何时获得最大利润的说课课件
合集下载
2.4.2何时获得最大利润上课课件

解:
假设销售单价为x(x≥30)元,销售利润为y元,则 y= -20(x-35)2+4500
y 4500 4420
若规定销售单价不得高于 33元,则如何提高售价,可 在半月内获得最大利润?
0
33
35
X
拓展
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如 果调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可 多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大? 分析:调整价格包括涨价和降价两种情况,我们先来看涨价的情况. (1)设每件涨价x元,则每星期卖出(300-10x)件,单件商品的利 润为(60+x - 40)元 y = (60+x)(300-10x) -40 (300-10x) 怎样确定x的 取值范围? 即
议一议
某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙 子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接 受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结 5个橙子.问增种多少棵橙子树,可以使橙子的总产量最多? 等量关系:橙子的总产量=每棵橙子树的产量×橙子树的数量
3. 二次函数y=-3(x+4)2-1的对称轴是 直线x=-4 ,顶点 坐标是 (-4 ,-1) 。当x= -4 时,函数有最 大 值,是 -1 。 4.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点 坐标是 (2 ,1) .当x= 2 时,函数有最 小 值,是 1 。
探究
服装厂生产某种品牌的T恤成本是每件10元。根据市场调 查,以单价13元批发给经销商,经销商愿意经销5000件, 并且表示单价每降低0.1元,愿意多经销500件。请你帮助 分析,厂家批发单价是多少时可以获利最多?
《何时获得最大利润》教学课件

2.6 何时获得最大利润
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
复习提问
1. 二次函数y=a(x-h)2+k的图象是一条抛物线, 二次函数 的图象是一条 直线x=h ,顶点坐标是 (h,k) . 它的对称轴是 直线
b 直 x =− 线 它的对称轴是 2a,顶点坐是
4ac −4a ;当
2 . 二次函数 二次函数y=ax2+bx+c的图象是一条抛物线 , 的图象是一条 2
2.某旅行社组团去外地旅游,30人起组团, 某旅行社组团去外地旅游, 人起组团 人起组团, 某旅行社组团去外地旅游 每人单价800元。旅行社对超过30人的团 元 旅行社对超过 人的团 每人单价 给予优惠,即旅行团每增加一人, 给予优惠,即旅行团每增加一人,每人的 单价就降低10元 单价就降低 元。当一个旅行团的人数是 多少时,旅行社可以获得最大营业额? 多少时,旅行社可以获得最大营业额?
解:设一个旅行团有x人时,旅行社营业额为y元. 设一个旅行团有x人时,旅行社营业额为y 则 y=〔 800-10(30y=〔 800-10(30-x) 〕·x =-10x2+1100x =-10(x-55)2+30250 10(x∴当x=55时,y最大=30250 x=55时 答:一个旅行团有55人时,旅行社可 一个旅行团有55人时, 55人时 获最大利润30250 30250元 获最大利润30250元
何时橙子总产量最大
某果园有100棵橙子树,每一棵树平均结600个橙子. 某果园有100棵橙子树,每一棵树平均结600个橙子. 100棵橙子树 600个橙子 现准备多种一些橙子树以提高产量, 现准备多种一些橙子树以提高产量,但是如果多种 树,那么树之间的距离和每一棵树所接受的阳光就 会减少.根据经验估计,每多种一棵树, 会减少.根据经验估计,每多种一棵树,平均每棵树 就会少结5个橙子. 就会少结5个橙子. 如果增种x棵树 果园橙子的总产量为y 棵树, 如果增种 棵树,果园橙子的总产量为 那么y与 之间的关系式为 之间的关系式为: 个,那么 与x之间的关系式为: 那么 y=(600-5x)(100+x )=-5x²+100x+60000
《何时获得最大利润》公开课课件

