花圃的宽AB 为x m ,面积为2m S .(1)如果要围成面积为232m 的花圃,AB 长是多少米?(2)能围成面积比232m 更大的花园吗?如果能,请求出花圃的最大面积,并给出设计方案.如果不能,请说明理由.4. 金秋十月,我省某农业合作社有机水稻再获丰收,加工成有机大米后通过实体和电商两种渠道进行销售.该有机大米成本为每千克 14 元,销售价格不低于成本,且不超过 25 元/千克,根据各销售渠道的反馈,发现该有机大米一天的销售量 y (千克)是该天的售价x (元/千克)的一次函数,部分情况如表: 售价 x (元/千克) 14 16 18 …销售量 y (千克) 800700 600 …(1)求一天的销售量 y (千克)与售价 x (元/千克)之间的函数关系式并写出 x 的取值范围.(2)若某天销售这种大米获利 2400 元,那么这天该大米的售价为多少?(3)该有机大米售价定为多少时,当天获利 w 最大?最大利润为多少?5. 如图1,抛物线2134y x bx =-++与x 轴交于点A ,B ,与y 轴交于点C ,点B 坐标为()6,0,点D 为线段OB 上一点,点E 为抛物线上一动点.(1)求b 的值;(2)点D 坐标为(3,0),点E 在第一象限的抛物线上,设ECD 的面积为S ,求S 的最大值;(3)如图2,点D 坐标为(4,0),是否存在点E ,使12ABE ODC ∠=∠,若存在,请求出点E 坐标,若不存在,说明理由.6. 如图,平面直角坐标系中,正方形ABCD 的顶点A ,B 在x 轴上,抛物线2y x bx c =-++经过A ,()4,5C -两点,且与直线DC 交于另一点E .(1)求抛物线的解析式:(2)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为Q ,连接EQ ,AP .试求EQ PQ AP ++的最小值;(3)N 为平面内一点,在抛物线对称轴上是否存在点M ,使得以点M ,N ,E ,A 为顶点的四边形是菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.7. 在平面直角坐标系xOy 中,抛物线1G :2y x bx c =++的对称轴为2x =.(1)求b 的值;(2)若当14x <<时,抛物线1G 与x 轴有且只有一个交点,求c 的取值范围;(3)将抛物线1G 向左平移()0m m >个单位长度得到抛物线2G ,抛物线2G 的顶点在直线21y x =-上,求抛物线2G 与y 轴交点的纵坐标的最小值.8. 在平面直角坐标系xOy 中,抛物线24(0)y ax bx a a =++-≠的对称轴是直线1x =.(1)求抛物线24(0)y ax bx a a =++-≠的顶点坐标;(2)当23x -≤≤时,y 的最大值是5,求a 的值;(3)在(2)的条件下,当1t x t ≤≤+时,y 的最大值是m ,最小值是n ,且3m n -=,求t 的值.9. 党的二十大报告指出:“高质量发展”是全面建设社会主义现代化国家的首要任务,在数学中,我们不妨约定:在平面直角坐标系内,如果点(),P m n 的坐标满足2n m =,则称点P 为“高质量发展点”.(1)若点(),4P m 是反比例函数k y x=(k 为常数,0k ≠)的图象上的“高质量发展点”求这个反比例函数的解析式; (2)若函数23y x p =+-(p 为常数)图象上存在两个不同的“高质量发展点”,且这两点都在第一象限,求p 的取值范围;(3)若二次函数()212y ax b x =+-+(a ,b 是常数,1a >)的图象上有且只有一个“高质量发展点”,令()281w b a =---,当1t b t -≤≤时,w 有最大值t -,求t 的值.10. 已知y 关于x 的二次函数2224y x mx m =-++,点P 为抛物线顶点.(1)若抛物线与y 轴的交点坐标为点()0,2,求该二次函数的表达式;(2)当P 点的纵坐标取最大值时,m = ,此时P 点坐标为 ;(3)在(2)的条件下,当3n x n -≤≤,函数有最小值9,求n 的值.11. 在平面直角坐标系中,抛物线2y ax bx c =++交x 轴于点A ,点B ,(点A 在点B 的左侧),点D 是抛物线上一点.(1)若32c =,12,2D ⎛⎫- ⎪⎝⎭时,用含a 的式子表示b ; (2)若12a =,2c =-,()5,3D ,ABD △的外接圆为E ,求点E 的坐标和弧AB 的长; (3)在(1)的条件下,若2AB 有最小值,求此时的抛物线解折式12. 对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y ≤M ,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数y =﹣(x ﹣3)2+2是有上界函数,其上确界是2(1)函数①y =x 2+2x +1和②y =2x ﹣3(x ≤2)中是有上界函数的为 (只填序号即可),其上确界为 ;(2)如果函数y =﹣x +2(a ≤x ≤b ,b >a )的上确界是b ,且这个函数的最小值不超过2a +1,求a 的取值范围;(3)如果函数y =x 2﹣2ax +2(1≤x ≤5)是以3为上确界的有上界函数,求实数a 的值.13. 已知二次函数2(2)4y x m x m =+-+-,其中m>2.(1)当该函数的图像经过原点()0,0O ,求此时函数图像的顶点A 的坐标;(2)求证:二次函数2(2)4y x m x m =+-+-的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线2y x =--上运动,平移后所得函数的图像与y 轴的负半轴的交点为B ,求AOB 面积的最大值.14. 如图,抛物线2y ax 2x c =++.与x 轴交于A ,B 两点,与y 轴交于(03)C ,,直线=1y x --经过点A 且与抛物线交于另一点D .(1)求抛物线的解析式;(2)若P 是位于直线AD 上方的抛物线上的一个动点,连接PA ,PD ,求PAD 的面积的最大值;(3)在第(2)问的条件下,求点P 到直线AD 的最大值.15. 如图1,在平面直角坐标系中,抛物线y 32x 233x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D .(1)求直线BC 的解析式;(2)如图2,点P 为直线BC 上方抛物线上一点,连接PB 、PC .当PBC 的面积最大时,在线段BC 上找一点E (不与B 、C 重合),使PE +12BE 的值最小,求点P 的坐标和PE +12BE 的最小值;(3)如图3,点G 是线段CB 的中点,将抛物线y 32x 233x 轴正方向平移得到新抛物线y ',y ′经过点D ,y '的顶点为F .在抛物线y '的对称轴上,是否存在一点Q ,使得FGQ 为直角三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.参考答案1. 【答案】(1)抛物线解析式为y =﹣12x 2+2x +6;(2)当t =3时,P (3,152),△PAB 的面积有最大值;(3)点P (4,6).【分析】(1)利用待定系数法进行求解即可得; (2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y =﹣x +6,设P (t ,﹣12t 2+2t +6),则N (t ,﹣t +6),由S △PAB =S △PAN +S △PBN =12PN •AG +12PN •BM =12PN •OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA =OB =6得∠BDH =∠BAO =45°,结合∠DPE =90°知若△PDE 为等腰直角三角形,则∠EDP =45°,从而得出点E 与点A 重合,求出y =6时x 的值即可得出答案.