高考数学函数与导数相结合压轴题精选(含具体解答)

合集下载

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案)

函数与导数1.已知函数 f(x) 4x 3 3tx 2 6tx t 1,x R ,其中 t R .(I)当t 1时,求曲线y f (x)在点(0, f (0))处的切线方程; (n)当t 0时,求f (x)的单调区间;(川)证明:对任意的t (0,), f(x)在区间(0,1)内均存在零点.【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。

(I)解:当 t 1 时,f(x) 4x 3 3x 26x, f (0) 0, f (x) 12x 2 6x 6f (0)6.所以曲线y f (x)在点(0, f(0))处的切线方程为y 6x.(n)解:f (x) 12x 2 6tx 6t 2,令 f (x) 0,解得 xt 或 x -.2因为t 0,以下分两种情况讨论:(1)若t 0,则- t,当x 变化时,f (x), f(x)的变化情况如下表:所以,f(x)的单调递增区间是,|;f(x)的单调递减区间是 屮⑵若t则t ,当x变化时,f(x)f(x)的变化情况如下表:所以,f(x)的单调递增区间是 ,t ,丄, ;f(x)的单调递减区间是 t,-2 2(川)证明:由(n)可知,当t 0时,f(x)在0,1内的单调递减,在 -, 内单调2 2递增,以下分两种情况讨论:(1)当-1即t 2时,f (x)在(0,1)内单调递减,2f (0) t 1 0, f (1) 6t 2 4t 3 6 4 4 2 3 0.所以对任意t [2, ), f(x)在区间(0,1 )内均存在零点。

t (0,1], f17t 3t 17t 30. 244所以f(x)在-,12 内存在零点。

t若 t (1,2), f -7t 3t 1厶3 1 0244f(0) t 1所以f(x)在02所以,对任意t (0,2), f(x)在区间(0,1)内均存在零点。

2020高考数学《导数压轴题》

2020高考数学《导数压轴题》

导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)min=h(ln2)=2﹣2ln2.∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(x>0)处的切线经过原点,则有;(2)证明:假设曲线y=f(x)在点(x,f(x))即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。

历年高考数学导数压轴题

历年高考数学导数压轴题

历年高考数学导数压轴题
1. 2017年高考数学导数题:
①已知函数f(x)的导数是g(x),若g(x)的导数等于函数f(x)的二阶导数,求f(x)的表达式。

解:令数列{y,y’,y”}表示函数f(x)的值与其一阶导数与二阶导数,
令数列{u,u’}表示函数g(x)的值与其一阶导数,那么依据题意有:
u’=y”,u=y’,由于积分的连续性,可得函数f(x)的表达式:f(x)=xu-
1/2∫udu+φ(x),其中φ(x)是任意可导函数。

2. 2018年高考数学导数题:
①已知函数f(x)在(-1,1)上有关于x的二阶导数存在且满足f'(-1)=f'(1),
求f(x)的一般形式。

解:由题意可知f'(-1)=f'(1),即函数f(x)在(-1,1)处有极值,f”(x)存在于(-1,1),根据可导多次函数的性质,在(-1,1)处函数f(x)可表示为:
f(x)=ax^3+bx^2+cx+d,其中a、b、c、d均为常数,求出常数a、b、c
值可得f(x)的一般形式。

3. 2019年高考数学导数题:
①已知函数f(x)的导数为2x-1,求f(x)的一般形式;
解:令y=f(x),则有y’=2x-1,由积分的连续性,可得y=x^2-2ln|x|+C,其中C为任意常数,即f(x)=x^2-2ln|x|+C。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

导数压轴小题精选80题(含答案解析)

导数压轴小题精选80题(含答案解析)

专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。

2017-2019年高考真题导数压轴题全集(含详细解析)

2017-2019年高考真题导数压轴题全集(含详细解析)