3 2
自学检测(8分钟)
2.某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提高 单价会导致销售量的减少,即销售单价每提高1元,销售量 相应减少20件.售价提高多少元时,才能在半个月内获得最 大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
学习目标(1分钟)
1、经历探索T恤衫销售中最大利润等问题的过程, 体会二次函数是一类最优化问题的数学模型。 2、能够分析和表示实际问题中变量之间的二次函 数关系。 3、能运用二次函数的知识求出实际问题的最大 (小)值。
自学指导(1分钟)
自学课本P64 -65 , 1.回顾下列公式完成(1)(2),(3),(4)题
; 所获利润可表示为: x 2.5500 20013.5 x 元 当销售单价为 9.25元时,可以获得最大利润,最大利润 .5. Y=-200x2+3700x-8000 是 9112 元
=-200(x2-18.5x)-8000 =-200(x2-18.5x+9.252-9.252)-8000 =-200(x-9.25)2+200×9.252-8000 =-200(x-9.25)2+9112.5
60300
60200 60100
O
x 51
x 10 2 15
20
x/棵
点拨2:
( 1)
(2)
当. <-1 =-1 6
>-1
自学检测(8分钟)
2.某商店购进一批单价为20元的日用品,如果以单价30 元销售,那么半个月内可以售出400件.根据销售经验,提高 单价会导致销售量的减少,即销售单价每提高1元,销售量 相应减少20件.售价提高多少元时,才能在半个月内获得最 大利润?
解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
学习目标(1分钟)
1、经历探索T恤衫销售中最大利润等问题的过程, 体会二次函数是一类最优化问题的数学模型。 2、能够分析和表示实际问题中变量之间的二次函 数关系。 3、能运用二次函数的知识求出实际问题的最大 (小)值。
自学指导(1分钟)
自学课本P64 -65 , 1.回顾下列公式完成(1)(2),(3),(4)题
; 所获利润可表示为: x 2.5500 20013.5 x 元 当销售单价为 9.25元时,可以获得最大利润,最大利润 .5. Y=-200x2+3700x-8000 是 9112 元
=-200(x2-18.5x)-8000 =-200(x2-18.5x+9.252-9.252)-8000 =-200(x-9.25)2+200×9.252-8000 =-200(x-9.25)2+9112.5
60300
60200 60100
O
x 51
x 10 2 15
20
x/棵
点拨2:
( 1)
(2)
当. <-1 =-1 6
>-1
何时获得最大利润的说课课件(ppt).pptx

所提出的问题由浅到难, 逐步深入,帮助学生自 主探索,明确最终的目
标。
(1)此题主要研究哪两 个变量之间的关系, 哪个是自变量,哪个 是因变量?
学生思考
分组讨论, 共同探究
(2)分析销售价与销 售量之间的关系,销 售量怎样表示(设销 售单价为X元)?
(5)获利最多是什 么意思?怎样转化为 数学方法解决?
四、教学过程设计
2、创设情景,揭示课题(2分钟)
某商店经营T恤衫,已 知成批购进时单价是2.5元. 根据市场调查,销售量与单 价满足如下关系:在一段时 间内,单价是13.5元时,销售 量是500件,而单价每降低1 元,就可以多售出200件.请 你帮助分析,销售单价是多 少时,可以获利最多?
创设销售中求最 大利润的情景, 揭示本节要探索
一、教材分析
2、教学目标 (过程与方法)
(1)通过教师的提问,引导学生自主探讨, 用观察法、归纳法、图像法,逐步分析二 次函数图象的顶点坐标与函数最值的关系, 让学生懂得利用二次函数知识解决实际问 题。
(2)通过课堂的训练,让学生懂得求解二 次函数的一般方法,再结合生活中例子, 引导学生抽象出二次函数的数学模型,让 学生体会函数的思想方法和数形结合的思 想。
教材分析
教法学法
学情分析
说
教学过程
板书设计
一、教材分析
一、教材分析
1、本节课在教材中的地位作用:
(1)章节地位:“何时获得最大利润”是北师大版九年级 下册第二章《二次函数》第六节的内容,选自中学数学中数 与代数这一大类。
(2)章节作用:在本章前,教材通过探索变量之间关系, 探究一次函数和反比例函数,已经逐渐让学生建立了函数的 基础知识,初步积累了研究函数性质的方法及用函数观点处 理实际问题的经验.这节课是学生在巩固二次函数的图象和 性质的基础上,进一步让学生利用二次函数知识解决实际问 题中(通常自变量取值受限制)的最大值。为学生在高中阶 段进一步学习二次函数、二次方程、二次不等式等知识奠定 基础。
何时获得最大利润--北师大版-优质课件

