汽轮机控制系统
汽轮机控制原理

汽轮机控制原理一、汽轮机的基本原理汽轮机是一种利用高速旋转的转子带动涡轮叶片工作,从而将热能转化为机械能的热力学装置。
其基本原理是利用高温高压的蒸汽或气体驱动涡轮旋转,使得涡轮带动发电机或其他设备工作。
二、汽轮机控制系统的组成汽轮机控制系统主要由以下几个部分组成:1. 传感器:用于测量汽轮机运行状态参数,如温度、压力、转速等;2. 控制器:根据传感器采集到的数据,对汽轮机进行控制和调节;3. 执行器:根据控制器发出的指令,对汽轮机进行操作和调整;4. 监测系统:对汽轮机运行状态进行监测和诊断,及时发现故障并处理。
三、汽轮机控制系统的功能1. 调节蒸汽流量:通过调节蒸汽阀门开度来控制蒸汽流量,以满足负荷需求。
2. 调节燃料供给:通过调节燃料阀门开度来控制燃料供给量,以满足负荷需求。
3. 调节转速:通过调节蒸汽阀门和燃料阀门的开度,控制涡轮旋转速度,以满足负荷需求。
4. 控制温度和压力:通过控制蒸汽流量、燃料供给和排气温度等参数,控制汽轮机的温度和压力。
5. 监测和诊断:对汽轮机运行状态进行监测和诊断,及时发现故障并处理。
四、汽轮机控制系统的工作原理1. 蒸汽流量控制:当负荷需求增加时,传感器检测到蒸汽流量下降,控制器会发出指令,使蒸汽阀门开度增加,增加蒸汽流量。
反之亦然。
2. 燃料供给控制:当负荷需求增加时,传感器检测到燃料供给不足,控制器会发出指令,使燃料阀门开度增加,增加燃料供给。
反之亦然。
3. 转速调节:当负荷需求增加时,传感器检测到涡轮转速下降,控制器会发出指令同时调节蒸汽阀门和燃料阀门的开度,以增加蒸汽流量和燃料供给,从而提高涡轮转速。
4. 温度和压力控制:当负荷需求增加时,传感器检测到温度和压力下降,控制器会发出指令调节蒸汽流量、燃料供给和排气温度等参数,以提高温度和压力。
5. 监测和诊断:通过监测各种参数,如振动、温度、压力等,及时发现汽轮机故障,并进行诊断和处理。
五、汽轮机控制系统的优点1. 自动化程度高:汽轮机控制系统能够自动进行负载调节、转速调节等操作,减少了人工干预。
汽轮机控制系统

汽轮机控制系统汽轮机控制系统组成一般来讲,汽轮机控制系统由人机界面、测量元件、控制装置、执行机构等部分组成。
人机界面为各种操作显示设备,如CRT,各种指示灯/表,鼠标,操作按钮/开关等。
测量元件为各种传感器,如测速头,热电偶,变送器,行程开关等。
它们将各种工艺过程变量转换成不同形式的电子信号,送往控制装置。
控制装置是整个控制系统的核心,实现系统的各种控制功能。
目前常用的控制装置都是以微处理器和网络技术为基础的数字式控制系统。
通常由通过网络连接的控制站、操作员站、工程师站以及电源装置和必要的机柜等辅助设备构成。
其中,控制站包括运算处理部件和I/O转换部件。
由于汽轮机是一种大型高速旋转设备。
其执行机构必须具有较大出力和快速响应,所以普遍采用液压型执行机构,也称作油动机。
因此,还必须配备液压动力源向执行机构提供液压工作介质。
根据设计的不同,可以采用汽轮机润滑油作为工作介质,也可以配置独立油源。
另外,在数字式控制系统中还有大量的不同功能的软件程序分布在系统各部件中,与硬件设备协同工作,共同完成控制任务。
汽轮机作为一种在高温、高压、高速条件下连续运行的大型机械设备,其高可靠性既是工艺过程的要求,也是自身安全的需要。
所以在配置汽轮机控制系统时必须给予高度重视。
冗余技术、自诊断技术和分散结构被广泛采用。
在控制装置内部,均采用双网结构,防止信息传送故障。
CPU处理器采用三冗余配置,3取2表决机制或双机热备配置,裁决机制,一用一备。
对重要信号,从一次元件到I/O通道都采用3冗余或双冗余配置。
执行器一般采用双线圈伺服阀;双泵供油,一用一备,自动连锁。
另外,分散结构使系统各功能科学合理地分配在不同的部件中,任何部件损坏只会引起系统部分功能丧失,不会导致整个系统故障,更不会危及机组运行安全;同时系统中非常完善的自诊断功能可以对系统中绝大多数异常进行有效的鉴别、报警,必要时自动将故障部件从系统中隔离。
目前,自诊断都可以达到具体I/O通道。
汽轮机功率控制系统