2017-2019年高考真题导数压轴题全集(含详细解析)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e ∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M …. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<,()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-. (1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a .19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 20.(2018•天津)已知函数()x f x a =,()log a g x x =,其中1a >. (Ⅰ)求函数()()h x f x xlna =-的单调区间;(Ⅱ)若曲线()y f x =在点1(x ,1())f x 处的切线与曲线()y g x =在点2(x ,2())g x 处的切线平行,证明122()lnlnax g x lna+=-; (Ⅲ)证明当1ea e …时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线. 21.(2018•江苏)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x R ∈,满足00()()f x g x =且00()()f x g x '=',则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()g x lnx =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,()xbe g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 22.(2018•新课标Ⅱ)已知函数321()(1)3f x x a x x =-++.(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点. 23.(2018•新课标Ⅰ)已知函数1()f x x alnx x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.24.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a …时,讨论方程()0f x =实根的个数. 25.(2017•新课标Ⅰ)已知函数2()()x x f x e e a a x =--. (1)讨论()f x 的单调性; (2)若()0f x …,求a 的取值范围.26.(2017•天津)设a Z ∈,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设[1m ∈,00)(x x ⋃,2],函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且[1pq∈,00)(x x ⋃,2],满足041||p x q Aq-…. 27.(2017•新课标Ⅱ)设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x …时,()1f x ax +…,求a 的取值范围. 28.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值.29.(2017•天津)设a ,b R ∈,||1a ….已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和x y e =的图象在公共点0(x ,0)y 处有相同的切线, ()i 求证:()f x 在0x x =处的导数等于0;()ii 若关于x 的不等式()x g x e …在区间0[1x -,01]x +上恒成立,求b 的取值范围.30.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x 的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.31.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.32.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x …. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.33.(2017•浙江)已知函数1()(()2x f x x e x -=….(1)求()f x 的导函数;(2)求()f x 在区间1[2,)+∞上的取值范围.34.(2017•新课标Ⅲ)已知函数2()(21)f x lnx ax a x =+++. (1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--…. 35.(2017•新课标Ⅰ)已知函数2()(2)x x f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 36.(2017•新课标Ⅲ)已知函数()1f x x alnx =--. (1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222n m ++⋯+<,求m 的最小值.37.(2017•山东)已知函数3211()32f x x ax =-,a R ∈,(1)当2a =时,求曲线()y f x =在点(3,f (3))处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.38.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 39.(2016•天津)设函数3()f x x ax b =--,x R ∈,其中a ,b R ∈. (1)求()f x 的单调区间;(2)若()f x 存在极值点0x ,且10()()f x f x =,其中10x x ≠,求证:1020x x +=; (3)设0a >,函数()|()|g x f x =,求证:()g x 在区间[1-,1]上的最大值不小于14. 40.(2016•新课标Ⅲ)设函数()1f x lnx x =-+. (1)讨论()f x 的单调性; (2)证明当(1,)x ∈+∞时,11x x lnx-<<; (3)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->. 41.(2016•北京)设函数32()f x x ax bx c =+++. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (3)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件.42.