【详解】解:(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y =a (x ﹣6)(x +2),将点A (0,6)代入,得:﹣12a =6,解得:a =﹣12,所以抛物线解析式为y =﹣12(x ﹣6)(x +2)=﹣12x 2+2x +6;(2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y =kx +b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y =﹣x +6,设P (t ,﹣12t 2+2t +6)其中0<t <6,则N (t ,﹣t +6),∴PN =PM ﹣MN =﹣12t 2+2t +6﹣(﹣t +6)=﹣12t 2+2t +6+t ﹣6=﹣12t 2+3t ,∴S △PAB =S △PAN +S △PBN =12PN •AG +12PN •BM =12PN •(AG +BM ) =12PN •OB =12×(﹣12t 2+3t )×6=﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t =3时,P (3,152),△PAB 的面积有最大值; (3)△PDE 为等腰直角三角形,则PE =PD ,点P (m ,-12m 2+2m +6),函数的对称轴为:x =2,则点E 的横坐标为:4-m ,则PE =|2m -4|,即-12m 2+2m +6+m -6=|2m -4|,解得:m =4或-2或1717-2和17故点P 的坐标为:(4,6)或(1717).2. 【答案】(1)(3,-4)(2)当-1≤x ≤4时,函数的最大值与最小值的差为16(3)t =1或2【详解】(1)解:∵已知A (2,-3)是二次函数()2212y x m x m =+--图象上的点 ∴44223m m +--=- 解得52m =- ∴此二次函数的解析式为:2265(3)4y x x x =-+=--∴顶点坐标为(3,-4);(2)∵顶点坐标为(3,-4),∴当x =3时,y 最小值=-4,当x =-1时,y 最大值=12∴当-1≤x ≤4时,函数的最大值与最小值的差为16;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而减小,当x =t 时,y 最大值=t 2-6t +5当x =t +3时,y 最小值=(t +3)2-6(t +3)+5=t 2-4,t 2-6t +5-(t 2-4)=4﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9=4, 解得56t =(不合题意,舍去), ②当0≤t <3时,顶点的横坐标在取值范围内,∴y 最小值=-4,i )当0≤t ≤32时,在x =t 时,y 最大值=t 2-6t +5, ∴t 2-6t +5-(-4)=4,解得t 1=1,t 2=5(不合题意,舍去);ii )当32<t <3时,在x =t +3时,y 最大值=t 2-4, ∴t 2-4-(-4)=4,∴解得t 1=2,t 2=-2(不合题意,舍去),③当t >3时,y 随着x 的增大而增大,当x =t 时,y 最小值=t 2-6t +5,当x =t +3时,y 最大值=t 2-4,∴t 2-4-(t 2-6t +5)=4解得136t =(不合题意,舍去), 综上所述,t =1或2.3. 【答案】(1)4(2)能,最大面积是235m ,此时花圃的长为10米,宽为3.5米【分析】(1)由S AB BC =⨯,然后求出方程242432x x -+=的解即可;(2)把解析式化成顶点式,求出顶点的坐标即可得到答案.【详解】(1)解:根据题意,设花圃的宽AB 为x m ,面积为2m S .∴2(244)424S AB BC x x x x =⨯=⨯-=-+,∴242432x x -+=解得:12x =,24x =;∵024410x <-≤, ∴762x ≤<, ∴4x =;∴AB 长是4m ;(2)解:∵224244(3)36S x x x =-+=--+, 又∵762x ≤<, 当72x =时,274(3)3635322S =--+=>, ∴能围成面积比232m 更大的花圃,最大面积为235m , 方案:∵7244102-⨯=, ∴花圃的长为10m ,宽为3.5m ,花圃的面积最大.4. 【答案】(1)5501504201yx x (2)18元(3)当22x =时,w 有最大值3200元.【详解】(1)解:设一天的销售量y (千克)与售价x (元/千克)之间的函数关系式为1425y kx b x由题意得:1480016700k b k b +=⎧⎨+=⎩,解得:501500k b =-⎧⎨=⎩所以一天的销售量y (千克)与售价x (元/千克)之间的函数关系式为5501504201y x x .(2)解:设这天该大米的售价为x 元由题意可得: 145015002400x x解得18x =或26x =(舍).∴这天该大米的售价为18元.(3)解:由题意可得:有机大米一天的获利w (元)与该天的售价x (元/千克)的函数关系式为:21450150050223200wx x x ∴当25x 时,y 随x 的增大而增大.∴当22x =时,w 有最大值3200元.5. 【答案】(1)1b =.(2)S 的最大值为6.(3)存在这样的点E ,E 点坐标为:()222-,和(1028)39--,. 【分析】(1)题目中给出了点B 的坐标,代入解析式中,即可求出b 的值;(2)题中要求CDE 三角形的最大值,可以设E 点的横坐标为m ,用含m 的式子表示出纵坐标,连接OE ,过E 分别作x 轴、y 轴的垂线EP 、EQ ,ECD OCD COE ODE OCD OCED S S S S S S ΛΛΛΛΛ=-=+-四边形,用含m 的式子表示CDE S Λ,然后求出这个式子的最大值,即可得到对应m 的值,进而求出S 的值.(3)先假设存在这样的点E ,作ODC ∠的角平分线交y 轴于点F ,过B 作BE ∥DF ,交抛物线于点E ,点E 就是要求的点.这时ODF BMC ΛΛ∽,46OF OD OC OB ==,如果知道OF 的长度,就可以求出OE 的长度,即可得到E 点的纵坐标,然后代入解析式,即可求出横坐标.根据题目条件,知道OC 、OD 的长,作FH CD ⊥与H ,OF FH =,利用面积可以求出FH 的长度,进而求出OF 的长度;根据46OF OD OE OB ==,知道OD OB OF 、、的长度,即可求出OE 的长度,进而求出E 点横坐标,从而求解.注意当E 点在x 轴下方时,也可以用同样的方法求出E 点的坐标.【详解】(1)解:将()60B ,代入解析式可得: 2166304b -⨯++=, 解得1b =.(2)连接OE ,过E 分别作x 轴、y 轴的垂线EP 、EQ ,设点E 坐标2134m m m ⎛⎫-++ ⎪⎝⎭,则:QE m =,2134PE m m =-++ ECD OCD COE ODE OCD OCDE S S S S S S ΛΛΛΛΛ=-=+-四边形21111333332242m m m ⎛⎫=⨯⨯+⨯⨯-++-⨯⨯ ⎪⎝⎭ 化简得:()223334688S m m m =-+=--+当4m =时,S 取最大值,最大值为6.(3)假设存在这样的点E ,作ODC ∠的角平分线交y 轴于点F ,过B 作BE DF ,交抛物线于点E ,点E 就是要求的点.作EM x ⊥轴于点M ,作FH CD ⊥于H ,当点E 在第二象限时,设OF a =,∵FH CD ⊥,FO OD ⊥,FD 为角平分线,∴OF HF a ==在Rt ODC ∆中,2222345CD OC OD +=+ODC ODF CDF S S S ΛΛΛ=+1114345222a a ⨯⨯=⨯+⨯ 5262a a += 43a = ∴43OF =∵ODF MBE ∠=∠,FOD COB ∠=∠∴~ODF OBE ΛΛ46OF OD OE OB == ∵43OF =, ∴2OE =21324x x -++= 解得:222x =±由于E 点在第二象限,所以222x =-∴()222E -,当点E 在第四象限时,有~ODF NBE ΛΛ,OF OD NE NB= 此时E 点横坐标为x ,ON x =-,则6NB x =-,22113344NE x x x x =-++=-- 有24431634x x x =---, 化简得238600x x --= 解得1103x =-,26x =, 由于E 在第三象限,所以103x =-, 2110102834339⎛⎫-⨯--+=- ⎪⎝⎭ 此时E 点坐标为(1028)39--, ∴存在E 点,E 点坐标为()222-,和(1028)39--,. 