工程力学16 轴向拉伸与压缩杆的变形

合集下载

工程力学课件 第6章 轴向拉伸与压缩

工程力学课件 第6章  轴向拉伸与压缩
σ称为正应力,τ称为剪应力。在国际单位制中,应力的单位 是帕斯卡(Pascal),用Pa(帕)表示,1Pa=1 N/m2。由于帕斯卡这 一单位很小,工程常用kPa(千帕)、MPa(兆帕)、GPa(吉帕)来 表明。1 KPa=103Pa,1 MPa=106Pa,1 GPa=109 Pa。
工程力学
12
二、拉压杆横截面上的正应力
在应力超过比例极限以后,图形出现了一段近似水平的小锯齿
形线段bc,说明此阶段的应力虽有波动,但几乎没有增加,却发生
了较大的变形。这种应力变化不大、应变显著增加的现象称为材料
的屈服。屈服阶段除第一次下降的最小应力外的最低应力称为屈服
极限,以σs表示。
4.强度极限
经过了屈服极限阶段,图形变为上升的曲线,说明材料恢复了
工程力学
4
1.1.1 电路的组成
列出左段杆的平衡方程得 Nhomakorabea工程力学
5
若以右段杆为研究对象,如图(c)所示,同样可得
1.1.1 电路的组成
实际上,FN与F′N是一对作用力与反作用力。因此,对同一截面, 如果选取不同的研究对象,所求得的内力必然数值相等、方向相反。
这种假想地用一个截面把杆件截为两部分,取其中一部分作为 研究对象,建立平衡方程,以确定截面上内力的方法,称为截面法。 截面法求解杆件内力的步骤可以归纳如下:
1.1.1 电路的组成
(1)计算AB段杆的轴力。沿截面1-1将杆件截开,取左段杆为研 究对象,以轴力FN1代替右段杆件对左段的作用,如图(b)所示
列平衡方程

工程力学
7
若以右段杆为研究对象,如图(c)所示
1.1.1 电路的组成
同样可得
(2)计算BC段杆的轴力,沿截面2-2将杆件截开,取左段杆为研 究对象,如图(d)所示

拉压杆的变形

拉压杆的变形

EA称为杆的拉压刚度,它是单位长度的杆产生单位长度的变形 所需的力。所以拉压刚度EA代表了杆件抵抗拉伸(压缩)变形 的能力。
因σ=FN/A、ε=Δl/l,故式(2-5)变为 σ=Eε (2-6
上式是胡克定律的另一表达式。它表明:在弹性限度内,正应力 与线应变成正比。
1.2横向变形
设图2-12所示拉、压杆在变形前、后的横向尺寸分别为d与d1, 则其横向变形Δd为
【例2-6】如图2-14(a)所示等截面直杆,已知 其原长l、横截 面积A、材料的容重γ、弹性模量E、受杆件自重和下端处集中力 F作用。求该杆下端面的位移ΔB。
【解】如图2-14(b)所示。距B端为x的横截面上的轴力为 FN(x)=F+γAx
微段dx如图2-14(c)所示。 略去两端内力的微小差值,则微段的变形为
=-0.975×10-3m=-0.975mm
各段柱的纵向线应变为
εBC=ΔlBC/lBC=-0.5mm/2000mm=2.5×10-4
εAB=ΔlAB/lAB=-0.975mm/1500mm=-6.5×10-4 全柱的总变形为两段柱的变形之和,即
Δl=ΔlBC+ΔlAB=-0.5mm-0.975mm=-1.475 mm
【解】由于上下两段柱的轴力不等,故两段柱 的变形要分别计算。各段柱的轴力为
FNBC=-100 kN 各段柱的纵向变形为
FNAB=-260 kN
ΔlBC=FNBC/EA = -100×103N×2m/10×109Pa× (0.2m)2 =-0.5×10-3m=-0.5mm
图2-13
ΔlAB=FNAB/EA= 260×103N×1.5m/10×109Pa×(0.2m)2
大量的实验表明,当杆的变形为弹性变形时,杆的纵向变形Δl与 外力F及杆的原长l成正比,而与杆的横截面面积A成反比,即

