虚拟药物筛选与药物分子设计教程与实战

虚拟药物筛选与药物分子设计教程与实战
虚拟药物筛选与药物分子设计教程与实战

药物分子设计前沿

摘要:近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着计算机技术的高速发展,运用计算机进行新药的模拟实验已经成为一种新的方法。本文就对这些方法做一个总的综述来介绍这些方法在新药设计过程中的应用过程。计算机辅助药物设计方法(CADD)是药物分子设计的基础。从2O世纪6O年代构效关系方法(QSAR)提出以后.经过40多年的努力和探索,CADD方法已经发展成为一门完善和新兴的研究领域。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等作用的药效模型,从而达到药物设计之目的。计算机辅助药物设计方法(CADD)大体可以分为三类:基于小分子的药物分子设计方法、基于受体结构的药物分子设计方法、计算组合方法。计算机辅助药物设计是研究与开发新药的一种崭新技术,它大大加快了新药设计的速度,节省了创创新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。

关键词:药物分子设计计算机模拟分子模拟活性位点分析法

ABSTRACT:In those past years, a variety of new diseases were appeared. So, it’s vary essential for us to find the drugs that can cure these diseases. And with the fast development of computer technology, the applying of computer in the simulations of these new drugs has become a new method. In this paper, I will draw a general overview of those methods to introduce the applications in the design process of the new drugs. The method of Computer Aided Drug Design(℃ADD)was the basis 0f drugs molecule design which was proposed in 1960.During the last 40 years,the CADD method has been widely applied as a burgeoning and potential research area.The aim of CADD is to design drug according to the pharmacodynamic model between the drugs and the enzyme or receptor which is applied the quantum mechanics.molecular dynamics,and quantitative structure—activity relationship.The CADD includes three methods:method basing on the ligand,method basing on the receptor,and combinatorial chemistry method.The CADD is a new technology to research drug which can accelerate the speed of drug design,economize the manpower and material resources.

KEY WORDS:Drug molecular design;computer simulation; molecular simulation;active site analysis

引言

传统药物设计从总体上来讲,缺乏成熟完善的发现途径,具有很大的盲目性,一般平均要筛选10000种以上的化合物才能得到一种新药,因此开发效率很低。随着计算机技术及计算化学、分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。运用计算机模拟来进行新药的分子结构设计主要有三种方法:分子对接设计、遗传算法以及计算机辅助

分子设计方法(CAMD)。

一分子对接与药物设计

1原理以及分类

分子对接的原理是互补匹配原理,就是将配体分子放置于受体的活性位点处,寻找其合理的取向和构象。在分子对接过程中要特别注意考虑的问题有配体与受体如何匹配,如何确定最佳匹配,如何实现最佳匹配。

其中根据分子对接在药物设计中的用途可将分子对接分为两类,一类是细致对接,它主要用于改造或设计配体分子,对精度要求较高,如考虑较多的分子柔性、溶剂作用等,有时还需要对亲和性作出估计,对速度的要求不很严格,一次对接计算机通常是在几个小时内完成;另一类是粗略对接,它主要用于对化合物数据库的筛选,从中找出可能与受体结合的化合物,对于速度的要求较高,对接时计算机必须以很快的速度完成对单个小分子的对接,因此导致对接精度不高。

根据对接时计算量的简化程度可以将分子对接分为刚性对接、半柔性对接和柔性对接。刚性对接是指在对接过程中,研究体系的构象不发生变化,只考虑配体分子在受体活性位点处的位置和取向,适合用于考察比较大的体系,计算较为粗略,原理较为简单;半柔性对接是指在对接过程中,研究体系尤其是配体的构象允许在一定程度内变化,比如考虑配体的可旋转键的变化等,适合用于处理小分子和大分子之间的对接,其中小分子的构象可以发生变化而大分子则不可以,其计算效率较高;柔性对接是指在对接过程中,同时考虑受体和配体的柔性信息,即研究体系的构象基本是可以自由变化的,一般用于精确考察分子之间的识别情况,但是需要耗费较长的计算时间。

根据对接时配体分子的结构可分为两种,一种是整体分子对接方法,是指运用一种特定搜索算法考察配体分子在受体结合部位的能谱,并找出对应于给定评分函数的最优结合方式,其中有代表性的软件有DOCK3.5,Auto dock;另一种是基于片段的分子对接方法,是将配体分子视为若干个结构片段的集合,先将其中一个或数个基本片段放入受体结合口袋,然后在活性部位构建分子的其余部分,最终得到理论上最优的结合方式,其中有代表性的软件是DOCK4,DOCK5,Flex X。基于片段的分子对接方法通常较整体分子对接方法快。

2 适用领域

分子对接使用的领域有全新药物设计、虚拟筛选、为虚拟筛选构建组合库、分子识别等。分子对接用于全新的药物设计时,其目的是针对特定的生物活性大分子设计出与之具有较好结合亲和力的小分子药物,因此关键是对接结果的精度,对接的时效性指标可列居其次;分子对接是虚拟筛选的核心技术;组合化学和高通量筛选是近年来迅速发展起来的先导物发现与优化的方法。但如何提高所构建组合库的有效性和多样性仍是当前组合化学发展的一大难题。采用分子对接筛选虚拟组合库的策略是解决这一问题的重要途径。

3 成功实例

[1]Kuntz等利用DOCK程序研究HIV-1蛋白酶体系,根据分子相似性对剑桥晶体数据库进行搜寻,得到bromperidol及其同系物氟哌啶醇(haloperid01)的结构,以及氟哌啶醇的硫缩酮衍生物溴哌啶醇(thioketal);

[2]DesJarlais利用改进版DOCK程序(target-DOCK)搜寻HIV-1蛋白酶抑制剂发现了HIV-1蛋白酶环亚砜类抑制剂;

[3]Shoichct对胸苷酸合成酶进行DOCK搜寻,发现了舒利苯酮(sulibenzone)和酚

百里酚酞(phenol thymol phthalein)的结构;

[4]Bodian用DOCK程序进一步搜索到在体内有抗病毒活性的先导化合物的类似物;

[5]Ring利用DOCK程序针对血吸虫丝氨酸蛋白酶和疟原虫半胱氨酸蛋白酶的三维结构进行数据库搜寻,发现有两个化合物对血吸虫丝氨酸蛋白酶活性达10u mol/L,有一个化合物对疟原虫半胱氨酸蛋白酶活性也达10umo/L,被用于测定抗寄生虫药理活性。利用DOCK程序产生的结合模型作进一步结构改造,有一个化合物阻断疟原虫传染或在红细胞中成熟IC50=150nmo/L;

[6]Jefferson医学院的研究人员利用DOCK3.5程序,考察150000个有机分子与T细胞表面CD4受体结合部位相互作用,考虑了形状上互补和电荷的相互作用,筛选出41个化合物,进一步通过生物学实验,成功地确定了其中3个结合活性较好的化合物,发展成为候选药物分子;

[7]Chen等利用DOCK4.0对NCI数据库进行了计算机筛选,对初筛结果进行更充分构象搜索和能量优化的二次筛选,寻找到对HIV整合酶有较强抑制活性的新型结构的化合物;

[8]中国医学科学院药物研究所利用构效关系分析方法和分子对接方法开发的环氧合酶-2抑制剂已经进入临床前研究;

4 发展方向

分子对接技术在运用了这些年后,已经有了一定的发展方向,这些发展方向有柔性对接、溶剂化效应、并行计算和反向对接等几个方面。

二遗传算法

1 原理

遗传算法(genetic algorithm,GA)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存+检测”的迭代过程的搜索算法。

我们习惯上把Holland 1975年提出的GA称为传统的GA。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。把待求解问题表示成串(或称染色体或个体),一般为二进制或整数码串。多个染色体构成一群串(或称种群),并将它们置于问题的求解环境中。根据适者生存的原则,从中选出适应环境的串进行复制,且通过选择(selection)、交叉(C~SSOVeF)和变异(mutation)操作去繁衍它们的后代。经过一代代地不断变化,收敛到一个最适应环境的种群上,即所求问题的最优解集。在传统的遗传算法中,选择、交叉和变异构成了最基本的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定5个要素则组成了遗传算法的核心内容。

