专题:平面的法向量
5.直线的方向向量、平面的法向量以及空间线面关系的判定

因为MN不在平面CDE内 所以MN//平面CDE
四、垂直关系:
设直线 l1 , l2 的方向向量分别为 e1 , e2 ,平面
1 ,2 的法向量分别为 n1, n2 ,则
线线垂直 l1 l2 e1 e2 e1 e2 0 ; 线面垂直 l1 1 e1 // n1 e1 n1 ;
例3. 在空间直角坐标系内,设平面 经过 点 P(x0 , y0 , z0 ) ,平面 的法向量为 e ( A, B, C), M (x, y, z) 为平面 内任意一点,求 x, y, z
满足的关系式。
解:由题意可得 PM (x x0, y y0, z z0 ), e PM 0
l / /
e n0 a1a2 b1b2 c1c2 0;
例4 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDE
3
3
简证:因为矩形ABCD和矩形ADEF 所在平面互相垂直,所以AB,AD,
l
给定一点A和一个向量 n,那么过点A, 以向量 n 为法向量的平面是完全确定的.
几点注意:
n
1.法向量一定是非零向量;
A 2.一个平面的所有法向量都互相平行;
3.向量 n是平面的法向量,向量 m 是
与平面平行或在平面内,则有
nm 0
例 1:在正方体 ABCD A1B1C1D1 中,求 证: DB1 是平面 ACD1 的法向量
所以 DB1 平面 ACD ,从而 DB1 是 平面 ACD1 的一个法向量.
例2:已知AB (2, 2,1), AC (4,5,3),求平面ABC的
高中数学-平面的法向量

14
例:(试用向量方法证明直线与平面垂直的判定定理)
已知直线m ,n是平面 内的两条相交直线,
如果 l⊥m, l ⊥n,求证: l ⊥ .
l
分析:要证明一条直线与一个平面
垂直,由直线与平面垂直的定义可 知,就是要证明这条直线与平面内 的任意一条直线都垂直.
gl
m
m n mg
取已知平面内的任一条直线 g ,拿相关直线的方 向向量来分析,看条件可以转化为向量的什么条件?要 证的目标可以转化为向量的什么目标?怎样建立向量 的条件与向量的目标的联系?
l m 0, l n 0 ,
gl
m
l g 0,即l g.
m n ng
l g,即l垂直于平面内任一直线.l .
16
6.有关平面的斜线概念, 三垂线定理及其逆定理 P104
17
什么叫平面的斜线、垂线、射影?
P
oa
α
A
PO是平面α的斜线,
O为斜足; PA是平面α 的垂线, A为垂足; AO
12
(1, 2,2)或 ( 1,2, 2).
3 33
33 3
练习 1:已知 AB (2, 2,1), AC (4, 5, 3), 求平面 ABC 的
单位法向量.
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .
∴
( (
x, x,
3 33
33 3
13
例 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDEபைடு நூலகம்
xoy平面的法向量

xoy平面的法向量
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。
法向量适用于解析几何。
由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。
求曲面上一点的法向量方法如下:1、曲面由方程f(x,y,z)=0决定,相应的某一点m的法向量你只需要对应的求偏导数就可以了;2、由于法向量所在的是一条直线,所以方向来讲有两个,如果没有特别要求一般是可以随便选择的,如果是坐标的曲面积分什么的,需要注意一下和xyz正方向之间的夹角,因为这关系到面积投影的正负。
空间平面法向量求法

空间平面法向量求法一、法向量定义定义:如果,那么向量叫做平面的法向量。
平面的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法1、内积法在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)],在平面内任找两个不共线的向量,。
由,得·=0且·=0,由此得到关于x,y的方程组,解此方程组即可得到。
2、任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。
Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一般方程。
其法向量=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。
