MATLAB编程基础第7讲--插值、拟合与初值常微分方程的求解
MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。
1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。
其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。
例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。
1.1.2非线性拟合。
matlab的数据拟合与插值

matlab的数据拟合与插值Matlab 的数据的分析处理-拟合与插值在数学建模过程中,常常需要确定⼀个变量依存于另⼀个或更多的变量的关系,即确定这些变量之间的函数关系。
但在实际中确定这些变量之间函数函数关系时往往没有先验的依据,只能在收集的实际数据的基础上对若⼲合乎理论的形式进⾏试验,从中选择⼀个最有可能反映实际的函数形式,这就是统计学中的拟合和回归⽅程问题。
本节我们主要介绍如何分析处理实际中得到的数据。
下⾯先看⼀个例⼦。
例1 “⼈⼝问题”是我国最⼤社会问题之⼀,估计⼈⼝数量和发展趋势是我们制定⼀系列相关政策的基础。
有⼈⼝统计年鉴,可查到我国从1949年⾄1994⼀般地,我们采⽤下⾯的分析处理⽅法:⾸先,在直⾓坐标系上作出⼈⼝数与年份的散点图象。
观察随着年份的增加⼈⼝数与年份变化关系,初步估计出他们之间的关系可近似地可看做⼀条直线。
那么我们如何把这条直线⽅程确定出来呢?并⽤他来估计1999年我国的⼈⼝数。
⽅法⼀:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)⼆点确定⼀条直线,⽅程为 N = 14.088 t – 26915.842 ,代⼊t =1999,得N ≈12.46亿⽅法⼆:可以多取⼏组点对,确定⼏条直线⽅程,将t = 1999代⼊,分别求出⼈⼝数,在取其算数平值。
⽅法三:可采⽤“最⼩⼆乘法”求出直线⽅程。
这就是曲线拟合的问题。
⽅法⼀与⽅法⼆都具有⼀定的局限性,下⾯我们重点介绍数据的曲线拟合。
所谓曲线拟合是指给定平⾯上的n 个点(x i ,y i ),i=1,2,….,n,找出⼀条曲线使之与这些点相当吻合,这个过程称之为曲线拟合。
最常见的曲线拟合是使⽤多项式来作拟合曲线。
曲线拟合最常⽤的⽅法是最⼩⼆乘法。
其原理是求f(x),使21])([i ni i y x f -=∑=δ达到最⼩。
matlab 提供了基本的多项式曲线拟合函数命令polyfit格式::polyfit(x,y,n)说明:polyfit(x,y,n)是找n 次多项式p(x)的系数,这些系数满⾜在最⼩⼆乘法意义下p(x(i)) ~= y(i).已知⼀组数据,⽤什么样的曲线拟合最好呢?可以根据散点图进⾏直观观察,在此基础上,选择⼏种曲线分别拟合,然后⽐较,观察那条曲线的最⼩⼆乘指标最⼩。
Matlab中的插值与拟合技术

Matlab中的插值与拟合技术在科学研究和工程领域中,数据的插值和拟合技术在数值计算和数据处理中具有重要意义。
Matlab作为一款强大的科学计算软件,提供了丰富的插值和拟合函数和工具箱,能够满足不同场景下的需求。
插值是一种通过已知数据点构建新数据点的技术。
在实际问题中,我们经常会遇到仅有少量已知数据点,但需要了解未知数据点的情况。
插值技术就可以帮助我们填补数据之间的空缺,以便更好地分析和理解数据。
Matlab中提供了多种插值函数,包括线性插值、多项式插值、样条插值等。
这些函数能够根据已知数据点的特征,推测出未知数据点的可能取值。
通过合理选择插值方法和参数,我们可以得到较为准确的结果。
以线性插值为例,其原理是根据已知数据点的直线特征,推测出未知数据点的取值。
在Matlab中,我们可以使用interp1函数实现线性插值。
该函数的基本用法是给定一组x和对应的y值,以及待插值的点xq,函数将计算出对应的插值点yq。
通过指定xq的形式,我们可以实现不仅仅是单个点的插值,还可以实现多点插值和插值曲线绘制。
这种灵活性使得插值操作更加方便快捷。
拟合技术则是通过一定数学函数的近似表示,来描述已知数据的特征。
它可以帮助我们找到数据背后的规律和趋势,从而更好地预测未知数据。
在Matlab中,拟合问题可以通过polyfit和polyval函数来解决。
polyfit函数可以根据一组已知数据点,拟合出最优的多项式曲线。