2 基本步骤

(1)编码:GA在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合便构成了不同的点。目前,最常用的编码方式为二进制码。

(2)产生初始的种群:一般由计算机随机产生N个初始字符串,每个串结构数据称为一个个体,多个个体就构成了一个种群。GA以这个串结构数据作为初始点开始迭代优化过程。

(3)适应性函数值评估检测:适应性函数表明个体或解的优劣性,根据适应性函

数的计算值,可以很好地控制个体生存的机会,以体现适者生存的自然法则。

(4)选择:选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代来繁衍下一代。选择依据的原则是适应性大的个体为下一代贡献一个或多个后代的概率大。

(5)交叉操作:交叉操作是遗传算法中最主要的遗传操作。对于依照复制原则被选中的个体,如果采用的是单点交叉的操作,则通过随机原则选择位置i(1≤i≤n),交换两个字符串位置左边(或右边)的部分,产生两个新的个体,这两个新个体分别包含了其父辈的特征。目的在于通过产生新的基因组合,形成新的个体。

(6)变异:变异首先在群体中随机选择一个个体,对于选中的个体以一定的概率随机地改变串结构数据中某个串的值。同生物界一样,GA中变异发生的概率很低,通常取值在0.001—0.01之间。变异为新个体的产生提供了机会。当二进制码串某个位置选定为突变位点时,该位从1变为0或从0变为1。

3在药物设计中的应用

目前,遗传算法已经成为计算机辅助药物分子设计中应用最为广泛的优化方法之一,其在计算机辅助药物分子设计中的应用主要包括以下几个方面。

(1)二维定量构效关系(2D-QSAR)

QSAR就是通过一些数理统计方法建立起一系列化合物的生理活性或某种性质与其物理化学性质之间的定量关系。在传统的2D-QSAR研究中,多重线性回归是最为常用的统计方法。在建立多重线性回归模型的时候,怎样选择合适的参数一直是定量构效关系研究中的一个难题。研究表明,遗传算法是一种非常有效的参数选择方法,此外,通过分析遗传算法的计算结果,还可以得到一些其它方法所不能提供的信息。

(2)比较分子场分析(comparative molecular field analysis)

在三维定量构效关系(3D-QSAR)方法中,比较分子场分析(COMFA)方法可能是目前最为成熟且应用最为广泛的方法。COMFA计算中关键的步骤之一就是如何得到研究分子的活性构象并对这些活性构象进行合理的叠合,它是保证COMFA计算是否成功的前提条件。实验已经证实,药物分子在生物体内的活性构象一般不会采取能量最低的构象,而是处于能量较低的状态。

(3)虚拟受体方法(virtual receptor)

虚拟受体方法是近几年来迅速发展的一种3D—QSAR方法。它的基本思路就是用多种探针原子和基团在药物分子表面建立一个虚拟的受体环境,虚拟受体和药物分子之间相互作用的差别反映了药物分子之间活性的差别。

(4)药效团模型方法

药效团模型泛指在生物活性分子(一般指配体小分子)中对活性起重要作用的“药效特征元素”的空间排列形式。这些“药效特征元素”可以认为是配体和受体发生相互作用时的活性部位。药效团模型方法一般包括两个层面的内容:即药效团模型的识别以及基于药效团模型的数据库搜索。

(5)分子对接(molecular docking)

所谓分子对接就是两个或多个分子之间通过几何匹配和能量匹配而相互识别的过程。分子对接的目的是如何找到底物分子和受体分子的最佳结合位置。因此,分子对接会面对两个重要的问题:如何找到最佳的结合位置以及如何评价对接分子之间的结合强度。遗传算法作为一种优秀的并行优化方法,在分子对接中的应用得到了越来越多的关注。

(6)构象分析(conformation analysis)

构象分析的目的是得到分子在构象空间中符合要求的一个构象或多个构象。遗传算法最大的特点就是可以有效地处理多变量问题,而构象搜索正属于这样的问题,因此采用遗传算法进行构象搜索可以充分发挥遗传算法的优势。

(7)虚拟组合化学(virtual combinatorial chemistry)

组合化学能够通过化学反应系统平行合成大量的化合物,能同时产生成千上万的化合物。而虚拟组合化学方法则是通过计算机辅助产生包含大量化合物的虚拟化合物库。当多样性空间的前体反应物被选定之后,从此获得的虚拟组合化学库所含有的产物数量极大。近些年,遗传算法在虚拟库的设计和筛选方面也得到了一些进展,这其中比较有代表性的就是Sheridan提出的基于遗传算法的组合库优化方法。

4 特点和缺陷

遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势,它的主要特点有(1)搜索过程不直接作用在变量上,而是在参数集进行了编码的个体;(2)搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化;(3)采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则;(4)遗传算法优化的过程具有隐含的并行性。

虽然遗传算法具有很多的优点,也已在实际中得到了广泛的应用,但它也存在许多需要解决的问题,主要包括:如何避免遗传优化的过早收敛;如何改进遗传操作手段以及引入新的遗传操作来提高算法的效率;如何把遗传算法和其它优化算法相结合来产生更加有效率的算法;如何在理论上对遗传算法进行更加完善有效的理论分析;如何更加有效地开辟遗传算法以及其改进算法在实际应用的新领域。

对于上述问题,随着近些年遗传算法研究的不断深入,有些问题已经基本解决,有些问题则已部分解决或正在解决当中。

三计算机辅助药物设计方法(CADD)

1 一般原理

计算机辅助药物设计方法(CADD)是药物分子设计的基础。从20世纪60年代构效关系方法(QSAR)提出以后,经过40多年的努力和探索,尤其是20世纪90年代以后,随着多种新的方法的出现,CADD方法已经发展成为一门完善和新兴的研究领域,它大大提高了药物开发韵效率,为人们攻克一些顽症提供了崭新的思路和成功的希望。

计算机辅助药物设计的一般原理是,首先通过X一单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息。然后再运用数据库搜寻或者全新药物分子设计技术,识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的生物活性,经过几轮循环。即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析、数据库搜寻、全新药物设计。

2 分类

(1)基于小分子的药物分子设计方法:主要是针对受体结构未知的药物分子,主要包括定量构效方法和药效团模型方法。

(2)基于受体结构的药物分子设计方法:随着分子生物学和结构生物学的发展,

越来越多的生物大分子结构被解析,因此对于一些未知三维结构的受体大分子,它们的结构常常也可以通过同源蛋白质建模的方法得到。在这种情况下,就可以采用基于受体结构的药物分子设计方法来寻找新的先导化合物。基于受体结构的药物分子设计方法的思路是通过研究受体结构的特征以及受体和药物分子之间的相互作用方式来进行药物设计。常用的方法是分子对接方法和从头设计方法。(3)计算组合方法:主要包括两部分的内容。一方面是采用计算机技术设计合成组合库的构造块,通过计算机生成包含足够分子多样性的虚拟组合库;另一方面则是把得到的虚拟组合库和其它分子设计方法结合起来进行药物分子设计。

3 在药物分子设计中的应用研究

近年来,国内药物设计与分子模拟研究工作取得了长足的进展,其中,定量构效关系在药物研究中的应用广泛,已成为药物结构改造的一个有力工具;分子模拟研究发展较快。在一下几个方面取得了较高水平的成果。

(1)定量构效关系:一旦确定已知的化合物的生物活性与其结构之间的定量关系,研究者就可以依据这一关系对化合物结构进行改造,以获得更高的活性。3D —QSAR(尤其是比较分子力场分析方法)由于其预测能力强,模型形象、直观,已成为最常用的药物设计方法之一;

(2)基于结构的药物设计:是寻找新结构的药物先导化合物的方法之一,国内运用基于结构的药物设计方法发现活性化合物的例子也越来越多。在对已知抑制剂与磷脂酶A2的复合物晶体结构的分析的基础上,设计了新的抑制剂。并利用SCORE程序对其生物活性进行了预测。随后进行了化学合成及药理测试,结果表明设计的两种化合物都有一定的活性,并且实验值与SCORE的预测值具有对应关系;