小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。也体现了“用完即走” 的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。
; https:/// 婚纱影楼小程序 婚纱摄影小程序开发 影楼小程序开发 jdh04lcg 对于开发者而言,小程序开发门槛相对较低,难度不及APP,能够满足简单的基础应用,适合生活服务类线下商铺以及非刚需低频应用的转换。
宵华道。“他武艺也不错!”七王爷更担忧了,“你说他会不会直接跳出来,把我打一顿,把你抢走?”“那他家人要受连累了。”蝶宵华忍住 笑。第九十六章 卖身进京纵强贼(2) “他是威胁过我‘流血百步’的哎!早就不怕家人受连累了!”七王爷越想越觉得是这么个理儿,“他被 逼到份儿上,是啥都干得出来的!我逼他太过了是不是?他弟弟先逃亡,准占了个山头,准备接应他!他抢了你,就流亡去了!儿女情事演变为 流寇之乱……皇兄非杀了我不可。”“不至于此。”蝶宵华安慰七王爷。“你知道?”七王爷鼓着眼睛问,“你能猜出他肚子里卖的什么主意?” 蝶宵华抿了抿嘴。七王爷把抿嘴的动作理解为“我也不知道”,说得更来劲了:“咱不能让他变流寇去!他不信我,你的话总归听的,你可得帮 我好好解释解释,我是——嗳哟!”望着前面,眼都直了。前头,官道转弯处,林木生得密密的,昨儿大雪积在上头,它们冻得似凝住了,一只 雀儿也不飞。林脚下,骑匹枣骝俊马,头发墨黑、腰杆笔直、神情凛然不可侵的,不正是苏家明远?七王爷僵住了,像只看见了老虎的兔子,耳 朵贴着脑袋,贴地缩成个毛团儿,动也不敢动。“王爷?”侍卫上前催促他赶路。“咴!”七王爷瞪了侍卫一眼,那意思是“没见眼前是只老虎? 当我跟你们一样傻大胆儿不怕死?”蝶宵华也催他:“老这么僵着不是办法呀。”确实不是个办法,七王爷硬着头皮,催马向前。他骑的是匹黄 膘马,战场上名马之后,受过大将的亲手调教,一点不受明远气场影响。七王爷叫它走,它就走,步态很稳。七王爷恨不得自己的马儿别这么镇 定这么沉稳,就掀蹄子跑掉好了嘛!驮着他跑掉,他就可以说是马儿胆小,而不是他胆小,嗳嗳……话说这不叫胆小,叫谨慎吧?就没人担心在 他跟明远之间的短短路上,他走着走着,“咚”,跌进陷马坑里,直接摔死?或者坑里插满利刃,摔不死也扎死?或者利刃上淬毒,扎不死也毒 死?“王爷,”苏明远开口,不满道,“你一定要走这么慢吗?”七王爷兜住马,怒道:“有本事你过来!”明远嘴角一斜,不屑的“切”了一 声。他嘴唇生得有男子气概,不屑都不屑得好看,七王爷当场心头小鹿乱撞。明远纵缰过来。十来丈的路,骏马几步跑到,没掉进什么陷坑里。 “没陷阱,那就是动硬的了!”七王爷飞快的想,“他是要当面揍我,然后抢人!”这个想法太可怕了,七王爷顿时吓得要双手抱头,遛之大吉。 可是明远纵马过来的样子,怎么就能这么帅呢……七王爷咽了口唾沫,站定了。这么帅的人冲他跑过来,他可不能逃!挨揍什么的,回头再说。 他先大饱了眼福才是真的。这就是七王爷的坚持,嗯!明远勒马在他马边:“我来了。”“啊。”“回头挨揍”的时
26.3 《何时获得最大利润》《2最大利润与二次函数》课件(人教新课标九年级下)ppt--初中数学

水产品何时利润最大
w4.某商店销售一种销售成本为40元的水产品,若按50元 /千克销售,一月可售出5000千克,销售价每涨价1元,月 销售量就减少10千克.
w(1)写出售价x(元/千克)与月销售利润y(元)之间的函 数关系式; w(2)当销售单价定为55元时,计算出月销售量和销售利 润; w(3)商店想在月销售成本不超过10000元的情况下,使得 月销售利润达到8000元,销售单价应定为多少?
二次函数
1. 最大利润与二次函数
日用品何时获得最大利润
w1.某商店购进一批单价为20元的日用品,如果以单 价30元销售,那么半个月内可以售出400件.根据销售 经验,提高单价会导致销售量的减少,即销售单价每 提高1元,销售量相应减少20件.如何提高售价,才能 在半个月内获得最大利润? w设销售价为x元(x≥30元), 利润为y元,则
化工材料何时利润最大
w5.某化工材料经销公司购进了一种化工原料共700千 克,已知进价为30元/千克,物价部门规定其销售价在,日均销 售60千克.价格每降低1元,平均每天多售出2千克.在销 售过程中,每天还要支出其它费用500元(天数不足一天 时,按整天计算). w求销售单价为x(元/千克)与日均获利y(元)之间的函数 关系式,并注明x的取值范围(提示:日均获利=每千克获利 与×均销售量-其它费用)和获得的最大利润.
纯牛奶何时利润最大
w3.某商场销售某种品牌的纯牛奶,已知进价为每箱40 元,生产厂家要求每箱售价在40元~70元之间.市场调查 发现:若每箱发50元销售,平均每天可售出90箱,价格每 降低1元,平均每天多销售3箱;价格每升高1元,平均每天 少销售3箱. w(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数 关系式; w(2)每箱定价多少元时,才能使平均每天的利润最大?最 大利润是多少?
时何时获得最大利润课件