6. 【答案】(1)223y x x =-++ 411 (3)存在,()1,3-,(22,(1,22,(1,517-,(1,517-【分析】(1)求出A 点坐标,把A 、C 坐标代入解析式计算即可;(2)连接OC ,交对称1x =于点Q ,证明四边形AOQP 是平行四边形,即可说明若使的EQ PQ AP ++值为最小,其EQ OQ +为量小,最小值为线段OC 长;(3)由于N 是任意一点,要使得以点M ,N ,E ,A 为顶点的四边形是菱形只要说明△AME 是等腰三角形即可.【详解】(1)∵四边形ABCD 为正方形,()4,5C -,∴5AD AB ==,()4,0B ,∴1OA =,∴()1,0A -,将点A ,C 坐标代入2y x bx c =-++得:164510b c b c -++=-⎧⎨--+=⎩, 解得:23b c =⎧⎨=⎩, ∴抛物线的解析式为223y x x =-++;(2)连接OC ,交对称1x =于点Q∵PQ y ⊥轴,∴AO PQ ∥,∵1AO PQ ==,∴四边形AOQP 是平行四边形,∴AP OQ =,∴1EQ PQ AP EQ OQ ++=++若使的EQ PQ AP ++值为最小,其EQ OQ +为量小.∵E ,C 关于对称轴1x =对称,∴EQ CQ =,∴EQ OQ CQ OQ +=+,此时EQ OQ +的值最小,最小值为线段OC 长.∵()4,5C -, ∴224541OC +=∴EQ PQ AP ++411,即EQ PQ AP ++411.(3)设(1,)M m∵E ,C 关于对称轴1x =对称,()4,5C -,∴()2,5E --,∵()1,0A -∴222(12)(50)26AE =-++--=2222(11)(0)4AM m m =--+-=+2222(21)(5)1034EM m m m =--+--=++∵由于N 是任意一点,要使得以点M ,N ,E ,A 为顶点的四边形是菱形∴△AME 是等腰三角形当AE AM =时,222426AM AE m ==+=, 解得22m =此时M 点坐标为(22,(1,22-当AE EM =时,222103426EM AE m m ==++=, 解得517m =-此时M 点坐标为(1,517-,(1,517-当AM EM =时,222210344EM AM m m m ==++=+,解得3m =-,此时M 点坐标为()1,3-综上所述,存在点M ()1,3-,(22,(1,22,(1,517-,(1,517-,使得以点M ,N ,E ,A 为顶点的四边形是菱形7. 【答案】(1)4-(2)4c =或03c ≤<.(3)2-【分析】(1)根据对称轴为与系数的关系即可进行求解;(2)将该抛物想的表达式改写为顶点式:()224y x c =-+-,画出函数()22y x =-的图像,结合图像即可得出c 的取值范围;(3)根据二次函数的平移规律,将2G 的函数解析式表示出来,进而表示出其顶点坐标,再将顶点坐标代入21y x =-得出m 和c 之间的关系式,最后将0x =代入2G 即可求出其与y 轴的纵坐标.【详解】(1)解:∵抛物线对称轴为2x =, ∴22b -=,解得:4b =-. (2)由(1)可知,4b =-,∴()221:244G y x x c x c =+=-+--,如图,画出抛物线()22y x =-的图像,由图可知,①当40c -=时,1G 与x 轴只有一个交点,解得:4c =②当40c -≠时,将()22y x =-的图像向下平移的距离大于一个单位长度,小于或等于4个单位长度时时,平移后的函数图像在x 轴上14x <<时只有一个交点.∴()144c <--≤,解得:03c ≤<.综上:4c =或03c ≤<.(3)由(2)可得4b =-,∴1G :()22424y x x c x c =-+=-+-,∴2G :()224y x m c =-++-,∴2G 的定点坐标为:()2,4m c --,∵抛物线2G 的顶点在直线21y x =-上,∴把点()2,4m c --代入21y x =-得:()4221c m -=--,整理得:72c m =-,把0x =代入2G :()224y x m c =-++-得: ()2024y m c =-++-24m m c =-+∵72c m =-∴2472m y m m -+-=267m m =-+()232m =--,∴当3m =时,y 有最小值2-.∴抛物线2G 与y 轴交点的纵坐标的最小值为2-.8. 【答案】(1)(1,-4);(2)1;(3)-1或2【分析】(1)根据对称轴可得a 与b 间的关系b =-2a ,把这个关系式代入函数解析式中,配方即可得顶点坐标;(2)首先,由于抛物线的顶点在所给自变量的范围内,若a 为负,则在所给自变量范围内,函数的最大值是相互矛盾的,故可排除a 为负的情况,所以a 为正.再由于x 轴上-2与1的距离大于3与1的距离,根据抛物线的性质,函数在x =-2处取得最大值,从而可求得a 的值.(3)分三种情况讨论:即分别考虑顶点的横坐标是在1t x t ≤≤+范围内、在这个范围的左边、在这个范围的右边三种情况;对每种情况分别求出最大值和最小值,然后可求得t 的值.【详解】解:(1)∵对称轴是直线1x =, ∴12b a-=. ∴2b a =-.∴2224(1)4=-+-=--y ax ax a a x .∴顶点坐标为()1,4-.(2)若a <0,则抛物线的开口向下,从而y 有最大值4∵当23x -≤≤时,y 的最大值是5,且抛物线的对称轴为直线x =1,∴函数此时在1x =时取得最大值5,这与y 有最大值4矛盾,从而a >0.∴抛物线的顶点为图象的最低点.∵1-(-2)>3-1∴当2x =-时,5y =.代入解析式,得2(21)45,a ⨯---=∴ 1a =.(3)①当11t t ≤≤+时,此时0≤t ≤1,∴n =-4,函数的最大值在t +1或t 处取得,即24m t =-或2(1)4m t =--∴m 的最大值为3-.此时1m n -=.不符合题意,舍去.②当11t +<,即0t <时,22(1)4,(11)4=--=+--m t n t .∵3m n -=,∴1t =-.③当1t >时,同理可得2t =.综上所述,1t =-或2t =.9. 【答案】(1)8y x =或8y x=- (2)4>>3p (3)52t =或12t =【分析】(1)将(),4P m 代入k y x =得到关于m k , 的方程,依据“高质量发展点”的定义得到关于m k ,的另一个方程,解方程组即可;(2)设图象上存在的“高质量发展点”坐标为()2t t ,,依据题意可得含t 的一元二次方程,根据方程有两个不相等的实根对应0∆>,即可求出p 的取值范围;(3)设设图象上存在的“高质量发展点”坐标为()2t t ,,将()2t t ,代入()212y ax b x =+-+,可得含t 的一元二次方程,根据图象上有且只有一个“高质量发展点”可知对应方程两根相等,即Δ0=,得出a b , 的关系式,从而由()281w b a =---变形为关于w b , 的函数,根据函数性质分情况讨论最值即可.【详解】(1)解:将(),4P m 代入k y x =,得:4k m = 即4k m = ,又因为(),4P m 是“高质量发展点”,故24m =,解方程组244k m m =⎧⎨=⎩ 得:1128m k =⎧⎨=⎩ 或2228m k =-⎧⎨=-⎩,则这个反比例函数的解析式为8y x =或8y x=-. (2)解:设图象上存在的“高质量发展点”坐标为()2t t ,,依据题意将()2t t ,代入23y x p=+-得:()2230t t p ---= ,由函数23y x p =+-(p 为常数)图象上存在两个不同的“高质量发展点”可知:方程()2230t t p ---=有两个不相等的实根,即()()2243>0p ∆=-+- 解得:4p < ,且由韦达定理可知()2230t t p ---=的两根之和为2,两根之积为()3p -- ,又因为这两点都在第一象限可得: ()3>0p --,解得:3p > ,综上可得:4>>3p .