3、外积法设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为两者交角,且0<θ<π,而与,, 皆垂直的向量。
通常我们采取“右手定则”,也就是右手四指由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。
设=(x1,y1,z1),=(x2,y2,z2),则×=(注:1、二阶行列式:;2、适合右手定则。
)Codepublic double[] GetTriangleFunction(ESRI.ArcGIS.Geometry.IPoint point1,ESRI.ArcGIS.Geometry.IPoint point2, ESRI.ArcGIS.Geometry.IPoint point3){try{double a = 0, b = 0,c=0; //方程参数double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值double[] returnValue = new double[3];x1 = point1.X * 1000;y1 = point1.Y * 1000;z1 = point1.Z * 1000;x2 = point2.X * 1000;y2 = point2.Y * 1000;z2 = point2.Z * 1000;x3 = point3.X * 1000;y3 = point3.Y * 1000;z3 = point3.Z * 1000;//向量I1double[] I1 = new double[3];I1[0] = x2 - x1;I1[1] = y2 - y1;I1[2] = z2 - z1;//向量I2double[] I2 = new double[3];I2[0] = x3 - x1;I2[1] = y3 - y1;I2[2] = z3 - z1;double X1 = I1[0];double Y1 = I1[1];double Z1 = I1[2];double X2 = I2[0];double Y2 = I2[1];double Z2 = I2[2];a = Y1 * Z2 - Y2 * Z1;b = X2 * Z1 - X1 * Z2;c = X1 * Y2 - X2 * Y1;returnValue[0] = a;returnValue[1] = b;returnValue[2] = c;return returnValue;}catch (Exception e){throw e;}}OPENGL里面就这样实现void getNormal(GLfloat gx[3],GLfloat gy[3], GLfloat gz[3],GLfloat *ddnv){GLfloat w0,w1,w2,v0,v1,v2,nr,nx,ny,nz;w0=gx[0]-gx[1]; w1=gy[0]-gy[1];w2=gz[0]-gz[1];v0=gx[2]-gx[1]; v1=gy[2]-gy[1];v2=gz[2]-gz[1];nx=(w1*v2-w2*v1);ny=(w2*v0-w0*v2);nz=(w0*v1-w1*v0);nr=(GLfloat)sqrt(nx*nx+ny*ny+nz*nz); //向量单位化。
平面的法向量与平面的向量表示

返回
设平面A1BD的一个法向量为n1=(x1,y1,z1).
则nn11·AA11DB==00,
-x1-z1=0, y1-z1=0.
令z1=1,得x1=-1,y1=1.
所以平面A1BD的一个法向量为n1=(-1,1,1).
设平面CD1B1的一个法向量为n2=(x2,y2,z2),
则nn22··DD11CB1==00, xy22-+zy22==00.,令y2=1,得x2=-1,z2=1,
返回
[例2] 如图,在正方体ABCD- A1B1C1D1中,E,F,M分别为棱BB1, CD,AA1的中点.
(1)证明:C1M∥平面ADE; (2)平面ADE⊥平面A1D1F.
[思路点拨] 建立空间坐标系.求出平面ADE与平 面A1D1F的法向量求解.
返回
[精解详析] (1)以 D 为原点, 向量 DA、DC 、DD1 的方向分别为 x 轴、y 轴、z 轴的正方向建立坐标 系如图,设正方体的棱长为 1.
返回
1.平面的法向量 已知平面α,如果向量n的基线与平面α 垂直 ,则向 量n叫做平面α的法向量或说向量n与平面α正交. 2.平面的向量表示式 设A是空间任一点,n为空间内任一非零向量,适合条 件 ·n=0的点M构成的图形是过点A并且与向量n垂直 的 平面 , AM ·n=0 通常称为一个平面的向量表示式.
∵m·C1M =(0,-1,2)·(1,-1,-12)=0+1-1=0,
∴C1M ⊥m. 又C1M 平面ADE,∴C1M∥平面ADE.