(2016•新课标Ⅲ)设函数()cos2(1)(cos 1)f x a x a x =+-+,其中0a >,记|()|f x 的最大值为A .(Ⅰ)求()f x '; (Ⅱ)求A ;(Ⅲ)证明:|()|2f x A '….43.(2016•山东)已知221()()x f x a x lnx x -=-+,a R ∈. ()I 讨论()f x 的单调性;()II 当1a =时,证明3()()2f x f x >'+对于任意的[1x ∈,2]成立. 44.(2016•四川)设函数2()f x ax a lnx =--,1()x eg x x e=-,其中a R ∈, 2.718e ⋯=为自然对数的底数. (1)讨论()f x 的单调性; (2)证明:当1x >时,()0g x >;(3)确定a 的所有可能取值,使得()()f x g x >在区间(1,)+∞内恒成立. 45.(2016•江苏)已知函数()(0x x f x a b a =+>,0b >,1a ≠,1)b ≠. (1)设2a =,12b =. ①求方程()2f x =的根;②若对于任意x R ∈,不等式(2)()6f x mf x -…恒成立,求实数m 的最大值; (2)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 46.(2016•新课标Ⅱ)已知函数()(1)(1)f x x lnx a x =+--. (Ⅰ)当4a =时,求曲线()y f x =在(1,f (1))处的切线方程; (Ⅱ)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围. 47.(2016•新课标Ⅱ)(Ⅰ)讨论函数2()2xx f x e x -=+的单调性,并证明当0x >时,(2)20x x e x -++>;(Ⅱ)证明:当[0a ∈,1)时,函数2()(0)x e ax a g x x x--=>有最小值.设()g x 的最小值为h (a ),求函数h (a )的值域.48.(2016•北京)设函数()a x f x xe bx -=+,曲线()y f x =在点(2,f (2))处的切线方程为(1)4y e x =-+, (Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.49.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<. 50.(2016•新课标Ⅰ)已知函数2()(2)(1)x f x x e a x =-+-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.2017-2019年高考真题导数压轴题全集(含详细解析)参考答案与试题解析一.解答题(共50小题)1.(2019•全国)已知函数2())f x x ax -. (1)当1a =时,求()f x 的单调区间;(2)若()f x 在区间[0,2]的最小值为23-,求a .【解答】解:(1)当1a =时,2())f x x x =-, 则5322()(0)f x x x x '=-…,令()0f x '=,则35x =, ∴当305x <<时,()0f x '<;当35x >时,()0f x '>. ()f x ∴的单调递减区间为3(0,)5,单调递增区间为3(,)5+∞;(2)312253()(02)22f x x ax x '=-剟,令()0f x '=,则35a x =, 当0a …时,()0f x '>,()f x ∴在[0,2]上单调递增,∴2()(0)03min f x f ==≠-,不符合条件; 当1003a <…时,3025a <…,则当305a x <<时,()0f x '<;当325ax <<时,()0f x >,()f x ∴在3(0,)5a 上单调递减,在3(,2)5a上单调递增,∴53223332()()()()5553min a a a f x f a ==-=-,53a ∴=,符合条件;当103a >时,1023>,则当02x <<时,()0f x '<,()f x ∴在(0,2)上单调递减,∴2()(2)2)3min f x f a ==-=-,2a ∴=,不符合条件.()f x ∴在区间[0,2]的最小值为23-,a 的值为53.2.(2019•新课标Ⅲ)已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.【解答】解:(1)2()626()3af x x ax x x '=-=-.令()6()03a f x x x '=-=,解得0x =,或3a.①0a =时,2()60f x x '=…,函数()f x 在R 上单调递增. ②0a >时,函数()f x 在(,0)-∞,(3a,)+∞上单调递增,在(0,)3a 上单调递减.③0a <时,函数()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减.(2)由(1)可得:①0a …时,函数()f x 在[0,1]上单调递增.则(0)1f b ==-,f (1)21a b =-+=,解得1b =-,0a =,满足条件.②0a >时,函数()f x 在[0,]3a上单调递减.13a…,即3a …时,函数()f x 在[0,1]上单调递减.则(0)1f b ==,f (1)21a b =-+=-,解得1b =,4a =,满足条件. ③013a <<,即03a <<时,函数()f x 在[0,)3a 上单调递减,在(3a,1]上单调递增.则最小值32()2()()1333a a af a b =⨯-⨯+=-,化为:3127a b -+=-.而(0)f b =,f (1)2a b =-+,∴最大值为b 或2a b -+.若:3127a b -+=-,1b =,解得3a =,矛盾,舍去.若:3127a b -+=-,21a b -+=,解得a =±0,矛盾,舍去.综上可得:存在a ,b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1.a ,b 的所有值为:01a b =⎧⎨=-⎩,或41a b =⎧⎨=⎩. 3.(2019•新课标Ⅲ)已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当03a <<时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.【解答】解:(1)2()622(3)f x x ax x x a '=-=-, 令()0f x '=,得0x =或3ax =.若0a >,则当(x ∈-∞,0)(,)3a +∞时,()0f x '>;当(0,)3ax ∈时,()0f x '<. 故()f x 在(,0)-∞,(,)3a+∞上单调递增,在(0,)3a 上单调递减;若0a =,()f x 在(,)-∞+∞上单调递增;若0a <,则当(x ∈-∞,)(03a ⋃,)+∞时,()0f x '>;当(3ax ∈,0)时,()0f x '<.故()f x 在(,)3a -∞,(0,)+∞上单调递增,在(3a,0)上单调递减;(2)当03a <<时,由(1)知,()f x 在(0,)3a 上单调递减,在(3a,1)上单调递增,()f x ∴在区间[0,1]的最小值为3()2327a a f =-+,最大值为(0)2f =或f (1)4a =-.