(3)解:设设图象上存在的“高质量发展点”坐标为()2t t ,,将()2t t ,代入()212y ax b x =+-+,可得()2212t at b t =+-+,整理得()()21120a t b t -+-+=,根据图象上有且只有一个“高质量发展点”可知方程()()21120a t b t -+-+=两根相等,即()()21810b a ∆=---=,变形得:()()2181b a -=-,因为()281w b a =---,所以()2221221w b b b b =---=-+-,故由抛物线2221w b b =-+-性质:开口向下,对称轴为12b =,顶点1122⎛⎫- ⎪⎝⎭, , 当1t b t -≤≤时,w 有最大值t -,∴分情况讨论最值情况:(1)当112t ->即32t > 时,函数自变量取值在对称轴右侧,图像下降,故当1b t =- 时w 有最大值t -,即()()221211t t t -=--+--,化简得:22750t t -+=,得:12512t t ==,131<2t =,故11t =舍去, ∴52t = (2)当112t -≤且12t ≥,即3122t ≥≥ 时,函数2221w b b =-+-的自变量取值范围包括了顶点,即当12b =,w 有最大值12t -=-,解得:12t =, ∴12t = (3)12t 时函数2221w b b =-+-自变量取值在对称轴左侧,图像上升,此时w 最大值当b t =时取得,即:2221t t t -=-+-,整理得: 22310t t -+=,解得112t t ==, 12t , 故112t t ==,均不合要求,此时无解, 综上可得:52t =或12t =. 10. 【答案】(1)222=++y x x(2)1,()1,5(3)1n =-或6n =【分析】(1)待定系数法求解析式即可;(2)将一般式转化为顶点式,再利用配方法求纵坐标的最值即可得解;(3)3n x n -≤≤,函数有最小值9,判断3n x n -≤≤与对称轴的位置关系,再根据二次函数的图象和性质,进行求解即可.【详解】(1)解:抛物线与y 轴的交点坐标为点()0,2,则:224m =+,解得:1m =-,∴222=++y x x ;(2)解:()22222424y x mx m x m m m =-++=--++;∴()2,24P m m m -++ ∵()2224155m m m -++=--+≤,∴1m =时, P 点的纵坐标取最大值:5,∴()1,5P ;故答案为:1,()1,5;(3)解:∵()1,5P ,∴()215y x =-+;∵10a =>,对称轴为1x =,∴抛物线开口向上,在对称轴的左侧,y 随x 值的增大而减小,在对称轴的右侧,y 随x 值的增大而增大,∵当3n x n -≤≤,函数有最小值9,95>,∴3n x n -≤≤在对称轴的同侧;①3n x n -≤≤在对称轴的左侧,即:1n <时,当x n =时,函数有最小值:()2159y n =-+=, 解得:1n =-或3n =(舍);②3n x n -≤≤在对称轴的右侧,即:31n ->,4n >时,当3x n =-时,函数有最小值:()23159y n =--+=,解得:6n =或2n =(舍);综上:当1n =-或6n =时,函数有最小值9.11. 【答案】(1)21b a =--(2)E 点坐标为35,22⎛⎫ ⎪⎝⎭52(3)2332y x x =-+【分析】(1)将32c =,12,2D ⎛⎫- ⎪⎝⎭代入2y ax bx c =++,计算求解即可;(2)将122a c ==-,与()5,3D 代入2y ax bx c =++,得到32b =-,然后将解析式因式分解()()1142y x x =+-,得到A B ,点坐标分别为()()1,04,0-,;如图,在直角坐标系中作EF BD EG AB FM EG FN AB ⊥⊥⊥⊥,,,,连接EA EB ,;点F 为BD 中点,坐标为4503,22++⎛⎫ ⎪⎝⎭;点G 为AB 中点,坐标为41,02-⎛⎫⎪⎝⎭,9090EFM MFB MFB BFN ∠+∠=︒∠+∠=︒,,EFM BFN ∠=∠,有EFM BFN ∽,EM MF BN FN =,942BN =-,32FN =,9322MF NG ==-,得EM EG ,的值,进而可求出E 点坐标;35122AG EG =+==,知45AEG BEG ∠=︒=∠,90AEB ∠=︒,22522AG GE +180n r AB π=求解即可;(3)23(21)2y ax a x =-++,知12122132a x x x x a a ++=⋅=,,222221212122131()()4=4132a AB x x x x x x a a a +⎛⎫⎛⎫=-=+-⋅-⨯=-+ ⎪ ⎪⎝⎭⎝⎭, 2AB 最小时,有110a -=,解得a 值,故可得b 值,进而可得出抛物线的解析式. 【详解】(1)解:将32c =与12,2D ⎛⎫- ⎪⎝⎭代入2y ax bx c =++得134222a b -=++ 21b a =--∴用含a 的式子表示b 为21b a =--.(2)解:将122a c ==-,与()5,3D 代入2y ax bx c =++得2135522b =⨯+-32b =-∴()()()221311234142222y x x x x x x =--=--=+- ∴A B ,点坐标分别为()()1,04,0-,如图,作EF BD EG AB FM EG FN AB ⊥⊥⊥⊥,,,,连接EA EB ,∴90909090EFB MFN EMF FNB ∠=︒∠=︒∠=︒∠=︒,,,,MF AB ∥∴点F 为BD 中点,坐标为4503,22++⎛⎫ ⎪⎝⎭即93,22⎛⎫ ⎪⎝⎭;点G 为AB 中点,坐标为41,02-⎛⎫ ⎪⎝⎭即3,02⎛⎫⎪⎝⎭∵9090EFM MFB MFB BFN ∠+∠=︒∠+∠=︒, ∴EFM BFN ∠=∠ ∴EFM BFN ∽ ∴EM MFBN FN= ∵91422BN -==,32FN =,93322MF NG ==-= ∴351122EM EG ==+=, ∴E 点坐标为35,22⎛⎫⎪⎝⎭∵35122AG EG =+== ∴45AEG BEG ∠=︒=∠ ∴90AEB ∠=︒ 2252AG GE +5290522180180n rAB ππ⨯===∴E 的坐标为35,22⎛⎫ ⎪⎝⎭,AB 52.(3)解:由题意知23(21)2y ax a x =-++∵12122132a x x x x a a++=⋅=,,222121212()()4AB x x x x x x =-=+-⋅ ∴2221342a AB a a +⎛⎫=-⨯ ⎪⎝⎭24164a a a =++- 2124a a=+- 2113a ⎛⎫=-+ ⎪⎝⎭∵2AB 最小时,有110a-=解得1a = ∴3b =-∴2332y x x =-+.12. 【答案】(1)②,1; (2)-1≤a <1; (3)a 的值为2.4.【分析】(1)分别求出两个函数的最大值即可求解;(2)由题意可知:-b +2≤y ≤-a +2,再由-a +2=b ,-b +2≤2a +1,b >a ,即可求a 的取值范围; (3)当a ≤1时,27-10a =3,可得a =2.4(舍);当a ≥5时,3-2a =3,可得a =0(舍);当1<a ≤3时,27-10a =3,可得a =2.4;当3<a <5时,3-2a =3,可得a =0. 