目录前言 (3)1. 汽轮机功率控制系统概述 (4)1.1 汽轮机电液调节系统的功能 (4)1.2 APC模式、BRU-K与汽轮机控制系统的对应关系 (4)1.3 汽轮机电液调节系统的主要功能和组成 (5)1.3.1 汽轮机电液调节系统的电子部分组成 (5)1.3.2 汽轮机电液调节系统的慢速作用通道 (6)1.3.3 汽轮机电液调节系统的快速作用通道 (6)1.3.4 同步器电机的控制方式 (7)1.3.5 同步器电机控制方式的转换 (8)1.3.6 同步器电机转速的选择 (10)2. 汽轮机转速调节系统(1MAX51DS001) (12)2.1 概述 (12)2.2汽轮机转速调节器(1MAX51DS001)的工作原理 (12)2.3 汽轮机速度给定值的设置 (13)3. 汽轮机功率控制器(1MAX51DE001) (16)3.1 概述 (16)3.2 汽轮机功率调节器1MAX51DE001工作原理 (17)3.3 压力修正和频率修正 (19)3.3.1 压力修正 (19)3.3.2频率修正值 (19)4. 主汽母管压力调节器(1LBA00DP001) (20)4.1主汽母管压力调节器(1LBA00DP001)工作原理 (20)4.2 调节器小结 (20)5. 主汽母管最小压力调节器1LBA00DP002 (21)6. 中间强制甩负荷(RELAY FORCING)通道 (21)7. 微分通道1MAY10EK002 (22)8. 汽轮机超速预保护1MAY10EK003 (23)9. 甩负荷550MW保护MAY10EK004 (23)10. 快速压力控制器1 LBA00DP003 (24)11. 汽轮机启动阶段保护1MA Y10EK005 (24)12. 甩负荷到600MW/800MW/500MW保护 (25)13. 汽水分离再热器(MSR)加热蒸汽温度控制原理 (26)14. 汽轮机停机保护 (27)14.1汽轮机保护停机命令动作的条件 (27)14.2 工艺信号引起的汽轮机保护信号流程 (29)14.3 超速和联锁信号引起的汽轮机保护信号流程 (29)15. 汽轮发电机功率控制相关限值与逻辑 (32)15.1 汽轮-发电机目标给定值(MAA00DE002、MAA00DE002C/ZQ21) (33)15.2 汽轮-发电机目标功率给定值上限(MAA00DE002A/XQ41) (34)15.3 汽轮-发电机目标功率给定值下限(MAA00DE002B/XQ31) (35)15.4 汽轮-发电机负荷变化速率(MAA00DE002D/XQ51和MAA00DE003) (35)15.5 升功率限制信号1MAA00EG001 和降功率限制信号1MAA00EG002 (36)15.6 汽轮发电机升功率程序1 MAA01 EC002 (37)前言本教材是按照《操纵人员基础理论培训教材编写大纲》之《核电厂仪表与控制》(编号TP052711)的要求编写完成。
汽轮机调节保护系统