于是,3227a m =-+,4,022,23a a M a -<<⎧=⎨<⎩….332,0227,2327a a a M m a a ⎧-+<<⎪⎪∴-=⎨⎪<⎪⎩…. 当02a <<时,可知3227a a -+单调递减,M m ∴-的取值范围是8(,2)27;当23a <…时,327a 单调递增,M m ∴-的取值范围是8[27,1).综上,M m -的取值范围8[27,2).4.(2019•浙江)已知实数0a ≠,设函数()f x alnx =0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()f x …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.【解答】解:(1)当34a =-时,3()4f x lnx =-+0x >,3()4f x x '=-+=, ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a…,得0a <…,当04a <…时,()f x…20lnx -…,令1t a=,则t …设()22g t t lnx =-,t …,则2()2g t t lnx=--,()i 当1[7x ∈,)+∞则()2g x g lnx =…,记()p x lnx =,17x …,则1()p x x '=-==,列表讨论:()p x p ∴…(1)0=,()2()2()0g t g p x p x ∴==厖.()ii 当211[,)7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,1]7, 则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()()7q x q ∴…,由()i 得11()()77q p p =<(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e ∈,)+∞,均有()f x …,综上所述,所求的a 的取值范围是(0. 5.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解答】证明:(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-, y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---=-=, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.6.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <…,1c =,且()f x 的极大值为M ,求证:427M ….【解答】解:(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---. 令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <…,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+….令2()3(22)0f x x b x b '=-++=.解得:11(0,]3x =,2x =.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,可得:2111[(22)]3x b x b =+-,1111()()(1)M f x x x b x ==--222211111111(22)1()()()()[(21)2]33b x b x b x x x b x b x b x b +-=--=--=--+2222111(22)11[(21)2][(222)]339b x b b b x b b b x b b +-=--+=-+-++, 22132222()022b b b -+-=---<,M ∴在1(0x ∈,1]3上单调递减,2221222524()932727b b b b M b b -+-+-∴++=剟. 427M ∴…. 7.(2019•天津)设函数()(1)x f x lnx a x e =--,其中a R ∈. (Ⅰ)若0a …,讨论()f x 的单调性; (Ⅱ)若10a e<<, ()i 证明()f x 恰有两个零点;()ii 设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->.【解答】()I 解:211()[(1)]x x xax e f x ae a x e x x-'=-+-=,(0,)x ∈+∞.0a …时,()0f x '>,∴函数()f x 在(0,)x ∈+∞上单调递增.()II 证明:()i 由()I 可知:21()xax e f x x-'=,(0,)x ∈+∞. 令2()1x g x ax e =-,10a e<<,可知:()g x 在(0,)x ∈+∞上单调递减,又g (1)10ae =->.且221111()1()1()0g ln a ln ln a a a a =-=-<,()g x ∴存在唯一解01(1,)x ln a∈.即函数()f x 在0(0,)x 上单调递增,在0(x ,)+∞单调递减. 0x ∴是函数()f x 的唯一极值点.令()1h x lnx x =-+,(0)x >,1()xh x x-'=, 可得()h x h …(1)0=,1x ∴>时,1lnx x <-.111111()()(1)()(1)0ln a f ln ln ln a ln e ln ln ln a a a a a=--=--<.0()f x f >(1)0=.∴函数()f x 在0(x ,)+∞上存在唯一零点.又函数()f x 在0(0,)x 上有唯一零点1. 因此函数()f x 恰有两个零点;()ii 由题意可得:0()0f x '=,1()0f x =,即0201x ax e =,111(1)x lnx a x e =-, 1011201x x x lnx ex --∴=,即1020111x x x lnx e x -=-, 1x >,可得1lnx x <-.又101x x >>, 故10220101(1)1x x x x ex x --<=-,取对数可得:100022(1)x x lnx x -<<-, 化为:0132x x ->.8.(2019•天津)设函数()cos x f x e x =,()g x 为()f x 的导函数. (Ⅰ)求()f x 的单调区间; (Ⅱ)当[4x π∈,]2π时,证明()()()02f xg x x π+-…; (Ⅲ)设n x 为函数()()1u x f x =-在区间(24n ππ+,2)2n ππ+内的零点,其中n N ∈,证明20022sin cos n n e n x x x πππ-+-<-.