2016工程力学(高教版)教案:6.6杆件的强度计算

2016工程力学(高教版)教案:6.6杆件的强度计算

第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。

为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。

一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。

塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。

例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。

杆端均用铰链连接。

在结点B 作用一载荷P=60kN 。

已知钢的许用应力[]σ=140MPa 。

木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。

(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。

解 (1)校核托架强度 如图6-29(b)。

图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。

工程力学--轴向拉压杆的应力及变形

工程力学--轴向拉压杆的应力及变形

4.1 材料力学的基 本假设及基本概念
构件:机器、结构中的零、部件的统称。
杆件( bar): 板(plate): 平板、壳 块体( body) 板 壳 块 体
杆 件
第4章 拉压杆的应力及变形
杆:一个方向的尺寸远大于其它两个方向的尺 寸

纵向(长的一个方向) 横向(短的两个方向)
第4章 拉压杆的应力及变形
AB段
0 N1 F1 10kN
x x
N1 N2
F
F2
N3 F4
BC段
F
N kN
+
10

25 CD段
+
0 N 2 F2 F1 N 2 F1 F2 10 20 10kN Fx 0
N3 25kN
10
x
2、绘制轴力图。
第4章 拉压杆的应力及变形
单位:
FN 牛顿(N) A 平方米(m2)
dA

帕斯卡(pa)
1MPa = 106Pa
FN dA
A
1GPa = 109Pa
正应力符号规定:
FN dA
A
为拉应力,规定为正, 当FN为拉力时, 为压应力,规定为负. 当FN为压力时,
FN A
第4章 拉压杆的应力及变形
(2)剪切 外力特点: 作用在构件两侧面上的外力 合力大小相等、方向相反且作 用线很近。 变形特点: 位于两力之间的截面发生 相对错动。
剪切变形
第4章 拉压杆的应力及变形
4.1 材料力学的基 本假设及基本概念
(3) 扭转
外力特点: 在垂直于杆件轴线的两个 平面内,作用一对大小相等、 转向相反的力偶。 变形特点: 各横截面绕轴线发生相对转动.

工程力学轴向拉压杆件的强与变形计算课件

工程力学轴向拉压杆件的强与变形计算课件
承受轴向载荷的拉(压)杆在工程中的 应用非常广泛。
由汽缸、活塞、连 杆所组成的机构中,不 仅连接汽缸缸体和汽缸 盖的螺栓承受轴向拉力, 带动活塞运动的连杆由 于两端都是铰链约束, 因而也是承受轴向载荷 的杆件。
第4页/共55页
第7章 轴向拉压杆件的强度与变形计算
第5页/共55页
第7章 轴向拉压杆件的强度与变形计算
第12页/共55页
7-2轴向拉压杆斜截面上的应力
第13页/共55页
7-2轴向拉压杆斜截面上的应力
第14页/共55页
7-3轴向拉压杆的变形计算 胡克定律
7-3 轴向拉压杆的变形计算 胡克定律
第15页/共55页
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
Dh h
第22页/共55页
7-3轴向拉压杆的变形计算 胡克定律
横向变形与泊松比
实验结果表明,对于同一种材料,若在弹性范围内加载,轴向应变
x与横向应变y 之间存在下列关系:
y x
负号表示纵向与横向变形的方向相反
为材料的另一个常数,称为泊松比(Poisson ratio)。
泊松比为无量纲量。 第23页/共55页
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
第16页/共55页
7-3轴向拉压杆的变形计算 胡克定律
绝对变形 弹性模量
Dl l l 设一长度为l、横截面面积为A的等截面直杆,承受轴
向载荷后,其长度变为l十Dl,其中Dl为杆的伸长量。
Dl FN l A

工程力学 第二章 轴向拉伸与压缩.

工程力学 第二章 轴向拉伸与压缩.