返回
(2)由D1(0,0,1),A1(1,0,1),F(0,
1 2
,0)得
D1 A1
=
(1,0,0), D1F =(0,12,-1),
直线的方向向量、平面的法向量及其应用

直线的方向向量、平面的法向量及其应用一、直线的方向向量及其应用1、直线的方向向量: 直线的方向向量就是指和这条直线所对应向量平行(或共线)的向量,显然一条直线的方向向量可以有无数个.2、直线方向向量的应用: 利用直线的方向向量,可以确定空间中的直线和平面.(1)若有直线l , 点A 是直线l 上一点,向量a 是l 的方向向量,在直线l 上取AB a =,则对于直线l 上任意一点P ,一定存在实数t ,使得AP t AB =,这样,点A 和向量a 不仅可以确定l 的位置,还可具体表示出l 上的任意点.(2)空间中平面α的位置可以由α上两条相交直线确定,若设这两条直线交于点O,它们的方向向量分别是a 和b ,P 为平面α上任意一点,由平面向量基本定理可知,存在有序实数对(x ,y ),使得OP =xa yb +,这样,点O 与方向向量a 、b 不仅可以确定平面α的位置,还可以具体表示出α上的任意点.二、平面的法向量1、所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然一个平面的法向量也有无数个,它们是共线向量.2、在空间中,给定一个点A 和一个向量a ,那么以向量a 为法向量且经过点A 的平面是唯一确定的.三、直线方向向量与平面法向量在确定直线、平面位置关系中的应用1、若两直线l 1、l 2的方向向量分别是1u 、2u ,则有l 1// l 2⇔1u //2u ,l 1⊥l 2⇔1u ⊥2u .2、若两平面α、β的法向量分别是1v 、2v ,则有α//β⇔1v //2v ,α⊥β⇔1v ⊥2v .若直线l 的方向向量是u ,平面的法向量是v ,则有l //α⇔u ⊥v ,l ⊥α⇔u //v四、平面法向量的求法若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:1、设出平面的法向量为(,,)n x y z =.2、找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c ==3、根据法向量的定义建立关于x ,y ,z 的方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩4、解方程组,取其中一个解,即得法向量五、用向量方法证明空间中的平行关系和垂直关系(一)用向量方法证明空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行.1、线线平行:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1// l 2,只需证明a //b ,即()a kb k R =∈2、线面平行:(1)设直线l 的方向向量是a ,平面α的法向量是n ,则要证明//l α,只需证明⊥a n ,即0⋅=a n .(2)根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.3、面面平行(1)由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.(2)若能求出平面α、β的法向量u 、v ,则要证明α//β,只需证明u // v(二)用向量方法证明空间中的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直.1、线线垂直:设直线l 1、l 2的方向向量分别是a 、b ,则要证明l 1⊥ l 2,只需证明a ⊥b ,即0a b ⋅=2、线面垂直:(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证l ⊥α,只需证明a // u(2)根据线面垂直的判定定理,转化为直线与平面内的两条相交直线垂直.3、面面垂直:(1)根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直.(2)证明两个平面的法向量互相垂直.六、用向量方法求空间的角(一)两条异面直线所成的角1、定义:设a 、b 是两条异面直线,过空间任一点O 作直线////,//a a b b ,则/a 与/b 所夹的锐角或直角叫做a 与b 所成的角.2、范围:两异面直线所成角θ的取值范围是02πθ<≤3、向量求法:设直线a 、b 的方向向量为a 、b ,其夹角为ϕ,则有cos |cos |a ba b θϕ⋅==⋅4、注意:两异面直线所成的角可以通过这两条直线的方向向量的夹角来求得,但两者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角.(二)直线与平面所成的角1、定义:直线和平面所成的角,是指直线与它在这个平面内的射影所成的角.2、范围:直线和平面所成角θ的取值范围是02πθ≤≤3、向量求法:设直线l 的方向向量为a ,平面的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ,则有sin |cos |cos sin a u a u θϕθϕ⋅===⋅或 (三)二面角1、二面角的取值范围:[0,]π2、二面角的向量求法(1)若AB 、CD 分别是二面角l αβ--的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB 与CD 的夹角(如图(a )所示).(2)设1n 、2n 是二面角l αβ--的两个角α、β的法向量,则向量1n 与2n 的夹角(或其补角)就是二面角的平面角的大小(如图(b )所示).七、用向量的方法求空间的距离(一)点面距离的求法如图(a )所示,BO ⊥平面α,垂足为O ,则点B 到平面α的距离就是线段BO 的长度.若AB 是平面α的任一条斜线段,则在Rt △BOA 中,BO BA =cos ∠ABO= cos cos BA BO ABOABO BO ⋅⋅∠∠=。
(完整版)平面的法向量
∴平面 ABC 的单位法向量为(1, 2,2)或( 1,2, 2).