【解答】(Ⅰ)解:由已知,()(cos sin )x f x e x x '=-,因此, 当(24x k ππ∈+,52)()4k k Z ππ+∈时,有sin cos x x >,得()0f x '<,()f x 单调递减;当3(24x k ππ∈-,2)()4k k Z ππ+∈时,有sin cos x x <,得()0f x '>,()f x 单调递增. ()f x ∴的单调增区间为3[24k ππ-,2]()4k k Z ππ+∈,单调减区间为[,52]()4k k Z ππ+∈; (Ⅱ)证明:记()()()()2h x f x g x x π=+-,依题意及(Ⅰ), 有()(cos sin )x g x e x x =-,从而()()()()()(1)()()022h x f x g x x g x g x x ππ'='+'-+-='-<.因此,()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==….∴当[4x π∈,]2π时,()()()02f xg x x π+-…; (Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos 1n x n e x =.记2n n y x n π=-,则(,)42n y ππ∈,且22()cos cos(2)()n n y x n n n n n f y e y e x n e x N πππ--==-=∈.由20()1()n n f y e f y π-==…及(Ⅰ),得0n y y …,由(Ⅱ)知,当(4x π∈,)2π时,()0g x '<,()g x ∴在[4π,]2π上为减函数,因此,0()()()04n g y g y g π<=…, 又由(Ⅱ)知,()()()02n n n f y g y y π+-…,故0222200000()2()()()sin cos (sin cos )n n n n n n y n n f y e e e e y g y g y g y x x e y y πππππ------=--=<--剟. 20022sin cos n n e n x x x πππ-∴+-<-.9.(2019•新课标Ⅰ)已知函数()2sin cos f x x x x x =--,()f x '为()f x 的导数. (1)证明:()f x '在区间(0,)π存在唯一零点; (2)若[0x ∈,]π时,()f x ax …,求a 的取值范围. 【解答】解:(1)证明:()2sin cos f x x x x x =--,()2cos cos sin 1cos sin 1f x x x x x x x x ∴'=-+-=+-,令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++=,当(0,)2x π∈时,cos 0x x >,当(,)2x ππ∈时,cos 0x x <,∴当2x π=时,极大值为()1022g ππ=->, 又(0)0g =,()2g π=-,()g x ∴在(0,)π上有唯一零点,即()f x '在(0,)π上有唯一零点;(2)由(1)知,()f x '在(0,)π上有唯一零点0x , 使得0()0f x '=,且()f x '在0(0,)x 为正,在0(x ,)π为负, ()f x ∴在[0,0]x 递增,在0[x ,]π递减,结合(0)0f =,()0f π=,可知()f x 在[0,]π上非负, 令()h x ax =,()()f x h x …,根据()f x 和()h x 的图象可知,0a ∴…, a ∴的取值范围是(-∞,0].10.(2019•新课标Ⅱ)已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线.【解答】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞; 212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得,又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,1)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.11.(2019•北京)已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2x ∈-,4]时,求证:6()x f x x -剟;(Ⅲ)设()|()()|()F x f x x a a R =-+∈,记()F x 在区间[2-,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【解答】解:(Ⅰ)23()214f x x x '=-+, 由()1f x '=得8()03x x -=,得1280,3x x ==. 又(0)0f =,88()327f =,y x ∴=和88273y x -=-,即y x =和6427y x =-; (Ⅱ)证明:欲证6()x f x x -剟, 只需证6()0f x x --剟, 令321()()4g x f x x x x =-=-,[2x ∈-,4], 则2338()2()443g x x x x x '=-=-, 可知()g x '在[2-,0]为正,在8(0,)3为负,在8[,4]3为正,()g x ∴在[2-,0]递增,在[0,8]3递减,在8[,4]3递增,又(2)6g -=-,(0)0g =,864()6327g =->-,g (4)0=,6()0g x ∴-剟, 6()x f x x ∴-剟;(Ⅲ)由(Ⅱ)可得, ()|()()|F x f x x a =-+ |()|f x x a =-- |()|g x a =-在[2-,4]上,6()0g x -剟, 令()t g x =,()||h t t a =-,则问题转化为当[6t ∈-,0]时,()h t 的最大值M (a )的问题了,①当3a -…时,M (a )(0)||h a a ===-,此时3a -…,当3a =-时,M (a )取得最小值3; ②当3a -…时,M (a )(6)|6||6|h a a =-=--=+,63a +…,M ∴(a )6a =+,也是3a =-时,M (a )最小为3. 综上,当M (a )取最小值时a 的值为3-.12.(2019•新课标Ⅰ)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解答】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++, 令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立,()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+, 由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,()sin (1)1(1)130f x x ln x ln ln π=-+<-+<-<,因此函数()f x 在[π,)+∞上无零点.综上,()f x 有且仅有2个零点.13.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-…,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意;若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.14.