VS
应收账款管理
通过制定合理的信用政策、定期对账、及 时催收等手段,降低应收账款的风险和成 本。
05
实际案例分析
案例一:通过提高销售收入获得最大利润
总结词
在销售收入方面,企业可以通过扩大销售量或提高产品单价来增加销售收入,从而获得更大的利润。
详细描述
某小型茶叶公司通过推出新型保健茶,在市场上受到消费者欢迎,销售量迅速增长。为了满足市场需 求,公司决定扩大生产规模。通过投入更多的广告宣传,增加销售渠道,提高产品知名度等措施,该 公司成功地扩大了销售量,并获得了更多的利润。
产生的净收入或净支出。
利润的衡量指标
毛利率
指企业销售收入中毛利润所占 的比例。
净利率
指企业净利润占销售收入的比例。
投资回报率
指企业投资收益与投资总额的 比例。
总资产收益率
指企业净利润与总资产平均余 额的比例。
03
何时获得最大利润
边际贡献与利润的关系
边际贡 献
边际贡献是指销售收入减去变动成本 后的余高效率和降低成本,以实现最
大利润。
对未来的展望
随着市场竞争的加剧和市场变化 的加速,企业需要不断创新和进 步,以适应未来的市场变化和消
费者需求。
企业需要关注新技术和新模式的 发展,积极探索和创新经营模式 和商业模式,以提高企业的竞争
力和盈利能力。
企业需要加强人才培养和管理创 新,提高员工素质和管理水平,
案例四
总结词
在库存与应收账款方面,企业应合理安排库存结构、加强应收账款管理,提高资金使用效率,从而获得更大的利 润。
详细描述
某大型电子产品制造商通过对其库存结构进行调整,减少了库存积压和滞销的情况。同时,加强对应收账款的管 理,缩短回款周期。这些措施使该企业在保持销售收入不变的情况下,减少了资金占用和坏账风险,提高了资金 使用效率,从而获得了更大的利润。
最新何时获得最大利润的说课课件修改2(ppt)

10000元是平均每月销售的最大利润吗?如果是说明 理由,如果不是,你能不能帮商场经营者定个合理的 销售价,使这种台灯的销售利润达到最大?
解:设台灯售价涨了x元,销售利润为y元
y ( 4 x 0 3 ) 6 0 ( 1 0 x )0 0 ( 0 x 6 )0
教学过程设计
3、应用新知 解决问题(15分钟)
种多少棵橙子树才能使果园橙子的总产量最高?
解:设果园增种x棵树,果园橙子的总产量 为y个,那么y与x之间的关系式为:
y/个
60600 60500 60400 60300
y(6005x)(100x) 5x2 100x60000
60200 60100
60000
(1)利用函数图象描述橙子的总产 量与增种橙子树的棵数之间的关系。
何时获得最大利润的说 课课件修改2(ppt)
说课 《何时获得最大利润》
教教 教教教板 教
学 目
学 重 难
法 与 学
学 程
书 设
学 设 计 理
材
标
点
法
序
计
念
教材 教学目标 教学重难点 教法学法 教学程序
三.教学重难点
教学难点
难点成因
●二次函数本身就有高度的抽象性,又有着不同 的表达方式,而实际应用问题又对学生的函数建 模能力提出了较高的要求
x/棵
O 5 10 15 20
(2)增种多少棵橙子树,可以使
橙子的总产量在60400个以上?
教法:引导探究法、情境设置法
●采取“趣、引思、精讲、训练”的方法引发学生 的主动思考,合作探究。
学法:自主学习、小组讨论法 ●学生在“主动参与、乐于研究、归纳小结”的学 习方法中获得知识,形成技能。
解:设台灯售价涨了x元,销售利润为y元
y ( 4 x 0 3 ) 6 0 ( 1 0 x )0 0 ( 0 x 6 )0
教学过程设计
3、应用新知 解决问题(15分钟)
种多少棵橙子树才能使果园橙子的总产量最高?
解:设果园增种x棵树,果园橙子的总产量 为y个,那么y与x之间的关系式为:
y/个
60600 60500 60400 60300
y(6005x)(100x) 5x2 100x60000
60200 60100
60000
(1)利用函数图象描述橙子的总产 量与增种橙子树的棵数之间的关系。
何时获得最大利润的说 课课件修改2(ppt)
说课 《何时获得最大利润》
教教 教教教板 教
学 目
学 重 难
法 与 学
学 程
书 设
学 设 计 理
材
标
点
法
序
计
念
教材 教学目标 教学重难点 教法学法 教学程序
三.教学重难点
教学难点
难点成因
●二次函数本身就有高度的抽象性,又有着不同 的表达方式,而实际应用问题又对学生的函数建 模能力提出了较高的要求
x/棵
O 5 10 15 20
(2)增种多少棵橙子树,可以使
橙子的总产量在60400个以上?
教法:引导探究法、情境设置法
●采取“趣、引思、精讲、训练”的方法引发学生 的主动思考,合作探究。
学法:自主学习、小组讨论法 ●学生在“主动参与、乐于研究、归纳小结”的学 习方法中获得知识,形成技能。