3 33
33 3
例 如图,已知矩形 ABCD和矩形 ADEF所在平面互相垂直,点
M , N 分别在对角线 BD, AE上,且 BM 1 BD, AN 1 AE,
求证:MN // 平面CDE
3
3
简证:因为矩形ABCD和矩形ADEF 所在平面互相垂直u,uur所uuu以r uAuuBr,AD,
解: 在 内作不r与urm r,nu重r 合的任一直线g,在l, m, n, g
上取非零向量 l, m, n, g,因m与n相交,故向量m ,n
不平行,由共面向量定理,存在唯一实数(x, y),使
ur ur r r ur r ur r r
g xm yn , l g xl m yl n , l
3.
平面的向量表示:
AMgn
r
0
给定一点rA和一个向量 n,那么过点
l
r
A,以向量n 为法向量的平面是完全
确定的.
n
M
A
因为方向向量与法向量可以确定直线和 平面的位置,上节我们用直线的方向向量表 示了空间直线、平面间的平行
如何用平面的法向量表示空间两平面平 行、垂直的位置关系呢?
4. 两平面平行或重合、垂直的充要条件
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)
∴
( x, ( x,
∴
yห้องสมุดไป่ตู้
z
y, z)
y, z)
3x 4
3x 2
(3, (3,
4, 0,
0) 2)
空间平面法向量求法
空间平面法向量求法一、法向量概念概念:若是,那么向量叫做平面的法向量。
平面的法向量共有两大类(从方向上分),无数条。
二、平面法向量的求法一、内积法在给定的空间直角坐标系中,设平面的法向量=(x,y,1)[或=(x,1,z)或=(1,y,z)],在平面内任找两个不共线的向量,。
由,得·=0且·=0,由此取得关于x,y的方程组,解此方程组即可取得。
二、任何一个x,y,z的一次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。
Ax+By+Cz+D=0(A,B,C不同时为0),称为平面的一样方程。
其法向量=(A,B,C);若平面与3个坐标轴的交点为P(a,0,0),P(0,b,0),P(0,0,c),则平面方程为:,称此方程为平面的截距式方程,把它化为一样式即可求出它的法向量。
3、外积法设,为空间中两个不平行的非零向量,其外积×为一长度等于||||sinθ,(θ为二者交角,且0<θ<π,而与,, 皆垂直的向量。
通常咱们采取“右手定则”,也确实是右手四指由的方向转为的方向时,大拇指所指的方向规定为×的方向,×=-×。
设=(x1,y1,z1),=(x2,y2,z2),则×=(注:一、二阶行列式:;二、适合右手定则。
)Codepublic double[] GetTriangleFunction point1, point2, point3){try{double a = 0, b = 0,c=0; //方程参数double x1 = 0, x2 = 0, x3 = 0, y1 = 0, y2 = 0, y3 = 0, z1 = 0, z2 = 0, z3 = 0; //各点坐标值double[] returnValue = new double[3];x1 = * 1000;y1 = * 1000;z1 = * 1000;x2 = * 1000;y2 = * 1000;z2 = * 1000;x3 = * 1000;y3 = * 1000;z3 = * 1000;//向量I1double[] I1 = new double[3];I1[0] = x2 - x1;I1[1] = y2 - y1;I1[2] = z2 - z1;//向量I2double[] I2 = new double[3];I2[0] = x3 - x1;I2[1] = y3 - y1;I2[2] = z3 - z1;double X1 = I1[0];double Y1 = I1[1];double Z1 = I1[2];double X2 = I2[0];double Y2 = I2[1];double Z2 = I2[2];a = Y1 * Z2 - Y2 * Z1;b = X2 * Z1 - X1 * Z2;c = X1 * Y2 - X2 * Y1;returnValue[0] = a;returnValue[1] = b;returnValue[2] = c;return returnValue;}catch (Exception e){throw e;}}OPENGL里面就如此实现void getNormal(GLfloat gx[3],GLfloat gy[3], GLfloat gz[3],GLfloat *ddnv) {GLfloat w0,w1,w2,v0,v1,v2,nr,nx,ny,nz;w0=gx[0]-gx[1]; w1=gy[0]-gy[1];w2=gz[0]-gz[1];v0=gx[2]-gx[1]; v1=gy[2]-gy[1];v2=gz[2]-gz[1];nx=(w1*v2-w2*v1);ny=(w2*v0-w0*v2);nz=(w0*v1-w1*v0);nr=(GLfloat)sqrt(nx*nx+ny*ny+nz*nz); //向量单位化。
3.2.1直线的方向向量、平面的法向量以及空间线面关系的判定
e
A
B
二、平面的法向量
由于垂直于同一平面的直线是互相平行的, 所以,可以 用垂直于平面的直线的方向向量来刻画平面的“方向”。 平面的法向量:如果表示向量 n 的有向线段所在直线垂 直于平面 ,则称这个向量垂直于平面 ,记作 n ⊥ , 如果 n⊥ ,那 么 向 量 n 叫做平面 的法向量.