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解答】解:(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-…,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意; 若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.15.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-. (1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解答】(1)证明:当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-. ()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x ''…,(0,)x ∈+∞时,()0f x ''… ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=…,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a …,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=…,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.16.(2018•新课标Ⅰ)已知函数()1x f x ae lnx =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1a e…时,()0f x ….【解答】解:(1)函数()1x f x ae lnx =--. 0x ∴>,1()x f x ae x'=-, 2x =是()f x 的极值点,f ∴'(2)2102ae =-=,解得212a e=, 21()12x f x e lnx e ∴=--,211()2x f x e e x∴'=-,当02x <<时,()0f x '<,当2x >时,()0f x '>, ()f x ∴在(0,2)单调递减,在(2,)+∞单调递增.(2)证明:当1a e …时,()1x e f x lnx e --…,设()1x e g x lnx e =--,则1()x e g x e x '=-,由1()0x e g x e x'=-=,得1x =,当01x <<时,()0g x '<, 当1x >时,()0g x '>, 1x ∴=是()g x 的最小值点,故当0x >时,()g x g …(1)0=,∴当1a e…时,()0f x ….17.(2018•新课标Ⅲ)已知函数21()xax x f x e +-=.(1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a …时,()0f x e +….【解答】解:(1)22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. (0)2f ∴'=,即曲线()y f x =在点(0,1)-处的切线斜率2k =,∴曲线()y f x =在点(0,1)-处的切线方程方程为(1)2y x --=.即210x y --=为所求.(2)证明:函数()f x 的定义域为:R ,可得22(21)(1)(1)(2)()()x x x xax e ax x e ax x f x e e +-+-+-'==-. 令()0f x '=,可得1212,0x x a==-<,当1(,)x a ∈-∞-时,()0f x '<,1(,2)x a ∈-时,()0f x '>,(2,)x ∈+∞时,()0f x '<.()f x ∴在1(,)a -∞-,(2,)+∞递减,在1(a-,2)递增,注意到1a …时,函数2()1g x ax x =+-在(2,)+∞单调递增,且g (2)410a =+> 函数()f x 的图象如下:1a …,∴1(0,1]a∈,则11()a f e e a -=--…,1()aminf x e e ∴=--…,∴当1a …时,()0f x e +….18.(2018•新课标Ⅱ)已知函数2()x f x e ax =-.(1)若1a =,证明:当0x …时,()1f x …; (2)若()f x 在(0,)+∞只有一个零点,求a . 【解答】证明:(1)当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-=->…, ()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=…, 解:(2)方法一、,()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x=的图象在(0,)+∞只有一个交点.3(2)()x e x G x x-'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a …时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>, ()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e ==-,(0)x …. 当h (2)0<时,即24e a >,由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->.()h x 在(0,)+∞有2个零点当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.19.(2018•浙江)已知函数()f x lnx .(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()882f x f x ln +>-;(Ⅱ)若342a ln -…,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点. 【解答】证明:(Ⅰ)函数()f x lnx =, 0x ∴>,1()f x x'=-, ()f x 在1x x =,212()x x x ≠处导数相等,∴1211x x =, 12x x ≠,∴12=,12x x ≠,12256x x ∴>,由题意得121212()()()f x f x lnx lnx ln x x +=,设()g x lnx,则1()4)4g x x'=, ∴列表讨论:()g x ∴在[256,)+∞上单调递增, 12()(256)882g x x g ln ∴>=-, 12()()882f x f x ln ∴+>-.(Ⅱ)令(||)a k m e -+=,2||1()1a n k+=+, 则()||0f m km a a k k a -->+--…,。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