(3)分子模拟:通过对生物大分子的结构和动力学行为的模拟,为阐明其结构、生物功能提供了丰富的信息。一般来说,这些信息用实验方法获取是比较困难的,因此,分子模拟已成为研究生物大分子结构和功能的一种重要手段;

(4)数据库与虚拟筛选:如果已经掌握了足够的有关靶标以及与靶标结合的化合物的信息,针对大的化合物数据库的虚拟筛选非常具有吸引力,并可作为一种与高通量筛选互为补充的寻找先导化合物的方法。

4 设计方法中的难题

计算饥辅助全新药物设计是药物设计向前发展的一个新的阶段,目前尚存在以下问题需要解决:①蛋白质受体三维结构的真实性问题;②设计出来的药物分子能否顺利地化学合成以及合成的成本问题;③药物在体内的稳定性问题;④药物的毒副作用问题。这些问题仍然需要我们在今后进行不断地探索和实验已找到令人满意的解决方法。

四展望

计算机辅助分子设计研究从60年代Han sch的早期研究以来,已经经历了二维水平的经典QSAR和三维水平上的3D-QSAN以及全新药物设计两个阶段,正进入一个快速发展的时期。它融合了化学、生物、医学和计算机等多种学科的最新成果,正成为一门新兴的边缘学科。

随着核磁共振技术和X射线衍射技术的发展,蛋白质大分子的晶体结构解析方法有了很大的发展,越来越多的蛋白质分子晶体结构被解析出来,基于结构的全新药物设计方法在药物设计研究中的作用将日益重要。这方面的研究十分活跃,出现了许多结构产生(structure generation)的算法,这些算法各有特点,很难

说哪一个更好。在实际的药物设计项目中,最好是多试验几种方法,以产生各种不同结构的先导结构。应该指出的是,无论使用哪种方法,在药物设计的最后阶段都应对所产生的结构进行再评价并进行结构优化和修饰。

可以预见,计算机辅助分子设计将在今后的药物设计和开发中起到越来越大的作用。但我们也应认识到,目前对CAMD不能寄予不切实际的幻想,期望坐在桌子旁边随心所欲地描画出各种药理活性最好的药物目前是不现实的。今后计算机辅助药物设计的趋势是由现在的仅考虑药物与受体结合,逐步向基于药物作用机制的计算机辅助药物设计方向全面发展。更快更节约的开发出新的药物,为人类造福。

抑制肿瘤细胞增殖的药物筛选方法

抑制肿瘤细胞增殖的药物筛选方法 09级生科3班余振洋200900140156 一、【实验原理】 1.关于恶性肿瘤和抗肿瘤药物: 恶性肿瘤是一种常见病,严重威胁着人类的生存质量,被称为人类健康的第一杀手。多年来人类一直在不断的进行抗肿瘤药物的研究,抗肿瘤药物的筛选是整个研究过程中很重要的个环节,而进行药物的筛选首先离不开合理的筛选方法和系统。寻找选择性强、对实体瘤有效的新型抗肿瘤药物,是摆在抗肿瘤药物研究人员面前的重要任务。世界各国对抗肿瘤药物的筛选都非常重视,投入了大量的人力、物力、财力,每年都有大量的化合物(合成药、天然产物和微生物发酵产物)待筛,抗肿瘤药物筛选方法的发展经历了一个探索的过程。 8O年代中期以前,普遍采用的筛选方法是以体内小鼠白血病/淋巴瘤模型P388和L1210为基础的 J,所有化合物在进一步的临床研究之前必须通过这种小鼠肿瘤模型的筛选。即小鼠白血病P388和L1210作为第一轮初筛,能通过第一轮初筛的化合物才能被允许进入第二轮筛选。这种方法有一个很明显的缺陷就是一些在临床上有活性的药物将被筛选掉,无法保证所有具有抗肿瘤作用的药物都能通过筛选。鉴于以前的筛选方法存在较大的缺陷,1985年之后以NCI为首的一些研究单位普遍开始采用针对疾病的筛选方法来代替针对化合物的筛选方法,即放弃体内小鼠筛选,代之为体外代表各种常见实体瘤的人类肿瘤细胞株筛选。这种筛选系统是一种高通量的抗肿瘤筛选体系,其主要优势有两点:其一是多种细胞株初筛有可能筛选出对特殊的人类肿瘤或对特殊组织亚型有活性的物质;其二是这种体外筛选尤其适合于复杂天然产物提取物中有效成份的证实,过去动物筛选需较大量的天然产物,而现在天然产物的需要量就大大减少,可以指导有效成份的进一步分离纯化,使得从天然产物中发现新的抗肿瘤药物更加便利。 2.关于筛选方法: 下面为现阶段较为普遍采用的一些抗肿瘤药物的筛选方法的实验原理。 1)以端粒酶活性为作用靶点筛选抗肿瘤药物 端粒是染色体特殊结构,起着保护染色体的完整和稳定性的作用,端粒酶是一种核糖核蛋白返转录酶,由RNA和蛋白质组成,可以以自身的RNA为模板合成端粒末端。已发现在正常的体细胞和良性肿瘤组织中端粒酶活性是阴性,而在人体恶性肿瘤组织和人的肿瘤细胞株中都表达了很高的活性。因此,认为端粒酶与恶性肿瘤的发生发展有密切的关系,有可能成为肿瘤治疗的靶点。 2)应用快速荧光素测定法筛选抗肿瘤药物 快速荧光素测定法是一种近几年发展起来的应用非常广泛的体外药物敏感性测定方法,其原理为采用一些特殊的荧光染料,对细胞的特定成份进行染色或标记。或通过细胞酶的作用使无荧光性的材料分解或转换为荧光材料,通过测定荧光强度从而测定出活细胞的量。现在普遍采用一种特殊的荧光染 FDAL1u(Fluoreseein diacetate),在正常情况下它不具有荧光,但当它加人到具有完整细胞膜的肿瘤细胞的营养液中时,由于细胞分泌的水解酶的作用,FDA

虚拟药物筛选与药物分子设计教程与实战

药物分子设计前沿 摘要:近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着计算机技术的高速发展,运用计算机进行新药的模拟实验已经成为一种新的方法。本文就对这些方法做一个总的综述来介绍这些方法在新药设计过程中的应用过程。计算机辅助药物设计方法(CADD)是药物分子设计的基础。从2O世纪6O年代构效关系方法(QSAR)提出以后.经过40多年的努力和探索,CADD方法已经发展成为一门完善和新兴的研究领域。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等作用的药效模型,从而达到药物设计之目的。计算机辅助药物设计方法(CADD)大体可以分为三类:基于小分子的药物分子设计方法、基于受体结构的药物分子设计方法、计算组合方法。计算机辅助药物设计是研究与开发新药的一种崭新技术,它大大加快了新药设计的速度,节省了创创新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。 关键词:药物分子设计计算机模拟分子模拟活性位点分析法 ABSTRACT:In those past years, a variety of new diseases were appeared. So, it’s vary essential for us to find the drugs that can cure these diseases. And with the fast development of computer technology, the applying of computer in the simulations of these new drugs has become a new method. In this paper, I will draw a general overview of those methods to introduce the applications in the design process of the new drugs. The method of Computer Aided Drug Design(℃ADD)was the basis 0f drugs molecule design which was proposed in 1960.During the last 40 years,the CADD method has been widely applied as a burgeoning and potential research area.The aim of CADD is to design drug according to the pharmacodynamic model between the drugs and the enzyme or receptor which is applied the quantum mechanics.molecular dynamics,and quantitative structure—activity relationship.The CADD includes three methods:method basing on the ligand,method basing on the receptor,and combinatorial chemistry method.The CADD is a new technology to research drug which can accelerate the speed of drug design,economize the manpower and material resources. KEY WORDS:Drug molecular design;computer simulation; molecular simulation;active site analysis 引言 传统药物设计从总体上来讲,缺乏成熟完善的发现途径,具有很大的盲目性,一般平均要筛选10000种以上的化合物才能得到一种新药,因此开发效率很低。随着计算机技术及计算化学、分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。运用计算机模拟来进行新药的分子结构设计主要有三种方法:分子对接设计、遗传算法以及计算机辅助