线面平行 l1 // 1 e1 n1 e1 n1 0 ;
面面平行 1 // 2 n1 // n2 n1 n2 .
注意:这里的线线平行包括线线重合,线面平行 法向量为n (a2 , b2 , c2 ),则 包括线在面内,面面平行包括面面重合 .
设直线l的方向向量为e (a1 , b1 , c1 ), 平面的
1 2 2 求平面ABC的单位法向量为 ( , - ,) 3 3 3
1 n ( , 1,1), 2
3 | n | 2
练习 , 在 空 间 直 角 坐 标 系 中 , 已 知 A(3, 0, 0), B(0, 4, 0) , C (0,0, 2) ,试求平面 ABC 的一个法 向量.
由两个三元一次方程 组成的方程组的解是 解:设平面的法向量为n (x,y,z), 不惟一的,为方便起 见,取z=1较合理。 则n AB , n AC 其实平面的法向量不 是惟一的。 (x,y,z) (2, 2,1) 0,
单位法向量。
(x,y,z) (4,5,3) 0,
1 2 x 2 y z 0 x 即 , 取z 1,得 2 4 x 5 y 3 z 0 y 1
l // e n 0 a1a2 b1b2 c1c2 0;
l1
e1
e2
平面法向量的求法法向量怎么求
(III).设点A到平面A1MC的距离为d,
mMCMA1(a2,
又MA(
2222
a,a)是平面A1MC的法向量, 22
2|mMA|1
a,0,0),A点到平面A1MC的距离为:da.22|m|
四、用空间向量解决立体几何的“三步曲”
(1)、建立空间直角坐标系(利用现有三条两两垂直的直线,注意已有的正、直条件,相关几何知识的综合运用,建立右手系),用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;、通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;、把向量的运算结果“翻译”成相应的几何意义。
证明:平面A1AD平面BCC1B1;求二面角ACC1B的正切值.
BD1
.DC2
B1
A1
C1
A B
C
D1
3.如图,正四棱柱ABCDABC111D1中,AA12AB4,A1
5.平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB900,BC//
1
AD,
1
1
点E在CC1上且C1E3EC.BE//
的向量a,b。由n,得na0且nb0,由此得到关于x,y,z的方程组,解此方程组即可得到n。方法二(外积法):设
m,n;
m,n(图2-3)
,为空间中两个不平行的非零向量,其外积ab为一长度等于
|a||b|sin,,而与
,皆垂直的向量。通常我们采取
「右手定则」,也就是右手四指由
的方向转为
的方向时,大拇指所指的方向规定为ab的方向,abba。设a(x1,y1,z1),b(x2,y2,z2),则:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结反思
在空间直角坐标系下,如何求平面的法向量? 在空间直角坐标系下,如何求平面的法向量?
1.用常用方法求平面的法向量 1.用常用方法求平面的法向量 设平面法向量的方法: 设平面法向量的方法:
r r 跟向量a =(m,0,0)垂直的法向量 n = (0, y, z ) 垂直的法向量
r r 跟向量a =(n,m,0)垂直的法向量 n = (− 1 , 1 , z) 垂直的法向量 n m 2.利用特殊平面的法向量结论 利用特殊平面的法向量结论: 2.利用特殊平面的法向量结论:
ZHEJIANG DONGYANG HIGH SCHOOL
探究规律
问题4:平面 是原点, 在 轴上 问题 :平面AOBD,O是原点,A在z轴上 , 是原点 则平面AOBD的一个法向量为 点B(a,b,0),则平面 则平面 的一个法向量为 1 1 (− , ,0) z a b ____________
ZHEJIANG DONGYANG HIGH SCHOOL
D E(0, 3 ,0) y
C(1,0,0)
随堂练习
2.在棱长为 的正方体 1中,P、 Q、R分别为棱 在棱长为3的正方体 的正方体AC 、 、 分别为棱
A1D1、AB、BC的一个三等分点,A1P=AQ=BR=1, 的一个三等分点, 、 的一个三等分点 , 、 求平面PQR的一个法向量 z 的一个法向量. 求平面 的一个法向量 D1 C1 1 1 (1, , ) P (2,0,3) 2 2 A1 B1
D O
ZHEJIANG DONGYANG HIGH SCHOOL
C y R(2,3,0) B
x
A
Q (3,1,0)
随堂练习
3.已知 已知ABCD是上下底边长分别为 和6,高为 3 的 是上下底边长分别为2和 , 是上下底边长分别为
等腰梯形,将他沿对称轴 折成直二面角, 等腰梯形,将他沿对称轴OO1折成直二面角,求平 的一个法向量. 面OAC和ACO1的一个法向量 和 z O1 (0,0, 3) D O1 C C (0,1, 3) D O x A (3,0,0) B y
通过延长线段找平面与坐标轴的交点 通过平移或改变坐标系来找平面与坐标轴的交点
ZHEJIANG DONGYANG HIGH SCHOOL
谢 谢!