压轴题04 函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2x x>,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.17.(2023·山东德州·统考一模)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121nk n k=-<<+∑,其中*N n ∈且2n ≥.18.(2023·江西吉安·统考一模)已知函数()()ln ,e e x xf x xg x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭19.(2023·河南·郑州一中校联考模拟预测)已知函数()1ln m f x m x x x+=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x xf x x <+.20.(2023·陕西渭南·统考二模)已知函数()()1ln e ,xxf xg x m x+==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈21.(2023·全国·东北师大附中校联考模拟预测)已知函数()()ln 10f x x ax a =-->.(1)当1a =时,求过原点且与()f x 相切的直线方程;(2)若()()()e 0ax g x x f x a =+⋅>有两个不同的零点()1212,0x x x x <<,不等式212e mx x ⋅>恒成立,求实数m 的取值范围.22.(2023·青海·校联考模拟预测)已知函数()()21e xf x ax x =+-.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.23.(2023·天津·校联考一模)设函数()()()21e 2,R x f x x m x m =+++∈.(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数相结合压轴题精选(二)11、已知)0()(23>+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M >证明:由题设有),)((323)(212x x x x a c bx ax x f --=++='不仿设21x x <,则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值,)()()()()(212221323121x x c x x b x x a x f x f -+-+-=-])()()[(212122121c x x b x ax x x a x x +++-+-=)]3(92)[(]3232)32()[(22121ac b ax x c abb ac a a b a x x ---=+-⋅+⋅--⋅-=由方程0232=++c bx ax 有两个相异根,有,0)3(412)2(22>-=-=∆ac b ac b又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3)(在(0,1)上是增函数. (1)求实数a 的取值集合A ;(2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常数),试比较n n a a 与1+的大小;(3)在(2)的条件下,问是否存在正实数C ,使20<-+<ca ca n n 对一切N n ∈恒成立?(1)设))(()()(,10222121122121a x x x x x x x f x f x x -++-=-<<<则由题意知:0)()(21<-x f x f ,且012>-x x)3,0(,222121222121∈++<++∴x x x x a x x x x 则}3|{,3≥=≥∴a a A a 即 (4分)(注:法2:)1,0(,03)(2∈>+-='x a x x f 对恒成立,求出3≥a ).(2)当a =3时,由题意:)1,0(,2321131∈=+-=+b a a a a n n n 且以下用数学归纳法证明:*∈∈N n a n 对),1,0(恒成立.①当n=1时,)1,0(1∈=b a 成立;②假设n =k 时,)1,0(∈k a 成立,那么当1+=k n 时,k k k a a a 232131+-=+,由①知)3(21)(3x x x g +-=在(0,1)上单调递增,10)1()()0(1<<<<∴+k k a g a g g 即,由①②知对一切*∈N n 都有)1,0(∈n a (7分)而0)1(212121231>-=+-=-+n n n n n n a a a a a a n n a a >∴+1 (9分) (3)若存在正实数c ,使20<-+<ca ca n n 恒成立 (10分令),(,21+∞-+=-+=c cx cc x c x y 在上是减函数, n n n a ca ca 随着-+∴增大,而小, 又}{n a 为递增数列,所以要使20<-+<ca ca n n 恒成立,只须30,30201111bc a c c a ca c a <<<<∴⎪⎩⎪⎨⎧<-+>-即 (14分) 13、已知)(22)(2R x x ax x f ∈+-=在区间[-1,1]上是增函数. (1)求实数a 的值所组成的集合A. (2)设关于x 的方程xx f 1)(=的两根为1x 、2x ,试问:是否存在实数m ,使得不等式 ||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立?若存在,求出m 的取值范围;若不存在,请说明理由(1)222)2()2(2)(+---='x ax x x f ]1,1[)(-在x f 是是增函数 ]1,1[,0)(-∈≥'∴x x f 对恒成立.设110)1(0)1(,2)(2≤≤-⇔⎩⎨⎧≤-≤--=a ax x x ϕϕϕ则有)(],1,1[x f x -∈对 是连续函数,且只有当0)1(,1=-'=f a 时,以及当}11|{,0)1(,1≤≤-=∴='-=a a A f a 时 (2)由02,12222=--=+-ax x xx a x 得 212,,08x x a ∴>+=∆ 是方程022=--ax x 的两实根.⎩⎨⎧-==+∴22121x x ax x 从而84)(||22122121+=-+=-a x x x x x x 38||11221≤+=-∴≤≤-a x x a要使不等式||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立, 当且仅当]1,1[312-∈≥++t tm m 对任意恒成立, 即022≥-+tm m 对任意]1,1[-∈t 恒成立. 