【详解】(1)①y =x 2+2x +1=(x +1)2≥0, ∴①无上确界; ②y =2x -3(x ≤2), ∴y ≤1,∴②有上确界,且上确界为1, 故答案为:②,1;(2)∵y =-x +2,y 随x 值的增大而减小, ∴当a ≤x ≤b 时,-b +2≤y ≤-a +2, ∵上确界是b ,∴-a +2=b ,∵函数的最小值不超过2a +1, ∴-b +2≤2a +1, ∴a ≥-1, ∵b >a , ∴-a +2>a , ∴a <1,∴a 的取值范围为:-1≤a <1; (3)y =x 2-2ax +2的对称轴为直线x =a , 当a ≤1时,y 的最大值为25-10a +2=27-10a , ∵3为上确界, ∴27-10a =3, ∴a =2.4(舍);当a ≥5时,y 的最大值为1-2a +2=3-2a , ∵3为上确界, ∴3-2a =3, ∴a =0(舍);当1<a ≤3时,y 的最大值为25-10a +2=27-10a , ∵3为上确界, ∴27-10a =3, ∴a =2.4;当3<a <5时,y 的最大值为1-2a +2=3-2a , ∵3为上确界, ∴3-2a =3, ∴a =0,综上所述:a 的值为2.4. 13. 【答案】(1)()1,1A -- (2)见解析(3)最大值为98【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;(2)先根据顶点坐标公式求出顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭,然后分别证明顶点坐标的横纵坐标都小于0即可;(3)设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭,然后求出点B 的坐标,根据平移后的二次函数顶点在直线2y x =--上推出2284b bc +-=,过点A 作AH OB ⊥,垂足为H ,可以推出219=(1)88AOB S b -++△,由此即可求解.【详解】(1)解:将()0,0O 代入2(2)4y x m x m =+-+-,解得4m =.由m>2,则4m =符合题意, ∴222(1)1y x x x =+=+-, ∴()1,1A --.(2)解:由抛物线顶点坐标公式得顶点坐标为22820,24m m m ⎛⎫--+- ⎪⎝⎭. ∵m>2, ∴20m ->, ∴20m -<, ∴202m-<. ∵228201(4)11044m m m -+-=---≤-<,∴二次函数2(2)4y x m x m =+-+-的顶点在第三象限.(3)解:设平移后图像对应的二次函数表达式为2y x bx c =++,则其顶点坐标为24,24b c b ⎛⎫-- ⎪⎝⎭ 当0x =时,y c =, ∴()0,B c .将24,24b c b ⎛⎫-- ⎪⎝⎭代入2y x =--, 解得2284b bc +-=.∵()0,B c 在y 轴的负半轴上, ∴0c <.∴2284b b OBc +-=-=-.过点A 作AH OB ⊥,垂足为H , ∵()1,1A --, ∴1AH =. 在AOB 中,211281224AOBb b S OB AH ⎛⎫+-=⋅=⨯-⨯ ⎪⎝⎭△ 211184b b =--+219(1)88b =-++,∴当1b时,此时0c <,AOB 面积有最大值,最大值为98.14. 【答案】(1)223y x x =-++; (2)1258; 252.【分析】(1)根据=1y x --经过点A ,可求出点A 的坐标,将点A 、C 的坐标代入2y ax 2x c =++即可求出抛物线的解析式;(2)联立抛物线和一次函数=1y x --的解析式列方程解出可得点D 的坐标,过点P 作PEy 轴,交AD 于E ,设()2,23P t t t -++,则(),1E t t --,求PE 的长,根据三角形的面积公式可得PAD 的面积,配方后可得结论;(3)由前两问可知()1,0A -,()4,5D -,再根据勾股定理得:52AD =P 到直线AD 的距离为h ,再利用等面积法即可求解.【详解】(1)解:∵直线=1y x --经过点A ,∴令0y =,则01x =--, ∴=1x -,∴()10A -,, 将()10A -,,(03)C ,代入2y ax 2x c =++得: 203a c c -+=⎧⎨=⎩, 解得:13a c =-⎧⎨=⎩ ,∴抛物线的解析式为:223y x x =-++; (2)解:2231x x x -++=--, 解得:11x =-,24x =, ∴()4,5D -, 过点P 作PEy 轴,交AD 于E ,设()2,23P t t t -++,则(),1E t t --, ∴()()2223134PE t t t t t =-++---=-++,△PAD 的面积()()221553125413422228PE t t t ⎛⎫=⋅⋅+=-++=--+ ⎪⎝⎭,当32t =时,PAD 的面积最大,且最大值是1258; (3)解:∵()1,0A -,()4,5D -,根据勾股定理得:52AD =设点P 到AD 的距离为h , 12APD S AD h =⋅△ 由第(2)问知:112528APD S AD h =⋅≤△11255228h ⨯≤ 252h ≤∴点P 到直线AD 25215. 【答案】(1)直线BC 的解析式为y =332)PBCS 最大时,P (3253),PE +12BE 53,理由见解析;(3)存在,Q (33(3,−23,理由见解析.【分析】(1)根据二次函数的解析式先求出点C 、点B 的坐标,然后利用待定系数法即可求出直线BC 的解析式;(2)如图2中,过点P 作PM x ⊥轴于点M ,交直线BC 于点F ,过点E 作EN x ⊥轴于点N ,设P (a 32a 233,则F (a 33则可得 PF =32a 3,继而得S △PBC =32a 33,根据二次函数的性质可得当a =32时,S △PBC 最大,可得点P 坐标,由直线BC 的解析式为y =3330CBO ∠=︒,继而可得12PE BE PE EN +=+,根据两点之间线段最短和垂线段最短,则当P ,E ,N 三点共线且垂直于x 轴时,PE+12BE 值最小,据此即可求得答案;(3)由题意可得D (1,0),G (323,继而可得直线DG 解析式,根据抛物线y =32x +23332(1)x -43x 轴正方向平移得到新抛物线y ',y '经过点D ,可得y '32(3)x -43,从而可得对称轴为x =1,然后分90∠=︒QDG 或90QGD ∠=︒,90GQD ∠=︒三种情况进行讨论即可得.【详解】(1)当x =0时,y =32x 2333 ∴点C 的坐标为(03 当y =032x 23x 3, 解得:1213x x ==﹣,, ∴点B 的坐标为(3,0),设直线BC 的解析式为()0y kx b k =+≠, 将B (3,0)、C (03y kx b =+,得:303k b b +=⎧⎪⎨⎪⎩,解得:33k b ⎧=⎪⎨⎪=⎩ ∴直线BC 的解析式为y =33 (2)如图2中,过点P 作PM x ⊥轴于点M ,交直线BC 于点F ,过点E 作EN x ⊥轴于点N , 设P (a 32a 233F (a 33 ∴PF =32a 3, ∴S △PBC =12×PF 32a 33, ∴当a =32时,S △PBC 最大,∴P (3253),∵直线BC 的解析式为y =33 ∴30CBO ∠=︒,EN x ⊥轴, ∴EN =12BE , ∴PE +12BE =PE +EN ,∴根据两点之间线段最短和垂线段最短,则当P ,E ,N 三点共线且垂直于x 轴时,PE +12BE 值最小,∴PE +12BE =PE +EN =PN 53; (3)∵D 是对称轴直线x =1与x 轴的交点,G 是BC 的中点,∴D (1,0),G (323∴直线DG 解析式y 33 ∵抛物线y =32x 23332(1)x -43x 轴正方向平移得到新抛物线y ',y '经过点D (1,0), ∴y '32(3)x -43∴对称轴为x =3,F 43∵FGQ 为直角三角形,∴90FGQ ∠︒=或90FQG ∠︒=,90GFQ ∠︒=(不合题意,舍去) 当90FQG ∠︒=,则//QG x 轴 ∴Q (33 当90FGQ ∠︒=,设点Q 坐标(3,y ) ∵222FQ FG GQ +=. ∴2222243343333()(3)((3)()222y y =-++-+- ∴y =−23∴Q (3,−23)综上所述:Q (333,−23).。