2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F

轴向拉(压)杆的变形

(5-8) ε′没有量纲。
轴向拉(压)杆的变形
1.4 泊松比
实验表明,对于同一种材料,当应力不超过比例极
限时,横向线应变与纵向线应变之比的绝对值为常数。比
值ν称为泊松比,亦称横向变形系数。即
(5-9a)
由于这两个应变的符号恒相反,故有
ε'=-νε
(5-9b)
泊松比ν是材料的另一个弹性常数,由实验测得。工
程上常用材料的泊松比见表5-1。
轴向拉(压)杆的变形
工程力学
引入比例常数E,则上式可写为 (5-7)
上式称为胡克定律,这是胡克定律的另一形式。 由式(5-7)可看出,EA越大,杆件的变形Δl就越小,故称EA 为杆件抗拉(压)刚度。工程上常用材料的弹性模量见表5-1。
轴向拉(压)杆的变形
1.3 横向变形
在轴向力作用下,杆件沿轴向的方向伸长(缩 短)的同时,横向尺寸也将缩小(增大)。设横向 尺寸由b变为b1,如图5-8(b)所示,Δb= b1-b,则 横向线应变为
工程力学
轴向拉(压)杆的变形
轴向拉伸(或压缩)时,杆件的变 形主要表现为沿轴向的伸长(或缩短), 即纵向变形。由实验可知,当杆沿轴向 伸长(或缩短)时,其横向尺寸也会相 应缩小(或增大),即产生垂直于轴线 方向的横向变形。
轴向拉(压)杆的变形
1.1 纵向变形
设一等截面直杆原长为l,横截面面积为A。在轴向拉力F 的作用下,长度由l变为l1,如图5-8(a)所示。杆件沿轴线方 向的伸长为Δl=l1-l,拉伸时Δl为正,压缩时Δl为负。
图5-8
轴向拉(压)杆的变形
杆件的伸长量与杆的原长有关,为了消除杆件长度 的影响,将Δl除以l,即以单位长度的伸长量来表征杆件 变形的程度,称为线应变或相对变形,用ε表形

第5章 杆件的轴向拉伸与压缩变形

使单用位规。范由于说轴明力 恒为常量,所以轴力图为恒平行于x轴的水平直线与
x轴所围成的区域。 (2)轴力的方向: FN正值画在x轴的上方,负值画在x轴的下方
,图形区域内部用垂直于x轴的均匀的竖线布满,并在图线区域内标 上(表示正)或-(表示负)符号。 (3)图线要对齐:轴力图一定要画在受力图的正下方,并且轴力 图线的突变位置要和外力作用点的位置对齐。分段时以相邻两个外力 的作用点分段。
加大到一定限度时,构件就会破坏,因而内力与构件的强度、刚度是
密切相关的。由此可知,内力是材料力学研究的重要内容。
第5章 杆件的轴向拉伸与压缩变形
使5用.2规.2范说截明面法
截面法是材料力学中求解内力的基本方法,是已知构件外力确定
内力的普遍方法。

如图5-2a所示,杆件在外力作用下处于平衡状态,若求截面 上
、吉帕(GPa)。
第5章 杆件的轴向拉伸与压缩变形
使5用.4规.2范说杆明件轴向拉压时横截面上的正应力

为了求得横截面上任意一点的应力,必须了解内力在截面上的分
布规律。

如图5-7所示,取一等截面直杆,在杆件上画上与杆轴线垂直且
等间距的横向线ab和cd,再画上与杆轴线平行且等间距的纵向线,
然后沿杆的轴线作用一拉力F,使杆件产生轴向拉伸变形。 观察杆件 变形前后的形状可知:横向线在变形前后均保持为直线,且都垂直于
时,杆件受压缩短,其轴力取负。

轴力的正负规定可简记为“背离所求截面取正;指向所求截面
取负”或“使杆件受拉取正;使杆件受压取负”。对于方向未知的轴
力,通常按正向假设,若计算结果为正,则实际方向与假设方向相同
;若计算结果为负,则实际方向与假设方向相反。

轴向拉伸与压缩的名词解释

轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。

本文将对轴向拉伸与压缩进行详细的解释与探讨。

一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。

当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。

拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。

轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。

钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。

而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。

二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。

当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。

压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。

轴向压缩现象同样广泛应用于工程领域。

例如,桥梁中的墩柱、压缩试验中的压力传感器等。

墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。

三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。

1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。

通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。

这对材料的设计和应用具有重要的指导意义。

2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。

例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。

3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。

例如,电子产品中常使用弹性材料来保护内部电路。

这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。

第四章 轴向拉伸和压缩


a
F a P pa a a pa sin a cos a sin a sin 2a a a 2 n 反映:通过构件上一点不同截面上应力变化情况。 当a = 0°时, ( a ) max (横截面上存在最大正应力)
a pa cosa cos a
2
n

联立求解得 FNAB=40(KN) FNBC=-40(KN)

2)求各杆正应力。 AB杆:截面面积AAB=254.34(mm2) σ AB=157. 3MPa(拉) BC杆:截面面积ABC=a2=1002mm2 σ BC=3MPa (压)

4.2.3 斜截面上的应力
设有一等直杆受拉力F作用。 求:斜截面m-n上的应力。 解:采用截面法 由平衡方程:FNa=F F F
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
4.1.2 内力的概念