设22)(22-+=-+=m mt tm m t g则有2202)1(02)1(22-≤≥∴⎪⎩⎪⎨⎧≥-+=≥--=-m m m m g m m g 或∴存在m ,其范围为}22|{-≤≥m m m 或14、已知二次函数y=g(x )的图象过原点和点(m ,0)与点(m+1, m+1),(1)求y=g(x )的表达式;(2)设)(x f =(x -n)g(x )(m>n>0)且)(x f 在x =a 和x =b(b<a )处取到极值, ①求证:b<n<a <m ;②若m+n=22,则过原点且与曲线y=)(x f 相切的两条直线能否互相垂直?若能,则给出证明;若不能,请说明理由?(文科生做....)设常数a >0, a ≠1,函数55log )(+-=x x x f a , (1)讨论)(x f 在区间(-∞,-5)上的单调性,并予以证明; (2)设g(x )=1+log a (x -3),如果)(x f =g(x )有实数根,求a 的取值范围.(理科生做....)解:(1)设g(x )=ax 2+b x +c(a ≠0),由题意得.)(.0,,1,1)1(,0,022mx x x g c m b a b m a bm am c -=∴⎪⎩⎪⎨⎧=-==⎪⎩⎪⎨⎧=++=+=解得…………………………3分 (2)∵f (x )=(x -n)g(x )=x (x -m)(x -n)=x 3-(m+n)x 2+mn x , ∴f ′(x )=3x 2-2(m+n)x +mn.…………… 5分①由题意知,a ,b 为方程f ′(x )=0的两个实根,又f ′(0)=m ·n>0, f ′(n)=n(n -m)<0, f ′(m)=m(m -n)>0,∴两根x =b ,x =a 分布在(0,n ),(n ,m )内.又b<a ,∴b<n<a <m.…………9分 ②设两切点的横坐标分别为x 1, x 2,则切线l 1的方程为y -f (x 1)=[321x -2(m+n)x 1+mn](x -x 1). 又l 1过原点,∴-x 1(x 1-m)(x 1-n)= [321x -2(m+n)x 1+mn](-x 1) 解得x 1=0, 或x 1=2n m +,同理x 2=0或x 2=2n m +.∴x 1=0, x 2=2n m +.……………………12分 两切线的斜率分别为k 1=mn ,k 2=22.)(412=+++-n m mn n m 又, 若两切线相互垂直,则k 1k 2=-1,即mn ])22(41[2n m ⋅+-=-1,得mn=1.解方程组⎪⎩⎪⎨⎧-=+=⎩⎨⎧==+.12,12,122n m mn n m 得 故存在过原点且与曲线y=f (x )相切的两条直线互相垂直.………………14分 (文科生做....)解:(1))5101(log )(+-=x x f a .利用定义可以证明当a <1时,f (x )是 (-∞,-5)上的增函数;当0<a <1时,f (x )是(-∞,-5)上的减函数(证明略)……………………6分 (2)∵g(x )=1+log a (x -3), f (x )=g(x )有实根,即log a55+-x x =1+log a (x -3)有实根, 则实根大于5.又因为1+log a (x -3)=log a [a (x -3)],原方程有大于5的实根,即 方程55+-x x =a (x -3)有大于5的实数根.…………………………………………9分 由此解得a =)3)(5(5-+-x x x (a >0).1254112201)05(201252522+≤++=>=-++=-+-=tt t x t t t x x x 令 当且仅当.16530.525,52-≤<∴+==a x t 时取等号即………………14分15、已知函数).,()(23R b a b ax x x f ∈++-= (1)若1=a ,函数)(x f 的图象能否总在直线b y =的下方?说明理由;(2)若函数)(x f 在[0,2]上是增函数,2=x 是方程)(x f =0的一个根,求证:2)1(-≤f ;(3)若函数)(x f 图象上任意不同的两点连线斜率小于1,求实数a 的取值范围.解:(1)不能,取,11)1(,1b b f x >++=--=则即存在点(-1,2+b )在函数图象上,且在直线b y =的上方; (3分)(2)由2=x 是方程0)(=x f 的一个根,得,048)2(=++-=b a f 即a b 48-= (4分)又.32,0.023,0)(,23)(2122a x x ax x x f ax x x f ===+-='+-='得即令又函数)(x f 在[0,2]上是增函数,3,2322≥≥=∴a a x 即, (7分)2374811)1(-≤-=-++-=++-=a a a b a f (9分)(3)设任意不同的两点21222111),,(),,(x x y x P y x P ≠且,则.12121<--x x y y )14(3334,043)3(3)12(04230)1(4)(01)(1)(,12222222222222212221221212221212122322131分故分即即<<-∴<-++--∴<-++-<-+-+-=∆∈<-+--+-∴<++---<--++∴a a a a a x a ax x ax x x a R x ax x x x a x x x a x x x x x x ax x ax x16、(理)设e ex ax x f x()1()(2-⋅-+=为自然对数的底,a 为常数且R x a ∈<,0),)(x f 取极小值时,求x 的值. (文)函数a x x a ax x f (3)1(23)(23--+=为常数且R x a ∈≥,0)取极小值时,求x 的值. 理)解:)1()1()12()(2-⋅⋅-++⋅+='--x xe x ax e ax x f)2)(1(-+⋅-=-x ax ez………………2分 令210)(或ax x f -=⇒='………………4分(1)0121<<->-a 即当,由表)(,1xf ax 时-=∴取极小值.………………7分(2)0)2(21)(,21212≤-⋅⋅-='-==--x e x f a a x 时即当无极值.………………9分(3)121-<<-a 即当时,由表取极小值时时当综上取极小值时)(,1,021,.)(,2x f ax a x f x -=<<--=∴ 取极小值时时当)(,2,21x f x a -=-<)(,21x f a 时当-=无极小值. ………………12分)(x f ∴无极小值.………………6分(二)由表或令时当110)()1)(1(3)(,0-=⇒='+-='>x x f x x a x f a )(,x f ax 时当=∴取极小值综上,当)(,1,0x f ax a 时时=>取极小值当)(,0x f a 时=无极小值.………………12分17、已知0,1>->c b ,函数b x x f +=)(的图象与函数c bx x x g ++=2)(的图象相切. (1)求b 与c 的关系式。

相关文档
最新文档