2024年中考数学一轮复习考点精讲课件—二次函数的图象与性质


前提条件
当已知抛物线上的无规律的三个点的坐标时,常用
一般式求其表达式.
顶点式
y=a(x–h)²+k(a,h,k为常数, 当已知抛物线的顶点坐标(或者是对称轴) 时,常用
a≠0),顶点坐标是(h,k)
交点式
y=a(x–x1)(x–x2) (a≠0)
顶点式求其表达式.
其中x1,x2是二次函数与x轴的交点的横坐标,若题
【详解】解:∵二次方程 2 + + = 0的两根为−1和 5,

1−+ =0
= −4
,解得

25 + 5 + = 0
= −5
∴二次函数 = 2 + + = 2 − 4 − 5 = ( − 2)2 − 9,
∵ 1 > 0,
∴当 = 2时,有最小值,最小值为−9,
2)自变量的最高次数是2;
3)二次项系数a≠0,而b,c可以为零.
根据实际问题列二次函数关系式的方法:
1)先找出题目中有关两个变量之间的等量关系;
2)然后用题设的变量或数值表示这个等量关系;
3)列出相应二次函数的关系式.
考点一 二次函数的相关概念
二次函数的常见表达式:
名称
解析式
一般式
y=ax²+bx+c (a≠0)
状相同,
∴可设该二次函数的解析式为 = ±3 − ℎ
2
+ ,
∵该二次函数的顶点为 1,4 ,
∴该二次函数的解析式为 = ±3 − 1
2
+ 4,
∴该二次函数的解析式为 = 3 2 − 6 + 7或 = −3 2 +

2022年中考数学一轮复习:二次函数练习题

20.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
(1)求抛物线的函数关系式.
(2)设点P是直线l上的一个动点,求△PAC周长的最小值.
19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为10m)围成中间隔有一道篱笆的长方形养鸡场,设养鸡场的宽AB为xm,面积为ym2.
(1)求y与x的函数关系,并写出x的取值范围;
(2)当长方形的长、宽各为多少时,养鸡场的面积最大,最大面积是多少?
15.如图,在矩形ABCD中,E是边BC上一点,连接AE,过点B作BF⊥AE于点G,交直线CD于点F.以BE和BF为邻边作平行四边形BEHF,M是BH的中点,连接GM,若AB=3,BC=2,设BE=x,则CF=____(用x表示);则GM的最小值为_____.
三、解答题
16.已知抛物线y=x2+bx+c的图象经过A(-1,12),B(0,5).
C.﹣2<x<0或0<x<1D.﹣2<x<0或x>1
8.拋物线 为常数 开口向下且过点 ,下列结论:(1) ;(2) ;(3) ;(4) ,若方程有两个不相等的实数根,则 .其中正确结论的个数是()
A.4B.3C.2D.1
9.已知:抛物线 的对称轴为直线 ,与x轴的一个交点坐标为 ,其部分图象如图所示,下列结论:① ;②方程 的两个根是 , ;③ :④当 时,x的取值范围是 :⑤当 时,y随x增大而增大.其中正确的结论有()