第九章 药物合成设计原理和方法 答案

第九章 药物合成设计原理和方法 答案 一、 名词解释 1、 靶分子:就合成设计而言,凡是合成的有机分子均可称为“靶分子”(target molecule )。 2、 合成子:是组成靶分子或中间体骨架的各个单元结构的活性形式(synthon )。 二、 完成下列反应 1、 生物碱鹰爪豆碱的合成 N H O HCHO HOAc N N O 2 + + Hg(OAc)2 2 2、 喜树碱中间体的喹啉环的合成 NH 2CHO N O O CO 2Me CO 2N O N O OMe N O CO 2Me COOH N + Friedlander 1)MeOH/HCl 3、β - 咔啉的合成 N H NH 2 N H NH Ar Pictet-Spengler 4 、 Ar C CH 2CH 3 O 2 2) HC(OMe)3/MeSO 3H/MeOH/△ OMe OMe ArC H C CH 3 X 2ArCHCOOMe CH 3 22)浓 HCl CH 3 ArCHCOOH 5、全身麻醉药氟烷的合成。

CF2Cl CF2 Zn,CH3OH 40℃F2C CFCl BrF2C CHFCl AlCl 50℃ F3C CHBrCl 三、按要求完成下列化合物全合成。 1、采用逆合成分析法完成布洛芬(Ibuprofen)的逆推过程并写出合成的反应。 i-Bu COOH i-Bu COOH FGA FGI i-Bu OH CN i-Bu i-Bu i-Bu OH CN O Fc i-Bu+ Cl O Ca i-Bu CN Ea i-Bu Cl +NaCN i-Bu+HCHO+HCl (ZnCl2) Fb 2、采用逆合成分析法完成下面化合物的逆推过程并写出合成的反应。 CHO OH CHO OH Cb CHO + HCHO (NaOH/H2O/MeOH) OH COOH (Al(OPr)3/PhC O) (DIBAL/THF) 3、采用逆合成分析法完成茉莉酮的逆推过程并写出合成的反应。 O O O C5H9 O O FGA C5H9 O O EtO2C O Cb (NaOH/H2O/EtOH)1)NaOH/H2O 2)HCl/△

菌种筛选方法 (2)

菌种筛选方法 在实际工作中,为了提高筛选效率,往往将筛选工作分为初筛和复筛两步进行。初筛的目的是删去明确不符合要求的大部分菌株,把生产性状类似的菌株尽量保留下来,使优良菌种不致于漏网。因此,初筛工作以量为主,测定的精确性还在其次。初筛的手段应尽可能快速、简单。复筛的目的是确认符合生产要求的菌株,所以,复筛步骤以质为主,应精确测定每个菌株的生产指标,测得的数据要能够反映将来的生产水平。 1 从菌体形态变异分析有时,有些菌体的形态变异与产量的变异存在着一定的相关性,这就能很容易地将变异菌株筛选出来。尽管相当多的突变菌株并不存在这种相关性,但是在筛选工作中应尽可能捕捉、利用这些直接的形态特征性变化。当然,这种鉴别方法只能用于初筛。有人曾统计过3,484个产维生素B2的阿舒假囊酵母(Eremoth ecium ashbyii)的变异菌落,发现高产菌株的菌落形态有以下特点:菌落直径呈中等大小(8-10毫米),凡过大或过小者均为低产菌株;色泽深黄色,凡浅黄或白色者皆属低产菌株。又如,在灰黄霉素产生菌荨麻青霉(Penicillium urticae)的育种中,曾发现菌落的棕红色变深者往往产量有所提高,而在赤霉素生产菌藤仓赤霉(Gibberell a fujikuroi)中,却发现菌落的紫色加深者产量反而下降。 2 平皿快速检测法平皿快速检测法是利用菌体在特定固体培养基平板上的生理生化反应,将肉眼观察不到的产量性状转化成可见的

"形态"变化。具体的有纸片培养显色法、变色圈法、透明圈法、生长圈法和抑制圈法等,见图。这些方法较粗放,一般只能定性或半定量用,常只用于初筛,但它们可以大大提高筛选的效率。它的缺点是由于培养平皿上种种条件与摇瓶培养,尤其是发酵罐深层液体培养时的条件有很大的差别,有时会造成两者的结果不一致。图平皿快速检测法示意图平皿快速检测法操作时应将培养的菌体充分分散,形成单菌落,以避免多菌落混杂一起,引起"形态"大小测定的偏差。 1) 纸片培养显色法将饱浸含某种指示剂的固体培养基的滤纸片搁于培养皿中,用牛津杯架空,下放小团浸有3%甘油的脱脂棉以保湿,将待筛选的菌悬液稀释后接种到滤纸上,保温培养形成分散的单菌落,菌落周围将会产生对应的颜色变化。从指示剂变色圈与菌落直径之比可以了解菌株的相对产量性状。指示剂可以是酸碱指示剂也可以是能与特定产物反应产生颜色的化合物。 2) 变色圈法将指示剂直接掺入固体培养基中,进行待筛选菌悬液的单菌落培养,或喷洒在已培养成分散单菌落的固体培养基表面,在菌落周围形成变色圈。如在含淀粉的平皿中涂布一定浓度的产淀粉酶菌株的菌悬液,使其呈单菌落,然后喷上稀碘液,发生显色反应。变色圈越大,说明菌落产酶的能力越强。而从变色圈的颜色又可粗略判断水解产物的情况。 3) 透明圈法在固体培养基中渗入溶解性差、可被特定菌利用的营养成分,造成浑浊、不透明的培养基背景。将待筛选在菌落周围就

抗肿瘤药物体内筛选试验标准操作规程(SOP)

抗肿瘤药物体内筛选标准操作规程概述: 抗肿瘤药物是指能够直接杀伤或抑制肿瘤细胞生长或增殖的一类药物,作用机制包括抑制肿瘤细胞核酸或蛋白质的合成、干扰大分子物质代谢、干扰微管系统、抑制拓扑异构酶等。 本操作规程包括与抗肿瘤药物申请临床试验和申请上市有关的非临床有效性和安全性研究的内容,其中着力强调非临床有效性和安全性之间的关联性,以及非临床研究和临床试验之间的关联性。旨在一方面为抗肿瘤药物的非临床研究提供技术参考;另一方面,通过技术要求引导科学有序的研发过程,使国内此类药物的研发更趋规范和合理。 本操作规程仅代表目前对抗肿瘤药物非临床研究的一般性认识。具体药物的非临床研究应在本指导原则的基础上,根据药物的自身特点制订研究方案。 研究目的: 建立一套包括抗肿瘤药物体内作用的药效学研究和评价体系及相应的标准操作规程以 及抗肿瘤药物安全性和作用新机制的研究。 ①有效性研究 抗肿瘤药物有效性研究的目的主要在于探索受试物的作用机制、作用强度、抗瘤谱等,为之后的安全性评价以及临床试验中适应症、给药方案的选择提参考信息。 ②安全性评价 安全性评价的目的主要包括:(1)估算 I 期临床试验的起始剂量;(2)预测药物的毒性靶器官或靶组织;(3)预测药物毒性的性质、程度和可逆性;(4)为临床试验方案的制订提供参考。 研究计划: (a)小鼠急性毒性测试