该函数的输入参数包括x和y,代表已知数据的横纵坐标值;以及n,代表拟合的多项式次数。
polyfit函数将返回拟合得到的多项式系数。
通过polyval函数,我们可以使用这些系数来求解拟合曲线的纵坐标值。
这样,我们就能够利用拟合曲线来预测未知数据点。
插值和拟合技术在实际问题中都有广泛的应用,尤其在数据处理和信号处理方面。
例如,当我们在实验中测量一组数据时,可能会存在测量误差或者数据缺失的情况。
此时,通过插值技术我们可以填补数据之间的空白,并得到一个更加完整的数据集。
Matlab基础及其应用-数值微积分与常微分方程求解

6
6
6
1 −19
6 −19
6
7.2 数值积分
MATLAB基础与应用教程
7.2.1 数值积分的原理
基本思想是将整个积分区间[a,b]分成n个子区间[xi,xi + 1], i = 1,2,…,n,其中x1 = a,xn + 1 = b。这样求定积分问题
就分解为下面的求和问题:
矩形法是用矩形面积近似曲边梯形的面积,如图7.2(aБайду номын сангаас所 示;梯形法是用斜边梯形面积近似曲边梯形的面积,如图 7.2(b)所示;而辛普生法是用抛物线近似曲边。
7.1 数值微分
MATLAB基础与应用教程
【例7.1】设f(x) = sinx,用不同的方法求函数f(x)的数值 导数,并在同一个坐标系中绘制f '(x)的三种方法所得导数
曲线。
x=0:pi/24:pi; %用5次多项式p拟合f(x),并对拟合多项式p求导数dp在假设点的函数值 p=polyfit(x,sin(x),5); dp=polyder(p); dpx=polyval(dp,x); %直接对sin(x)求数值导数 dx=diff(sin([x,pi+pi/24]))/(pi/24); %求函数f的导函数g在假设点的导数 gx=cos(x); plot(x,dpx,'b-',x,dx,'ko',x,gx,'r+');
的形式,即形参t为时间参量,形参y为待求解问题的自变量。
tspan指定求解区间,用二元向量[t0 tf ]表示。 y0是初始状态列向量。
options用于设置积分求解过程和结果的属性。
7.4 常微分方程的数值求解
matlab求解常微分方程组

matlab求解常微分方程组常微分方程组是数学中的一个重要分支,它描述了多个变量随时间变化的关系。
在实际应用中,常微分方程组经常被用来描述物理、化学、生物等领域中的动态系统。
本文将介绍如何使用MATLAB求解常微分方程组。
MATLAB是一种强大的数学软件,它提供了许多工具和函数来求解常微分方程组。
在MATLAB中,我们可以使用ode45函数来求解常微分方程组。
ode45函数是一种常用的数值求解器,它使用龙格-库塔方法来求解常微分方程组。
我们需要定义常微分方程组。
常微分方程组通常采用向量形式表示,例如:dy/dt = f(t,y)其中,y是一个向量,f(t,y)是一个向量函数。
在MATLAB中,我们可以使用匿名函数来定义f(t,y)。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2我们可以定义f(t,y)为:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];接下来,我们需要指定初值条件。
初值条件是指在t=0时,y的值。
在MATLAB中,我们可以使用一个向量来表示初值条件。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]我们可以定义初值条件为:y0 = [1; 0];现在,我们可以使用ode45函数来求解常微分方程组。
ode45函数的语法如下:[t,y] = ode45(f,tspan,y0)其中,f是一个函数句柄,tspan是一个包含起始时间和结束时间的向量,y0是一个包含初值条件的向量。
ode45函数将返回一个包含时间和解向量的矩阵。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]时间范围为0到10秒,我们可以使用以下代码来求解:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];tspan = [0 10];y0 = [1; 0];[t,y] = ode45(f,tspan,y0);现在,我们可以绘制解向量随时间变化的图像。
插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