中考数学一轮复习学案:第12讲 二次函数

第12讲 二次函数【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解.【命题趋势】二次函数是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.中考命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【考点探究】考点一、二次函数的图象及性质【例1】(1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b2a =--62×(-3)=-1,4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A.(2)点(-1,y 1),(2,y 2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y 1,y 2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y 3),∵抛物线对称轴为直线x =1,∴点(0,y 3)与点(2,y 2)关于直线x =1对称.∴y 3=y 2. ∵a >0,∴当x <1时,y 随x 的增大而减小. ∴y 1>y 3.∴y 1>y 2. 答案:(1)A (2)>方法总结 1.将抛物线解析式写成y =a (x -h )2+k 的形式,则顶点坐标为(h ,k ),对称轴为直线x =h ,也可应用对称轴公式x =-b 2a ,顶点坐标⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a 来求对称轴及顶点坐标. 2.比较两个二次函数值大小的方法: (1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断; (3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根考点二、利用二次函数图象判断a ,b ,c 的符号【例2】如图,是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c >0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a +b +c =0;根据-b2a=-1,推出b =2a ;根据图象关于对称轴对称,得出与x 轴的交点是(-3,0),(1,0);由a -2b +c =a -2b -a -b =-3b <0,根据结论判断即可.答案:①③方法总结 根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点,抛物线的对称轴由a ,b 共同决定,b 2-4ac 决定抛物线与x 轴的交点情况.当x =1时,决定a +b +c 的符号,当x =-1时,决定a -b +c 的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2 小明从如图的二次函数y =ax 2+bx +c 的图象中,观察得出了下面五个结论:①c <0;②abc >0;③a -b +c >0;④2a -3b =0;⑤c -4b >0,你认为其中正确的结论有( )A .2个B .3个C .4个D .5个考点三、二次函数图象的平移【例3】二次函数y =-2x 2+4x +1的图象怎样平移得到y =-2x 2的图象( ) A .向左平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向上平移3个单位C .向左平移1个单位,再向下平移3个单位D .向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y =-2x 2+4x +1=-2(x -1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y =-2x 2的图象.答案:C方法总结 二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3 将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是( )A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-2 考点四、确定二次函数的解析式【例4】如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求经过A ,B ,C 三点的抛物线的解析式. 解:(1)由抛物线的对称性可知AE =BE . ∴△AOD ≌△BEC . ∴OA =EB =EA .设菱形的边长为2m ,在Rt △AOD 中, m 2+(3)2=(2m )2,解得m =1.∴DC =2,OA =1,OB =3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3).(2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标. 考点五、二次函数的实际应用【例5】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元).(1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少; (3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元). (2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值.触类旁通5 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.【经典考题】1.(乐山)二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <12.(菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=ax在同一平面直角坐标系中的图象大致是()'3.(上海)将抛物线y=x2+x向下平移2个单位,所得新抛物线的表达式是________.4.(枣庄)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是______________.(第4题图)5.(珠海)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(第5题图)(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.6.(益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P ′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD )的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:5≈2.236,6≈2.449,结果可保留根号)【模拟预测】1.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( ) A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( ) A .k <4 B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图)A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发出了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y 轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标; (2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.参考答案【考点探究】触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0; ∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0. 由题图知当x =-1时,y >0, 即a -b +c >0.对称轴是直线x =13,∴-b 2a =13,即2a +3b =0;由⎩⎨⎧a -b +c >0,2a +3b =0,得c -52b >0.又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0.∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3.∴m =6. (2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3).触类旁通5.解:(1)(10+7x ) (12+6x ) (2)y =(12+6x )-(10+7x )=2-x . (3)∵w =2(1+x )(2-x )=-2x 2+2x +4, ∴w =-2(x -0.5)2+4.5. ∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【经典考题】1.B ∵二次函数y =ax 2+bx +1的顶点在第一象限, 且经过点(-1,0),∴a -b +1=0,a <0,b >0.由a =b -1<0得到b <1,结合上面b >0,∴0<b <1①; 由b =a +1>0得到a >-1,结合上面a <0, ∴-1<a <0②.∴由①②得-1<a +b <1,且c =1, 得到0<a +b +1<2, ∴0<t <2.2.C ∵二次函数图象开口向下,∴a <0.∵对称轴x =-b2a<0,∴b <0.∵二次函数图象经过坐标原点,∴c =0.∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax 位于第二、四象限,故选C.3.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.4.-1<x <3 因为二次函数的图象与x 轴两个交点的坐标分别是(-1,0),(3,0),由图象可知,当y <0时,自变量x 的取值范围是-1<x <3.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3). ∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎨⎧ 0=k +b ,3=4k +b ,解得⎩⎨⎧k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.6.解:(1)∵P 与P ′(1,3)关于x 轴对称, ∴P 点坐标为(1,-3).∵抛物线y =a (x -1)2+c 过点A (1-3,0),顶点是P (1,-3),∴⎩⎨⎧a (1-3-1)2+c =0,a (1-1)2+c =-3,解得⎩⎨⎧a =1,c =-3.则抛物线的解析式为y =(x -1)2-3,即y =x 2-2x -2. (2)∵CD 平行于x 轴,P ′(1,3)在CD 上, ∴C ,D 两点纵坐标为3,由(x -1)2-3=3,得x 1=1-6,x 2=1+6, ∴C ,D 两点的坐标分别为(1-6,3),(1+6,3), ∴CD =26,∴“W ”图案的高与宽(CD )的比=326=64(或约等于0.612 4). 【模拟预测】1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D. 4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎨⎧ 1-b +c =0,1+b +c =-2,解得⎩⎨⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2,∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y取得最大值,②错误.7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b-2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎨⎧4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t .∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295.∴10-t=7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L2与L1有关图象的两条相同的性质:对称轴为直线x=2或顶点的横坐标为2;都经过A(1,0),B(3,0)两点.②线段EF的长度不会发生变化.∵直线y=8k与抛物线L2交于E,F两点,∴kx2-4kx+3k=8k,∵k≠0,∴x2-4x+3=8,解得x1=-1,x2=5.∴EF=x2-x1=6,∴线段EF的长度不会发生变化.11 / 11。

中考初中数学一轮复习专题导引40讲-15二次函数的应用

中考初中数学一轮复习专题导引40讲第15讲二次函数的应用☞考点解读:知识点名师点晴二次函数的应用1.实际背景下二次函数的关系会运用二次函数的性质求函数的最大值或最小值来解决最优化问题。

2.将实际问题转化为数学中二次函数问题会根据具体情景,建立适当的平面直角坐标系。

3.利用二次函数来解决实际问题的基本思路(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展。

☞考点解析:考点1:二次函数与几何的综合运用。

基础知识归纳:求点的坐标,求抛物线解析式,求线段长或图形面积的最值,点的存在性。

基本方法归纳:待定系数法、数形结合思想、分类讨论思想。

注意问题归纳:合理使用割补法表达面积,分类讨论要全面。

【例1】(湖北十堰·12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP 和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△AB E有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC.△ABE.△ACE.△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x1=0(舍),x2=,∴D;C.EABEC.E,C.E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,OE=C.EOE= C.E∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.【变式1】(四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;B.DP为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF 面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣则c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3(2)由(1)点D坐标为(1,﹣4)当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为(3,0)①设点F坐标为(a,b)∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3∵a=﹣1<0∴当a=2时,S最大=﹣4+8﹣3=1②存在由已知点D坐标为(1,﹣4),点B坐标为(3,0)∴直线BD解析式为:y=2x﹣6则点E坐标为(0,﹣6)BC.CDBC.CD,则由勾股定理CB2=(3﹣0)2+(﹣3﹣0)2=18CD2=12+(﹣4+3)2=2BD2=(﹣4)2+(3﹣1)2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为(,﹣3)【例2】(云南省曲靖)如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A 的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).【变式2】【例3】(湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为,,;(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为.故(,0);(3,0);.(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【变式3】(辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y 轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q 的坐标.【分析】(1)应用待定系数法;(2)把x=t带入函数关系式相减;(3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.(4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴解得:∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B.O、N三点共线∵A(﹣2,1)N(1,1)P(0,﹣1)∴点K、P关于直线AN对称设⊙K与y轴下方交点为Q2,则其坐标为(0,2)∴Q2与点P关于直线AN对称∴Q2是满足条件∠KNQ=∠BNP.则NQ2延长线与⊙K交点Q1,Q1.Q2关于KN的对称点Q3.Q4也满足∠KNQ=∠BNP.由图形易得Q1(﹣3,3)设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2由∵⊙K半径为1∴解得,1同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=∴解得,∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、、【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.考点2:二次函数与实际应用题的综合运用基础知识归纳:待定系数法求抛物线解析式,配方法求二次函数最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮复习代数篇
二次函数
Modified by JEEP on December 26th, 2020.
中考复习之二次函数(一)
知识考点:
掌握二次函数的图像和性质以及抛物线的平移规律;会确定抛物线的顶点坐标、对称轴及最值等。