按照急性毒性测试的常规方法,选用昆明种小鼠,通过腹腔注射方式给药,测定体外抗肿瘤活性突出的化合物的半数致死量(LD50),参考给药小鼠体重变化情况,评价化合物的急性毒性,并确定小鼠体内抗肿瘤活性测试的给药剂量。 (b)小鼠体内抗肿瘤活性测试 根据动物体内抗肿瘤活性测试的标准方法,选用昆明种小鼠,皮下接种肉瘤S180或肺癌H22瘤株,选择体外活性突出且急性毒性较低的化合物,设定合适的剂量通过腹腔注射方式给药,以临床常用抗肿瘤药物环磷酰胺作为阳性对照药物,测定肿瘤生长抑制作为体内活性评价指标。 (c)专利保护范围内的化合物的继续合成 申请保护范围较大的专利,合成部分可能具有良好活性的新的化合物,拓展研究范围,发现活性更强的化合物,并申请新的发明专利。并可针对具体化合物申请从属专利,延长高活性化合物的保护期限。 (d)体外抗肿瘤活性的广泛筛选 采用MTT法或台盼蓝染色法,测定化合物对多种人肿瘤细胞株的增殖抑制活性,确定化合物在不同瘤株间抗肿瘤活性的选择性,为裸鼠模型实验提供依据。 (e)抗肿瘤作用机理的深入研究 根据抗肿瘤(f)人癌裸鼠移植瘤模型实验活性化合物作用机理特征,选用微管蛋白聚合等实验从分子水平确认化合物的作用机理;利用人脐静脉血管内皮细胞探讨化合物对内皮细胞骨架的影响及诱导凋亡的途经,从细胞水平上阐明化合物的作用机理。 根据抗肿瘤新药审批办法的要求,采用裸小鼠皮下接种模型和/或原位移植瘤模型,以相对肿瘤增值率和生存时间为指标,确定化合物的抗肿瘤活性。 (g)动物体内药物代谢动力学实验

抗肿瘤药物体内筛选试验标准操作规程(SOP)

抗肿瘤药物体内筛选标准操作规程 概述: 抗肿瘤药物是指能够直接杀伤或抑制肿瘤细胞生长或增殖的一类药物,作用机制包括抑 制肿瘤细胞核酸或蛋白质的合成、干扰大分子物质代谢、干扰微管系统、抑制拓扑异构酶等。 本操作规程包括与抗肿瘤药物申请临床试验和申请上市有关的非临床有效性和安全性 研究的内容,其中着力强调非临床有效性和安全性之间的关联性,以及非临床研究和临床试 验之间的关联性。旨在一方面为抗肿瘤药物的非临床研究提供技术参考;另一方面,通过技术要求引导科学有序的研发过程,使国内此类药物的研发更趋规范和合理。 本操作规程仅代表目前对抗肿瘤药物非临床研究的一般性认识。具体药物的非临床研究 应在本指导原则的基础上,根据药物的自身特点制订研究方案。 研究目的: 建立一套包括抗肿瘤药物体内作用的药效学研究和评价体系及相应的标准操作规程以 及抗肿瘤药物安全性和作用新机制的研究。 ①有效性研究 抗肿瘤药物有效性研究的目的主要在于探索受试物的作用机制、作用强度、抗瘤谱等, 为之后的安全性评价以及临床试验中适应症、给药方案的选择提参考信息。 ②安全性评价 安全性评价的目的主要包括:(1)估算I期临床试验的起始剂量;(2)预测药物的毒性靶器官或靶组织;(3)预测药物毒性的性质、程度和可逆性;(4)为临床试验方案的 制订提供参考。 研究计划: (a)小鼠急性毒性测试 按照急性毒性测试的常规方法,选用昆明种小鼠,通过腹腔注射方式给药,测定体

外抗肿瘤活性突出的化合物的半数致死量(LD5o),参考给药小鼠体重变化情况,评价化合物的急性毒性,并确定小鼠体内抗肿瘤活性测试的给药剂量。 (b)小鼠体内抗肿瘤活性测试 根据动物体内抗肿瘤活性测试的标准方法,选用昆明种小鼠,皮下接种肉瘤 S180或肺癌H22瘤株,选择体外活性突出且急性毒性较低的化合物,设定合适的剂量通过腹腔注射方式给药,以临床常用抗肿瘤药物环磷酰胺作为阳性对照药物,测定肿瘤生长抑制作为体内活性评价指标。 (c)专利保护范围内的化合物的继续合成 申请保护范围较大的专利,合成部分可能具有良好活性的新的化合物,拓展研究范围, 发现活性更强的化合物,并申请新的发明专利。并可针对具体化合物申请从属专利,延长高活性化合物的保护期限。 采用MTT法或台盼蓝染色法,测定化合物对多种人肿瘤细胞株的增殖抑制活性,确 定化合物在不同瘤株间抗肿瘤活性的选择性,为裸鼠模型实验提供依据。 (e)抗肿瘤作用机理的深入研究 根据抗肿瘤(f)人癌裸鼠移植瘤模型实验活性化合物作用机理特征,选用微管蛋白 聚合等实验从分子水平确认化合物的作用机理;利用人脐静脉血管内皮细胞探讨化合物对内 皮细胞骨架的影响及诱导凋亡的途经,从细胞水平上阐明化合物的作用机理。 根据抗肿瘤新药审批办法的要求,采用裸小鼠皮下接种模型和/或原位移植瘤模型, 以相对肿瘤增值率和生存时间为指标,确定化合物的抗肿瘤活性。 (g )动物体内药物代谢动力学实验 选择在人癌裸鼠移植瘤模型实验中活性良好的化合物,开展动物体内药物代谢动力学实验,考查化合物的吸收、分布、代谢、排泄性质。 (h)动物亚急性,长毒实验 根据抗肿瘤新药审批办法的要求,测定动物亚急性、长毒性质,进行药物安全性评价。 基本方法: ①小白鼠的灌胃法

药物合成反应习题集

《药物合成技术》习题集适用于制药技术类专业

第一章概论 一、本课程的学习内容和任务是什么?学好本课程对从事药物及其中间体合成工作有何意义? 二、药物合成反应有哪些特点?应如何学习和掌握? 三、什么是化学、区域选择性?举例说明。 四、什么是导向基?具体包括哪些类型?举例说明。 五、药物合成反应有哪些分类方法?所用试剂有哪些分类方法?举例说明。 六、查资料写一篇500字左右的短文,报道药物合成领域的新技术及发展动 态? 第二章卤化技术(Halogenation Reaction) 一、简答下列问题 1.何为卤化反应?按反应类型分类,卤化反应可分为哪几种?并举例说明。 2.在药物合成中,为什么常用卤化物作为药物合成的中间体? 3.在较高温度或自由基引发剂存在下,于非极性溶剂中,B r2和NBS都可用于烯丙位和苄位的溴取代,试比较它们各自的优缺点。 4.比较X2、HX、HOX对双键离子型加成的机理、产物有何异同,为什么?

5.解释卤化氢与烯烃加成反应中,产生马氏规则的原因(用反应机理)。为什么Lewis 酸能够催化该反应? 6.解释溴化氢与烯烃加成反应中,产生过氧化效应的原因? 7.在羟基卤置换反应中,卤化剂(HX 、SOCl 2、PCl 3、PCl 5)各有何特点,它们的使用范围如何? 二、完成下列反应 C CH 3CH 3 CHCH 3 Ca(OCl)2/AcOH/H 2O 1. Ph 2CHCH 2CH 2OH 2.CH 3 SO 2Cl Cl /AIBN 3. OH 48%HBr 4 CH 3 CH 3 5. 2 O C O CH 3OH I 2/CaO THF/MeOH AcOK Me 2CO ? 6. 三、为下列反应选择合适的试剂和条件,并说明原因。 (CH 3)2C CHCH 3 CHCH 2Br (CH 3)2C 1. CH 3 CH CH COOH CH 3 CH CH COCl 2. HOCH 2(CH 2)4CH 2OH (CH 2)4CH 2I CH 2I 3.