MATLAB中的数据插值与拟合方法介绍

MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
用MATLAB求解微分方程

1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3-37
• • • • • • • • • • • • • x = 0:10; % 给出已知基准数据 y = sin(x); xi = 0:.25:10; % 在两个基准数据点间插入3个点 yi1 = interp1(x,y,xi,'*nearest'); yi2 = interp1(x,y,xi,'*linear'); yi3 = interp1(x,y,xi,'*spline'); yi4 = interp1(x,y,xi,'*cubic'); % 分别用四种方法求中间插值 plot(x,y,'o',xi,yi1, 'r:',xi,yi2, 'g-',xi,yi3,'k.-',xi,yi4, 'm--') % 绘图,并标注各曲线代表的插值方法,如图3-8 legend('原始数据','最近点插值','线性插值','样条插值','立方插值')
12]内的数值解,且满足初始条件
y1 0 0 y2 0 1 y 0 1 3
15
2016/3/18
• 例3-39
• • • • • • • • • • • % 首先编写方程函数,名为rigid.m function dy = rigid(t,y) dy = zeros(3,1); % 生成3×1的矩阵 dy(1) = y(2) * y(3); % 第一个元素是 dy(2) = -y(1) * y(3); % 第二个元素是 dy(3) = -0.51 * y(1) * y(2); % 第三个元素是
例:根据经验公式y=a+bx2,拟合如下 数据:
xi 19 25 31 38 44
yi
19.0
32.3
49.0
73.3
98.8
x=[19 25 31 38 44]; y=[19.0 32.3 49.0 73.3 98.8]; x1=x.^2; x1=[ones(5,1),x1']; ab=x1\y' ab =
4
2016/3/18
例:拟合以下数据
x y 0.5 1.75 1.0 2.45 1.5 3.81 2.0 4.80 2.5 8.00 3.0 8.60
x=[0.5 1.0 1.5 2.0 2.5 3.0]; y=[1.75 2.45 3.81 4.80 8.00 8.60]; a=polyfit(x,y,2)
3
2016/3/18
• 例3-36
• • • • • • • • • • • • • • • x = (0: 0.1: 2.5)'; % 给出一组数据,为误差函数的一个区间 y = erf(x); p = polyfit(x,y,6) % 计算该区间内6阶拟合多项式的向量
x1 = (0: 0.1: 5)'; % 将区间增长一倍 y1 = erf(x1); % 计算误差函数在新区间内的函数值 f = polyval(p,x1); % 计算6阶拟合曲线在新区间内的取值 plot(x1,y1,'o',x1,f,'-') % 绘图,比较前后区间内的曲线拟合效果,如图3-7 axis([0 5 0 2])
x1= 0:0.01:1; f2 = polyval(y2,x1); % 2阶拟合曲线在各点的函数值 y10 = polyfit(x,y,10) % 计算10阶拟合的多项式向量 f10 = polyval(y10,x1); % 10阶拟合曲线在各点的函数值 plot(x,y,'o',x1,f2,':',x1,f10,'k')
y2 y1 y3 y2 原方程变为: y y 1 2 2 y 2 y 4 1 3 2 3
y1 0 1 初始条件: y2 0 1 y 0 0 3
2016/3/18
19
• 例3-40
• 训练任务:请编制名为odet3.m方程函数 • tspan = [0 12]; • % 在同一目录下,计算方程数值解。给出时间区间和初始 值 • y0 = [-1 1 0]; • [t,Y] = ode45('odet3',tspan,y0); • % 采用ode45算法 • plot(t,Y(:,1),'-',t,Y(:,2),'-.',t,Y(:,3),'.') • % 绘制计算结果并标注,如图3-15 • legend('Y1','Y2','Y3')
2016/3/18