物体在受到外力作用而变形时,物体内部各质 点间的相对位置将发生变化。其各质点间相互作用 的力也会发生改变。这种相互作用的力由于物体受 到外力作用而引起的改变量,称为附加内力,通常 简称内力。
意 义 ①反映出轴力与截面位置变化关系,较直观; ②确定出最大轴力的数值 及其所在横截面的位置, FN F + x
即确定危险截面位置,为
强度计算提供依据。
【例4.2】
杆件受力如图4.6(a)所示,试 求杆内的轴力并作出轴力图。
【解】 1)为了运算方便,首先求出支座反力,取
整个杆为研究对象[图4.6(b)],列平衡方程 ∑x=0 一F+6 0+2 0一1 0一3 5=0 F=3 5(kN) 2)求各段杆的轴力。 求AB段轴力: 用1—1截面将杆件在AB段内截开,取左段为研究 对象[图4.6(c)],以FN1表示截面上的轴力,并假设 为拉力,由平衡方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伸长量;(2)C截面相对B截面的位移
(相对位移)和C截面的绝对位移。 解:(2) 位移:指物体上的一些点、
B
B
B′
l2=200
线、面在空间位置上的改变。 显然,两个截面的相对位移,
C
C
C′
在数值上等于两个截面之间的
F=40 kN
那段杆件的伸长(或缩短)。 因A截面固定,所以C截面
因此,C截面与B 截面的
掌握:胡克定律表达式的应用 ; 轴向变形— —伸长量的计算 ——难点+重点
谢 谢!
解:(1) 变形:物体受力以后 发生尺寸和形状的改变。
B
B
B′
l2=200
l1
FN l1 EA1
40 103 N 210 109 Pa
300 103 m 400 106 m2
0.143103m=0.143mm(伸长)
C
C
C′
F=40 kN
l2
FN l2 EA2
40 103 N 210 109 Pa
实验表明,在材料正应力没有超过比例极限时,横向线应变与纵 向线应变之比为常数,用绝对值表示为
v
或写成
v
v称为横向变形因数或泊松比
无量纲,由实验测定
例1 已知: AB段:A1 =400mm2
A
BC段:A2 =250mm2 ,E=210GPa
l1=300
求:(1)AB、BC段的伸长量及杆 的总伸长量;(2)C截面相对B截面 的位移和C截面的绝对位移。
200 103 m 250 102 0.143mm+0.152mm
0.152103m=0.152mm(伸长) 0.295mm(伸长)
例1 已知: AB段:A1 =400mm2
A
BC段:A2 =250mm2 ,E=210GPa
l1=300
求:(1)AB、BC段的伸长量及杆的总
上式通常称为单向应力状态下的胡克定律。
思考:内力、应力、 应变符号异同?
符号:拉伸为正、压缩为负
胡克定律成立条件:正应力不超过材料的比例极限
2.横向变形
横向尺寸缩短量:
b b1 b
F
横向线应变: b
b
F b1 b l l1
符号:拉伸为负、压缩为正
符号:拉伸为正、压缩为负 故 与 符号相反
材料的一种力学性能,单位为Pa,工程中常用GPa。1GPa=109Pa。其值与 材料有关,由实验测定。例如Q235钢:E=200~210GPa。EA称为杆件的拉 伸(压缩)刚度。
l Fl FN l
F
F b1 b
EA EA
l
l1
纵向线应变: l
无量纲(没有单位)
l
(胡克定律的另一表达式)
E
的位移就等于AC杆的伸长
相对位移是
BC l2 0.152mm
C =l 0.295mm
课堂练习 1. 已知: AAB =500mm2 ABC =200mm2 ,E=210GPa 求:杆的总变形量。
A
B30 kN
0.1m 0.3m
C 10 kN
小结:
理解:轴向拉压杆变形的机理; 应变、泊松比的概念
轴向拉伸和压缩杆的变形
1.轴向变形 F
l l1
轴向伸长量:l l1 l
F b1 b
实验表明,当拉杆横截面上的正应力不超过材料的比例极限时, 不仅变形是弹性的,而且伸长量Δl与拉力F和杆长l成正比,即
l Fl A
引入比例常数E,并注意到FN=F,得到
l Fl FN l EA EA
胡克定律
式中,E称为弹性模量,表示材料在拉压时抵抗弹性变形的能力,因而它是
相关文档
最新文档