O x ZHEJIANG DONGYANG HIGH SCHOOL A (a,0,0)
B (0,b,0) y
结论
1.平面α//z轴,在x轴、y轴上的截距分别为 、b, 平面α 轴 在 轴 轴上的截距分别为 轴上的截距分别为a、 , 平面 则平面α 则平面α的一个法向量 ( 1 , 1 ,0) a b 2.平面α过z轴,且在平面 内的一点 平面α 轴 且在平面xoy内的一点 内的一点B(a,b,0), 平面 1 1 则平面α 则平面α的一个法向量 (− , ,0) a b 3.平面α在x轴、y轴、z轴上的截距分别为 、 平面α 轴上的截距分别为a、 平面 轴 轴 轴上的截距分别为 b、c,则平面的一个法向量 ( 1 , 1 , 1) 、 , a b c
ZHEJIANG DONGYANG HIGH SCHOOL
探究规律
结论3 结论 问题5:平面ABC在x轴、y轴、z轴上的截距 问题 :平面 在 轴 轴 轴上的截距 分别为a、 、 ,则平面ABC的一个法向量为 分别为 、b、c,则平面 的一个法向量为 z 1 1 1 ( , , ) C (0,0,c) ____________ a b c
1 1 1 ( , , ) 2 2 4
P A1 D O A(2,0,0)
ZHEJIANG DONGYANG HIGH SCHOOL
D1 Q B1
C1
C(0,2,0) B
y
x
的正方体AC 练1:在棱长为 的正方体 1中,P,Q,R分别为棱 :在棱长为2的正方体 分别为棱 A1D1,C1D1, AD的中点 求以下平面的一个法向量 的中点,求以下平面的一个法向量 的中点 求以下平面的一个法向量. (4)面PRBB1; 面 N P(1,2,0) A1 z D1
z D1 A1 z C1 (0,1,1) y
1 M (1, 2,1) B1
Dx O
N
C y B (1,1,0)
反思4: 反思 :
x
A
通过平移平面或坐标来找平面与坐标轴的交点
ZHEJIANG DONGYANG HIGH SCHOOL
直击高考
(改编自2010浙江理数)在矩形ABCD中,点E、F分别在 改编自2010浙江理数)在矩形ABCD中 2010浙江理数 ABCD 2 线段AB AD上 AB、 FD=4.沿直线EF将 沿直线EF 线段AB、AD上,AE=EB=AF= FD=4.沿直线EF将△AEF 3 翻折成△ EF,使平面A 平面BEF.求平面A FD的一 BEF.求平面 翻折成△A1EF,使平面A1EF⊥平面BEF.求平面A1FD的一 z 个法向量. 个法向量. A1(0,0, 2 2)
量. z D1 A1(2,0,2) D O B B1 C(0,3,0) y
r 1 1 n = ( , ,0) 2 3 C1(0,3,2)
A(2,0,0) x
反思2: 反思 : r r 跟向量a =(m,0,0)垂直的法向量可设为 n = (0, y, z) 垂直的法向量可设为
ZHEJIANG DONGYANG HIGH SCHOOL
1 (1, − ,0) 2
C1 B1
M(0,-2,0)
D O R(1,0,0)
C(0,2,0) y
B x A 反思3: 反思 :通过延长线段找平面与坐标轴的交点
ZHEJIA问题1:在棱长为1的正方体 的正方体AC M为棱 为棱A 问题 :在棱长为 的正方体 1中,r 为棱 1B1 的中点,求平面BMC1的一个法向量 n = (1 2,1) 的一个法向量. 的中点,求平面 ,
r r r r 3.由 得到关于x,y,z的三 3.由 n ⋅ a = 0, n ⋅ b = 0 得到关于 的三 元一次方程组, 元一次方程组,解之可得平面的法向量