药物筛选方法

药物筛选的方法 分子水平筛选 Microbead FCM联合筛选 原理:FCM(流式细胞术)(flow cytometry)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术,它可以根据穿过毛细管的细胞荧光强度或类型分离细胞。由于不同的分子与标记有不同荧光素的受体或抗体结合,利用和细胞大小相似的Microbead作为固相载体取代细胞通过FCM,不同荧光标记的Microbead就被分离出来,于是靶分子或目标分子就很容易的被分离、纯化。 应用:Lanza等利用这项技术测定了患有脊髓发育不良综合症和急性骨髓源白血病病人体内的各种细胞因子受体CR表达量的变化。 蛋白质-蛋白质;蛋白质-RNA相互作用。 免疫共沉淀(co-immunoprecipitation) 原理:它是利用抗原和抗体的特异性结合以及细菌的Protein A或G特异性地结合到抗体(免疫球蛋白)的Fc片段的现象开发出来的方法。其基本原理是,在细胞裂解液中加入抗兴趣蛋白的抗体,孵育后再加入与抗体特异结合的结合于Agarose珠上的Protein A或G,若细胞中有与兴趣蛋白结合的目的蛋白,就可以形成这样一种复合物:“目的蛋白—兴趣蛋白—抗兴趣蛋白抗体—Protein A或G”,经变性聚丙烯酰胺凝胶电泳,复合物又被分开。然后经免疫印迹或质谱检测目的蛋白。这种方法得到的目的蛋白是在细胞内与兴趣蛋白天然结合的,符合体内实际情况,得到的结果可信度高。 应用:免疫共沉淀一般用于低丰度蛋白的富集和浓缩,为SDS-PAGE(聚丙烯酰胺凝胶电泳)和MS质谱分析鉴定准备样品,常用于测定两种目标蛋白质是否在体内结合;也可用于确定一种特定蛋白质的新的作用搭档。主要用于检测大分子和大分子相互作用。 放射免疫性检测(RIA)(与EIA,FIA相比灵敏度更高,但由于放射性元素,RIA的使用受到了限制)原理: (1)竞争结合分析:Ag(非标记抗原)+ Ab(特异性抗体) - AgAb *Ag(标记抗原)+ Ab(特异性抗体)- *AgAb (2)IRMA(免疫放射分析) 应用: (1)肿瘤相关抗原的测定:AFP,CEA,CA199,CA125,CA153,CA724,CYFRA211,PSA等

抗肿瘤新药

抗肿瘤新药及抗肿瘤分子筛选模型综述 目前,恶性肿瘤是危害人类健康和生命的重大疾病,但抗肿瘤新 药研发是不断更新,有中药,也有西药。长期大量的临床证明 ,西医 西药治疗肿瘤虽然效果较好,但副作用较大。外科手术适用于某些局 部性肿瘤早期和中期的治疗,但多数病人靠手术治疗是不能防止肿瘤 的复发和远处转移的。放、化疗虽然有相当高的治愈率 ,但是常引起 如骨髓抑制、免疫低下等毒副反应,使患者难以坚持治疗。化疗药物 在治疗过程中出现的耐药性,已成为目前临床治疗中的难题之一。正 由于这些原因,我们正要寻找抗肿瘤新药。 紫杉醇(paclitaxel )是从红豆杉科红豆杉属(Taxus )植物的 树皮中提取得到的二萜类化合物。 它是一种新型的微管稳定剂,具有 独特抗癌活性。它在乳腺癌、肺癌、白血病、胃肠道癌及介入治疗后 的血管再狭窄等治疗上有令人鼓舞的疗效。紫杉醇由于资源匮乏和水 溶性低的问题而限制了它的临床应用。其基本结构由浆果赤霉素皿 (baccatin 皿)和连接其13位碳上一苯丙氨酸衍生物构成(图1)。 图 1 紫杉醇化学结构 Fig. 1 Stucture of paclitaxel (taxol) C-ISft 恻链

其作用机制是:作用于细胞微管(Microtuble),通过与微管蛋白N端第31位氨基酸和第217~231位氨基酸结合,诱导和稳定微管蛋白聚 合,抑制其解聚,增加聚合程度,使维管束不能与微管组织中心相互连接,将细胞周期阻断于G/M期,导致有丝分裂异常或停止,阻止癌细胞增殖。生产紫杉醇的方法主要有4种:1.从植物紫杉树皮中提取2.半化学合成法3.植物细胞培养提取4.微生物培养提取。虽然紫杉醇具有独特抗癌活性但是也发现有副作用: a.对造血系统的影响.,骨髓抑制,特别是中性白细胞减少症是一种剂量限制性毒性。中性白细胞减少症往往表现很严重.b.神经毒性.表现为肢体麻木、触觉丧失、伴有疼痛性的感觉异常等 c.过敏反应。主要表现是呼吸急促、低血压. 个人认为该药物还是没有突破传统,只是着眼于细胞增殖,并无特色,制剂工艺往往采取原药研末等落后的加工方法,副作用较大-通病,且由于资源匮乏和水溶性低的问题不能实现大规模应用。下面综述抗肿瘤分子筛选模型: 最近在抗肿瘤药物的研发中,以生物靶分子为基础进行抗肿瘤药物化合物的筛选模型是抗肿瘤药物的研究热点,如何利用筛选模型快速、高效地寻找作用于特定靶标的药物,是目前药物研究的重要问题.过去的抗肿瘤药物大部分是考虑增殖,破坏增殖过程中必要的物质特别是DN为靶点,但最近利用现代分子生物学技术我们研究发现DNA G四 链体结构是一个基础分子被识别作为抗肿瘤药物筛选模型, 其作用机理是能够诱导使DN形成G-四链体结构或者是某些化合物与 G-四链体特异性结合之后稳定,可以抑制肿瘤细胞的增殖,从而达到抗

药物合成反应实验讲义

药物合成反应实验讲义 编写教师:王曼张云凤

目录 实验1 苯妥英钠(Phenytoin Sodium)的合成 (1) 一、目的要求 (1) 二、实验原理 (1) 三、仪器与试剂 (2) 四、实验步骤 (3) 五、结构确证 (3) 思考题: (4) 实验2 尼群地平的合成 (5) 一、实验目的 (5) 二、方案提示 (5) 三、要求 (5) 实验3 阿昔洛韦的合成研究 (6) 一、目的 (6) 二、要求 (6)

实验1 苯妥英钠(Phenytoin Sodium)的合成 (综合性实验11学时) 一、目的要求 1. 学习安息香缩合反应的原理和应用氰化钠及维生素B1为催化剂进行反应的实验方法。 2. 了解剧毒药氰化钠的使用规则。 二、实验原理 苯妥英钠为抗癫痫药,适于治疗癫痫大发作,也可用于三叉神经痛,及某些类型的心律不齐。苯妥英钠化学名为5,5-二苯基乙内酰脲,化学结构式为: H N N ONa O 苯妥英钠为白色粉末,无臭、味苦。微有吸湿性,易溶于水,能溶于乙醇,几乎不溶于乙醚和氯仿。 合成路线如下: CHO 催化剂C CH O [O]C C O O C C O O +C O NH2 NH2 NaOH H N N ONa O 2

三、仪器与试剂 1、主要仪器 磁力搅拌器、温度计、球形冷凝管、三口烧瓶、水浴锅、真空泵、布氏漏斗、抽滤瓶、圆底烧瓶、滴管、量筒、烧杯、玻璃棒、小漏斗等。 2、试剂 名称规格用量 苯甲醛 C.P. 7.5ml NaOH 2mol/L 7.5ml 乙醇 C.P. 20ml VB1 C.P. 2.7g NaOH C.P. 适量 硝酸65%—68%25ml NaOH 15%25ml 醋酸钠 C.P. 1g 尿素 C.P. 3g 乙醇95%40ml 活性炭工业少量95%乙醇-乙醚混合液1:1 少量