精典例题:
【例1】二次函数c bx ax y ++=2的图像如图所示,那么abc 、
ac b 42
-、b a +2、c b a +-24
的有( )
A 、4个
B 、3个
C 、2个
D 、1个
解析:∵a b
x 2=<1
∴b a +2>0 答案:A
评注:由抛物线开口方向判定a 的符号,由对称轴的位置判定b 的符号,由抛物线与y 轴交点位置判定c 的符号。

由抛物线与x 轴的交点个数判定ac b 42-的符号,若x 轴标出了1和-1,则结合函数值可判定
b a +2、
c b a ++、c b a +-的符号。

【例2】已知0=++c b a ,a ≠0,把抛物线c bx ax y ++=2向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。

分析:①由0=++c b a 可知:原抛物线的图像经过点(1,0);②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。

例1图
解:可设新抛物线的解析式为2)2(+=x a y ,则原抛物线的解析式为1)52(2+-+=x a y ,又易知原抛物线过点(1,0)
∴1)521(02+-+=a ,解得41
-=a
∴原抛物线的解析式为:1)3(4
1
2+--=x y
评注:解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。

另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:①开口反向(或旋转1800),此时顶点坐标不变,只是a 反号;②两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 反号;③两抛物线关于y 轴对称,此时顶点关于y 轴对称; 探索与创新:
【问题】已知,抛物线22)1(t t x a y +--=(a 、t 是常数且不等于零)的顶点是A ,如图所示,抛物线122+-=x x y 的顶点是B 。

(1)判断点A 是否在抛物线122+-=x x y 上,为什么
(2)如果抛物线22)1(t t x a y +--=经过点B ,①求a 的值;②这条抛物线与x 轴的两个交点和它的顶点A 能否构成直角三角形若能,求出它的值;若不能,请说明理由。

解析:(1)抛物线22)1(t t x a y +--=的顶点A (1+t ,2t ),而1+=t x 当时,
222)11()1(12-+=-=+-=x x x x y =2t ,所以点A 在
抛物线122+-=x x y 上。

问题图
(2)①顶点B (1,0),0)11(22=+--t t a ,∵0≠t ,∴
1-=a ;②设抛物线22)1(t t x a y +--=与x 轴的另一交点为C ,∴B (1,0),C (12+t ,0),由抛物线的对称性可知,△ABC 为等腰直角三角形,过A 作AD ⊥x 轴于D ,则AD =BD 。

当点C 在点B 的左边时,)1(12+-=t t ,解得1-=t 或0=t (舍);当点C 在点B 的右边时,1)1(2-+=t t ,解得1=t 或0=t (舍)。

故1±=t 。

评注:若抛物线的顶点与x 轴两交点构成的三角形是直角三角形时,它必是等腰直角三角形,常用其“斜边上的中线(高)等于斜边的一半”这一关系求解有关问题。

跟踪训练: 一、选择题:
1、二次函数c bx ax y ++=2的图像如图所示,OA =OC ,则下列结论: ①abc <0; ②24b ac <;
③1-=-b ac ; ④02<+b a ;
⑤a
c
OB OA -=⋅;
⑥024<+-c b a 。

其中正确的有( )
A 、2个
B 、3个
C 、4个
D 、5个
2、二次函数c bx x y ++=2的图像向右平移3个单位,再向下平移2个
第1题图
第3题图
F
E
D C
B A
单位,得到函数图像的解析式为122+-=x x y ,则b 与c 分别等于( )
A 、6、4
B 、-8、14
C 、4、6
D 、-8、-14
3、如图,已知△ABC 中,BC =8,BC 边上的高4=h ,D 为BC 上一点,EF ∥BC 交AB 于E ,交AC 于F (EF 不过A 、B ),设E 到BC 的距离为x ,△DEF 的面积为y ,那么y 关于x 的函数图像大致是( )
3题图
A B C D
4、若抛物线2ax y =与四条直线1=x ,2=x ,1=y ,2=y 围成的正方
形有公共点,则a 的取值范围是( )
A 、41≤a ≤1
B 、21≤a ≤2
C 、21≤a ≤1
D 、41
≤a ≤2
5、如图,一次函数b kx y +=与二次函数c bx ax y ++=2的大致图像是( )
3题图
3题图
3题图
3题图
二、填空题:
1、若抛物线232)1(2-++-=m mx x m y 的最低点在x 轴上,则m 的值为 。

2、二次函数542+-=mx x y ,当2-<x 时,y 随x 的增大而减小;当
2->x 时,y 随x 的增大而增大。

则当1-=x 时,y 的值是 。

3、已知二次函数的图像过点(0,3),图像向左平移2个单位后的对称轴是y 轴,向下平移1个单位后与x 轴只有一个交点,则此二次函数的解析式为 。

4、已知抛物线n mx x m y +--=4)2(22的对称轴是2=x ,且它的最高点在直线12
1
+=x y 上,则它的顶点为 ,n = 。

三、解答题:
1、已知函数m x m x y +--=)2(2的图像过点(-1,15),设其图像与x 轴交于点A 、B ,点C 在图像上,且1=∆ABC S ,求点C 的坐标。

2、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程。

下面的二次函数图象(部分)刻画了该公司年初以来累积利润S (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系)。

根据图象提供的信息,解答下列问题:
(1)由已知图象上的三点坐标,求累积利润S (万元)与时间t (月)之间的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元;
(3)求第8个月公司所获利润是多少万元
O O
3、抛物线2
x y =,2
2
1x y -=和直线a x =(a >0)分别交于A 、B
两点,已知∠AOB =900。

(1)求过原点O ,把△AOB 面积两等分的直线解析式;
(2)为使直线b x y +=2与线段AB 相交,那么b 值应是怎样的范围才适合
4、如图,抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0)。

(1)求抛物线与x 轴的另一个交点B 的坐标;
(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;
(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧。

问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小若存在,求出点P 的坐标;若不存在,请说明理由。

参考答案
一、选择题:BCDDC 二、填空题:
1、2;
2、-7;
3、1)2(2
1
2+-=x y ;4、(2,2),2-=n ; 三、解答题:
1、C (23+,1)或(23-,1)、(3,-1)
2、(1)t t S 22
12
-=;(2)10月;(3)万元 3、(1)x y 4
2
=
;(2)-3≤b ≤0 4、(1)B (-3,0);(2)342++=x x y 或342---=x x y ; (3)在抛物线的对称轴上存在点P (-2,2
1
),使△APE 的周长最小。

相关文档
最新文档