2
• 例3-35
• • • • • • • • • • • • • • • x = (0:0.1:1)'; y = [-0.4 1.9 3.2 6.2 7.1 7.3 7.7 9.6 9.5 9.3 12]'; % 给出一组11个点数据 y2 = polyfit(x,y,2) % 计算2阶拟合的多项式向量
ZI4 = interp2(X,Y,Z,XI,YI,'*cubic'); % 计算用cubic法所得二维插值 figure(5) mesh(XI,YI,ZI4) % 绘制双立方插值法曲面图,如图3-13
13
2016/3/18
3.9常微分方程初值问题的数值解法 龙格-库塔法简介 龙格-库塔法的实现 基于龙格-库塔法,MATLAB提供了求常微分方程数值解 的函数,一般调用格式为: [t,y]=ode23('fname',tspan,y0) [t,y]=ode45('fname',tspan,y0) 其中fname是定义f(t,y)的函数文件名,该函数文件必须返回 一个列向量。tspan形式为[t0,tf],表示求解区间。y0是初始 状态列向量。t和y分别给出时间向量和相应的状态向量。
2016/3/18 14
• 一阶常微分方程的初值问题求解
y f x, y , a x b y x0 y 0
y 2 y3 y1 •例3-39,求微分方程组 y1 y3 在区间[0 y2 y 0.51y y 1 2 3
ZI2 = interp2(X,Y,Z,XI,YI,'*linear'); % 计算用linear法所得二维插值 figure(3) mesh(XI,YI,ZI2) % 绘制双线性插值法曲面图,如图3-11
12
2016/3/18
ZI3 = interp2(X,Y,Z,XI,YI,'*spline'); • % 计算用spline法所得二维插值 • figure(4) • mesh(XI,YI,ZI3) • % 绘制双样条插值法曲面图,如图3-12 • • • • •
2016/3/18
21
例设有初值问题,试求其数值解,并与精确解相比较 (精确解为y(t)=)。
(1) 建立函数文件funt.m。 function yp=funt(t,y) yp=(y^2-t-2)/4/(t+1); (2) 求解微分方程。 t0=0;tf=10; y0=2; [t,y]=ode23('funt',[t0,tf],y0); %求数值解 y1=sqrt(t+1)+1; %求精确解 t' y' y1' 2016/3/18 y为数值解,y1为精确值,显然两者近似。
10 8
a =
0.4900 1.2501 0.8560
6 4 2 0 0.5
x1=[0.5:0.05:3.0]; y1=a(3)+a(2)*x1+a(1)*x1.^2; plot(x,y,'*') hold on plot(x1,y1,'-r')
2016/3/18
1
1.5
2
2.5
3
5
• Matlab提供了一维、二维、 三次样条等
许多插值选择
2016/3/18 7
• 1.一维插值 yi=interp1(x,Y,xi,method):求已知同维数据x和Y, 运用method指定的方法计算插值点xi处的数值yi。 method有如下四种: nearest 最近点差值,取与最近的已知数据点的值 linear 线性差值,直线连接数据点,插值点值位于 直线上 spline 样条插值,用三次样条曲线通过数据点,根 据曲线进行差值 cubic 立方差值,用三次曲线拟合并通过数据点
2016/3/18 17
• 高阶微分方程的初值问题求解
F y, y, y,, yn , x 0
高阶微分方程:
n 1 , yn 1 0 y0 y0 y0 , y0 y0
把高阶微分方程转换为一阶方程组,初始条件也做相应的替换。通常令: n 1 上式改写为: 1 2 n
9
2016/3/18
2.二维插值 ZI=interp2(X,Y,Z,XI,YI,method):已知同维数 据X,Y和Z,运用method指定的方法计算插 值点(XI,YI)处的数值ZI。
2016/3/18
10
• 例3-38
• • • • • • • • • • • axis([-3 3 -3 3 -5 20]) % 确定坐标轴的范围 [X,Y] = meshgrid(-3:.5:3); % 生成网格 Z = peaks(X,Y); % 计算peaks函数值 figure(1) mesh(X,Y,Z) % 绘制原始数据曲面图,如图3-9
100
80
60