天然抗肿瘤药物的筛选方法

物碱,文献报道该类生物碱具有抗肿瘤作用,可治疗皮肤鳞癌、皮肤基层细胞癌等[25,26]。 219 局部麻醉作用:以脊蛙足蹼、豚鼠皮丘、在体蛙坐骨神经丛及蛙、兔椎管等为实验材料的麻醉实验研究证明,不同浓度的菊叶三七水提醇沉液分别具有明显的表面、浸润及传导麻醉作用。椎管注射,脊髓出现先兴奋后抑制现象,有可逆性。其局麻作用强度随着浓度加大而成比例地增强,存在药物浓度2反应依赖关系[27]。 2110 其他作用:菊叶三七还具有明显的镇静、安定、催眠、抗惊厥等中枢神经系统抑制作用[25]。在坦桑尼亚,Shambaa 部族孕妇服一种该属植物土三七根煎剂用以堕胎[28]。2111 毒理研究:该属很多植物中都含有吡咯啶类生物碱,该类生物碱能使肝细胞RNA酶活性下降,RNA、DNA的合成能力下降,细胞不能完成有丝分裂,从而形成多核巨细胞,坏死与RNA合成减少DNA横向断裂有关[25]。以菊三七碱注射液对大鼠进行急性毒性实验,ip50mg/kg,隔日1次, 6次后动物全部死亡,镜检显示肝脏呈广泛急性坏死;在大鼠亚急性实验中肝脏出血、瘀血、变性坏死,并见肝小静脉周围纤维组织增生。菊三七碱剂量与实验持续时间对肝脏病变的程度有显著影响。大剂量短期使用主要引起广泛急性肝坏死,小剂量长期使用除引起肝坏死外,可引起肝小静脉和肝动脉周围组织增生[29]。也有部分该属植物毒性较低,如小鼠po灵菊七,其最大耐受量大于23016g/kg,相当于成人日用量的512倍,说明其毒性极小,口服安全[24]。 3 结语 菊科菊三七草属部分植物,在民间已经被作为药材使用,且具有多方面的药理活性,一方面应注意到该属很多植物中所存在的双稠吡咯啶生物碱对动物和人的肝毒性和致癌作用;另一方面应对除双稠吡咯啶生物碱以外的其他活性成分进行研究。今后应加大对该属植物资源的研究工作为其充分利用提供参考。 参考文献: [1] 广东植物研究所1海南植物志[M]1北京:科学出版社, 19741 [2] 中国科学院植物研究所主编1中国高等植物图鉴[M]1第四 册:北京科学出版社,20021 [3] 唐世蓉,吴余芬,方长森1菊叶三七抗疟成分的提取鉴定 [J]1中草药,1980,11(5):19321951 [4] Russell J,J ameset N,Mabry B,et al113C2NMR Spectros2 copy of pyrrolizidine alkaloids[J]1Phytochemist ry,1982, 21:43924451 [5] 袁珊琴,顾国明,魏同泰1菊叶三七生物碱成分研究[J]1药 学学报,1990,25(3):19121971 [6] Helmut W1Two pyrrolizidine alkaloids from Gy nura scan2 dens[J]1Phytochemist ry,1982,21(11:2767227681 [7] Erhard R,Alexandra E,Helmut W1Pyrrolizidine alkaloids from Gynura divaricata[J]1Planta Med,1996,62(4):3861 [8] Mat heson J R,Robins D J1Pyrrolizidine alkaloids from Gy2 nura sarmentosa[J]1Fitoterapia,1992,63(6):55725611 [9] Ferdinand B,Christa Z1Naturally occurring terpenoid deriv2 atives[J]1Phytochemist ry,1977,16:49424981 [10] Jong T T,Chou H,J u Y1An optically active chromanone from Gy nura f ormosana[J]1Phytochemist ry,1997,44(3): 55325541 [11] Lin W Y,Kuo Y H,Teng C M,et al1Anti2platelet aggrega2 tion and chemical constituent s from t he rhizome of Gy nura j aponica[J]1Planta Med,2003(69):75727641 [12] 胡 勇,李维林,林厚文,等1白背三七地上部分的化学成 分[J]1中国天然药物,2006,4(2):15621581 [13] 卓 敏,吕 寒,任冰如,等1红凤菜化学成分研究[J]1中 草药,2008,39(1):302321 [14] Lin W Y,Teng C M,Tsai I L,et al1Anti2platelet aggrega2 tion constituent s from Gy nura elli ptica[J]1Phytochemis2 t ry,2000,53(8):83328361 [15] Takahira M,K ondo Y,Kusano G,et al1Four new3a2hy2 droxy spirost252ene derivatives from Gy nura j aponica Makino [J]1Tet rahed ron L ett,1977,(41):3647236501 [16] 李丽梅,李维林,郭巧生,等1白背三七化学成分研究[J]1 时珍国医国药,2008,19(1):11821191 [17] 孙凤英,刘晓秋,孙彤伟,等1菊三七化学成分的研究(Ⅱ) [J]1中草药,1992,(2):10221041 [18] 张铭龙,刘文彬,李星元,等1菊三七生物碱的提取以及类 似物的药理活性比较[J]1吉林中医药,1998,4:352381 [19] 李成章1紫背三七止血作用的实验观察[J]1中药通报, 1985,10(9):42624291 [20] 刘贺之,庞 健,王增岭,等1菊三七与参三七对血小板超 微结构影响的研究[J]1药学学报,1982,17(11):80128031 [21] 林 菁,林建忠,李常春,等1红番苋水提物的抗炎作用 [J]1福建中医药,1996,27(2):232241 [22] Zhang X F,Tan B K1Effect s of an et hanolic extract of Gy2 nura p rocumbens on serum glucose cholesterol and triglyceride levels in normal and streptozotocin2induced diabetic rat s[J]1 S ingapore Med J,2000,41(1):92141 [23] 胡 勇,李维林,林厚文,等1白背三七地上部分降血糖作 用研究[J]1西南林学院学报,2007,27(1):552581 [24] 刘 莹,徐向进,陈明珠,等1灵菊七的急性毒性与降糖作 用研究[J]1解放军药学学报,2005,21(5):34023421 [25] 史清水,袁惠南1菊三七研究概况[J]1中草药,1991,22 (8):37723801 [26] 林启寿1中草药成分化学[M]1北京:科学出版社,19771 [27] 刘学韶,刘希智1菊三七的药理作用研究[J]1中草药, 1987,18(6):212241 [28] 余国奠1东非的堕胎和利分娩药用植物[J]1中药通报, 1982,7(5):6281 [29] 刘宝庆,马晋渝,王旭东,等1菊三七碱对动物肝脏毒性的 实验研究[J]1中草药,1984,15(1):272291 天然抗肿瘤药物的筛选方法 顾琳娜1,顾 昊23 (11湖州市药品检验所,浙江湖州 313000;21首都医科大学附属北京朝阳医院,北京 100020) 摘 要:恶性肿瘤是一种严重危害人类健康的疾病。目前发现许多天然药物具有抗肿瘤作用。随着细胞生物学、分子药理学和肿瘤药理学研究的发展,针对细胞和分子靶点的天然药物已成为当今抗肿瘤药物研究的重要方向。在研究过程中,建立合理的抗肿瘤药物筛选方法就显得尤为重要。详细介绍了近年来天然抗肿瘤药物的筛选方 3收稿日期:2008208210

药物合成考试题

一、名词解释 1.亲电试剂亲点试剂一般都是带正电荷的试剂或具有空的p轨道或者d轨道,能够接受电子对的中性分子 2.亲核试剂一些带有未共享电子对的分子或负离子,与正电性碳反应时称为亲核试剂,所谓亲核试剂就是一种电子对供体,即路易威斯 3.硝化反应是向有机化合物分子中引入硝基(—NO2)的反应,硝基就是硝酸失去一个羟基形成的一价的基团 4.协同反应协同反应又称一部反应,是指起反应的分子—单分子或双分子—发生化学键的变化,反应过程中只有键变化的过渡态,一步发生键和断键,没有自由基或离子等活性中间体的产生。 5.自由基反应通过化合物分子中的共价键均型成自由基而进行的反应,在链反应中起了重要的引发、传递和终止过程的作用 6.重氮化反应芳香族伯胺和亚硝酸作用(在强酸介质下)生成重氮盐的反应称为重氮化反应 7.卤化反应卤化反应又称卤代反应,是指有机化合物中的氢或其他基团被卤素取代生成含卤有机化合物的反应 8.缩合反应两个或两个以上有机分子相互作用后以共价键结合成一个大分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应 9.氧化反应有机化反应时把有机物引入氧或脱去氢的反应叫氧化反应 10.烃化反应用烃基取代分子中的氢原子(包括官能团或碳骨架上的氢原子)或通过加成而引入烃基的反应 11.酰化反应为有机化学中,氢或者其他基团被酰基取代的反应 12.重排反应取代基由一个原子转移到同一个分子中的另一个原子上的反应,分子的碳骨架发生重排生成结构异构体的化学反应 13.还原反应物质(分子、原子或离子)得到电子或电子对偏近的反应。有机物反应时把有机物引入氢或失去氧的反应 二、简答题 1.药物合成反应研究的内容有哪些? 讨论药物合成反应的机理,反应物结,反应条件和,方向,反应物之间的关系。反应的主要影响因素实际特点,应用范围与限制。讨论药物合成反应的一般规律和特殊性质一击各基本反映之间的关系。 2.学习药物合成的目的是什么? 答:使学生能系统的掌握药物制备中重要的有机药物合成单元反应和合成设计原理,使学生掌握药物合成的本质和一般规律以及现代药物合成领域中的新理论新试剂和新方法培养对典型药物合成过程中各种变化因素的分析能力及选择合理的工艺条件和控制方法的能力利用药物化学制药工艺学等后续课程的学习为将来从事药物合成生产操作实施常规生产与管理参与新药开发奠定基础 3.药物合成反应主要研究的内容是什么? 答:主要研究反应机理反应的主要影响因素应用范围以及在药物合成中的应用等,以探讨有机药物合成反应的一般规律 4.卤化反应,在药物合成反应中有哪些重要作用 以制备具有不同的生理活性的含卤素有机药物 在官能团转化中,卤化物,常常是一类重要的中间体 为了提高反应选择性卤素原子,可作为保护基,阻断基