α
ZHEJIANG DONGYANG HIGH SCHOOL
问题1:在棱长为1的正方体 的正方体AC M为棱 为棱A 问题 :在棱长为 的正方体 1中,r 为棱 1B1 的中点,求平面BMC1的一个法向量 n = (1 2,1) 的一个法向量. 的中点,求平面 ,
r 1 2 n1 = (0, − , ) 2 4
A G(0, −2,0) F
E O
B y
ZHEJIANG DONGYANG HIGH SCHOOL
D
x
C
随堂练习
1.(改自2010江西理数)如图△ 1.(改自2010江西理数)如图△BCD与△MCD都是边 改自2010江西理数 与 都是边 长为2的正三角形 平面MCD⊥平面 的正三角形, 平面BCD,AB⊥平面 长为 的正三角形,平面 , BCD,AB= 2 3 , 求平面 求平面ACM的一个法向量 的一个法向量. , 的一个法向量 A 3 3 (1, , ) z 3 3 M (0,0, 3 ) B O x
z D1 A1 C1 (0,1,1)
1 M (1, 2,1) B1
D O A
C y B (1,1,0)
反思1: 反思 : x r r 1 1 =(m,n,0)垂直的法向量可设为n = (− , , z) 跟向量a 垂直的法向量可设为
ZHEJIANG DONGYANG HIGH SCHOOL
m n
问题2:长方体AC 求平面AA 问题 :长方体 1中,求平面 1CC1的一个法向
ZHEJIANG DONGYANG HIGH SCHOOL
类比迁移
结论1 结论 1.平面 平面ABCD//z轴,在x轴、y轴上的截距分别 平面 轴 轴 轴上的截距分别 1 1 为a、b,则平面 、 ,则平面ABCD的一个法向量 ( , ,0) 的一个法向量 a b 2.平面 平面ABCD//x轴,在y轴、z轴上的截距分别 平面 轴 轴 轴上的截距分别 1 1 为b、c,则平面 、 ,则平面ABCD的一个法向量 (0, , ) 的一个法向量 b c 3.平面 平面ABCD//y轴,在x轴、z轴上的截距分别 平面 轴 轴 轴上的截距分别 1 1 为a、c,则平面ABCD的一个法向量 ( ,0, ) 、 ,则平面 的一个法向量 a c
侧棱AA ,侧面AA 侧棱 1=1,侧面 1BB1的两条对角线交点为 D,求平面 1BD和BCD的一个法向量 的一个法向量. ,求平面B 和 的一个法向量 A z A1 (0,0,1) C1 B1 (0, 2,0)
(1,0,0) x C
B y
D
ZHEJIANG DONGYANG HIGH SCHOOL
P(1,2,0) A1
(1)面RCD1; 面
1 (1, ,0) 2
D1(0,0,2) C1 B1
D O R(1,0,0)
ZHEJIANG DONGYANG HIGH SCHOOL
C(0,2,0) y B
x
A
的正方体AC 练1:在棱长为 的正方体 1中,P,Q,R分别为棱 :在棱长为2的正方体 分别为棱 A1D1,C1D1, AD的中点 求以下平面的一个法向量 的中点,求以下平面的一个法向量 的中点 求以下平面的一个法向量. (3)面PQAC; 面 z T(0,0,4)
探究规律
问题3:平面 问题 :平面ABCD//z轴,在x轴、y轴上的截 轴 轴 轴上的截 距分别为a、 ,则平面ABCD的一个法向量为 距分别为 、b,则平面 的一个法向量为 1 1 z ( , ,0) ____________ a b
C(0,b,c) D O B(0,b,0) y
x
A(a,0,0)
A
O
B
r 3 n1 = (0, −1, ) 3