肿瘤药物筛选

运用MTT法对一种新型抗肿瘤药物的筛选 1.细胞培养 将几种肿瘤细胞(HEPG2人体肝癌细胞、HELA宫颈癌细胞、MCF-7乳腺癌细胞、PC-3人前列腺癌细胞)用含10%热灭活的小牛血清的RPMI1640培养液于37℃, 5%CO2及饱和湿度下培养。 2.药物处理 将药物单体或提取物分别溶于DMSO, 作用于培养细胞体系。设置药物浓度在0.005至0. 5( mg/ mL) 之间, 等量DMSO作为阴性对照。培养体系中溶剂浓度不超过1%。培养24h 后, 显微镜下观察细胞状态。 3.体外药物敏感性分析 针对药物单体, 以几种肿瘤细胞系为实验模型, 以MTT实验法分 析其体外抗肿瘤活性。 4.MTT比色法实验步骤: 4.1贴壁细胞: (1)、收集对数期细胞,调整细胞悬液浓度,每孔加入100ul,铺板使待测细胞调密度至1000-10000孔,(边缘孔用无菌PBS填充)。 (2)、5%CO2,37℃孵育,至细胞单层铺满孔底(96孔平底板),加入浓度梯度的药物,原则上,细胞贴壁后即可加药,或两小时,或半天时间,但我们常在前一天下午铺板,次日上午加药.一般5-7个梯度,每孔100ul,设3-5个复孔.建议设5个,否则难以反应真实情况 (3)、5%CO2,37℃孵育16-48小时,倒置显微镜下观察。 (4)、每孔加入20ulMTT溶液(5mg/ml,即0.5%MTT),继续培养4h。若药物与MTT能够反应,可先离心后弃去培养液,小心用PBS冲2-3遍后,再加入含MTT的培养液。(5)、终止培养,小心吸去孔内培养液。 (6)、每孔加入150ul二甲基亚砜,置摇床上低速振荡10min,使结晶物充分溶解。在酶联免疫检测仪OD490nm处测量各孔的吸光值。 (7)、同时设置调零孔(培养基、MTT、二甲基亚砜),对照孔(细胞、相同浓度的药物溶解介质、培养液、MTT、二甲基亚砜) 4.2悬浮细胞: (1)、收集对数期细胞,调节细胞悬液浓度1×106/ml,按次序将①补足的1640(无血清)培养基40ul ;②加所要筛选的药物A(有毒性)10ul用培养液稀释l g/ml,需预试寻找最佳稀释度,1:10-1:20);③需检测物10ul;④细胞悬液50ul(即5×104cell/孔),共100ul 加入到96孔板(边缘孔用无菌水填充)。每板设对照(加100 (储存液100 1640)。(2)、置37℃,5%CO2孵育16-48小时,倒置显微镜下观察。 (3)、每孔加入10 ul MTT溶液(5 mg/ml,即0.5%MTT),继续培养4 h。(悬浮细胞推荐使用WST-1,培养4 h后可跳过步骤4),直接酶联免疫检测仪OD570nm(630nm校准)测量各孔的吸光值) (4)、离心(1000转x10min),小心吸掉上清,每孔加入100 ul二甲基亚砜,置摇床上低速振荡10 min,使结晶物充分溶解。在酶联免疫检测仪OD570nm(630nm校准)测量各孔

药物筛选

药物筛选 药物筛选是现代药物开发流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的实验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。药物筛选的过程从本质上讲就是对化合物进行药理活性实验的过程,随着药物开发技术的发展,对新化合物的生理活性实验从早期的验证性实验,逐渐转变为筛选性实验,即所谓的药物筛选。作为筛选,需要对不同化合物的生理活性做横向比较,因此药物筛选的实验方案需具有标准化和定量化的特点。随着组合化学和计算化学的发展,人们开始有能力在短时间内大规模合成和分离多种化合物,因而在现代新药开发流程中药物筛选逐渐成为发现先导化合物的主要途径之一。 筛选模型: 筛选模型就是在药物筛选实验中所应用的药理实验模型,由于药物筛选要求实验方案有标准化和定量化的特征,因而在传统药理实验中常见的动物实验在药物筛选中较少应用,根据实验模型的不同,药物筛选可以分为生化水平的筛选和细胞水平的筛选。 生化水平的药物筛选用拟开发药物作用的靶点设计实验,一般而言这种作用靶点是具有特定生理功能的蛋白质,如酶和受体等,此外一些编码功能明确的DNA也越来越多地成为药物作用的靶点。候选化合物与靶点混合后,可以通过酶连免疫、荧光显色、核磁共振等方法定量测定化合物与靶点的相互作用,从而成为筛选化合物的依据。 细胞水平的药物筛选是更接近生理条件的一种药物筛选模型,其模型是拟设计药物作用的靶细胞,应用细胞培养技术获取所需细胞,将这些细胞与候选化合物相互作用,通过与生化水平筛选类似的检测技术测定化合物的作用能力,从而对化合物进行筛选。 生化水平的药物筛选操作相对简单,成本较低,但是由于药物在体内的作用并不仅仅取决于其与靶酶的作用程度,吸收、分布、代谢、排泄均会对药物的作用产生极大的影响,仅仅一道薄薄的细胞膜就能够阻挡住许多候选化合物成为药物的道路,因而生化水平的药物筛选不确定因素更多,误筛率更高。细胞水平的药物筛选模型更接近生理条件,筛选的准确率更高,但是需要建立细胞模型,操作更复杂,成本更高,数据之间的平行形较差,另外由于技术的限制,有些靶标还不能进行细胞水平的药物筛选。 高通量筛选 高通量筛选最初是伴随组合化学而产生的一种药物筛选方式。1990年代末,组合化学的出现改变了人类获取新化合物的方式,人们可以通过较少的步骤在短时间内同时合成大量化合物,在这样的背景下高通量筛选的技术应运而生。高通量筛选技术可以在短时间内对大量候选化合物完成筛选,经过近十年的发展,已经成为比较成熟的技术,不仅仅应用于对组合化学库的化合物筛选,还更多地应用于对现有化合物库的筛选。目前世界各大药物生产商都建立有自己的化合物库和高通量筛选机构,对有潜力形成药物的化合物进行篦梳式的筛选。 一个高通量药物筛选体系包括微量和半微量的药理实验模型、样品库管理系统、自动化的实验操作系统、高灵敏度检测系统以及数据采集和处理系统,这些系统的运行保证了筛选体系能够并行操作搜索大量候选化合物。高通量筛选技术结合了分子生物学、医学、药学、计算科学以及自动化技术等学科的知识和先进技术,成为当今药物开发的主要方式。完整的高通量筛选体系由于高度的整合和自动化,因而又被称作“药物筛选机器人系统”

相关文档
最新文档