汽轮机调节保护系统汽轮机是现代热力发电厂最重要的组成部分之一。
它的控制系统是确保汽轮机的正常运行的关键。
自动控制系统和保护系统是这一过程中最重要的两个组成部分之一。
在这篇文章中,我们将详细介绍汽轮机的调节保护系统。
汽轮机是一种使用高温高压蒸汽或气体驱动的旋转机械装置。
汽轮机的作用是将蒸汽的热能转化为机械动能,然后通过发电机将其转化为电能。
因此,汽轮机调节保护系统具有保证汽轮机正常运行和确保发电安全的重要作用。
汽轮机调节保护系统主要由以下几个部分组成。
1.汽轮机控制系统汽轮机控制系统是汽轮机调节保护系统的核心部分。
它主要用于保证汽轮机转速的稳定和自动控制汽轮机的启停和负荷调节。
汽轮机控制系统主要由控制器、传感器、执行机构和通信设备组成。
控制器是控制系统的中央处理单元,传感器用于采集汽轮机的运行状态数据,执行机构使得控制器能够控制汽轮机的运行状态,通信设备用于控制器与其他系统间的通信。
2.过速保护系统每个汽轮机都有其安全转速范围。
当汽轮机的转速超过这个范围时,过速保护系统将立即介入,使汽轮机的转速降低到安全范围内。
过速保护系统通常由控制器和传感器组成。
控制器将保护信号发送到执行机构,降低汽轮机的转速。
3.欠速保护系统欠速保护系统是汽轮机调节保护系统的另一个重要组成部分。
当汽轮机转速降低到预定值以下时,欠速保护系统将自动启动,从而防止汽轮机达到停机转速或停机。
欠速保护系统通常由控制器和传感器组成。
控制器将保护信号发送到执行机构,提高汽轮机的转速。
4.温度保护系统汽轮机内部温度较高。
如果温度超过安全限制,就会出现爆炸或机械故障的风险。
温度保护系统用于控制汽轮机内部温度。
它通常由控制器和传感器组成,控制器通过发送信号到执行机构来控制汽轮机的温度。
5.压力保护系统汽轮机中涉及到各种各样的压力,如进汽压力、汽轮机排汽压力等等。
当压力超出安全范围时,压力保护系统将启动。
它通常由控制器和传感器组成,在必要时控制器将向执行机构发送保护信号,使汽轮机的压力恢复到安全范围内。
《汽轮机数字控制系统》复习题.doc

《汽轮机数字控制系统》复习题一、填空1:为保证各种用电设备能正常运转,对供电的品质提出了严格的要求,包括频率误差W土0.2Hz和电压误差W±5%。
2:-次调频,是利用锅炉的蓄能调节发电量,使总发电量适应小幅度高频率的负荷变化。
3:二次调频和调峰,是通过汽轮发电机组控制系统的自动发电AGC功能自动地或手动地改变机组的负荷指令,改变机组的发电量,变化幅度较大,机、炉、电控制系统必须协调动作。
4:调速系统静态特性指转速n与功率N之间的关系;5:控制系统受到扰动后,被调量随时间的变化规律,称为调节系统动态特性。
6:机械液压式调节系统(MHC)由转速感受机构、传动放大机构、执行机构和反馈机构等四部分组成。
7:汽轮机数字电液控制系统DEH分为电子控制部分和液压调节保安部分。
电子控制部分硬件由控制机柜、端子柜、操作盘、连接电缆、人机界面等组成,通过网络联为一•体;软件包括人机接口站MMI软件、分布处理单元DPU实时控制软件和通讯处理软件。
8:液压调节保安部分包括供油系统,执行机构和危急遮断系统(ETS),它将电气控制信号转换为液压机械控制信号,最终控制汽轮机进汽阀门的开度。
9:硬接线手操盘安装在操作台上,用预制电缆与现场控制站连接,作为自动控制系统的后备操作手段。
10: DEH控制系统控制回路一般包括汽轮机状态控制冋路、转速控制冋路、功率控制冋路、阀门开度控制回路、主汽压力控制冋路、负荷限制及减负荷控制回路、防超速控制(OPC)冋路、阀门管理冋路、伺服放大与LVDT反馈冋路等。
11: EH供油系统由供汕装置、抗燃汕再生装置及汕管路系统组成。
12:供汕装置的主要功能是提供控制部分所需要的液压汕及压力,同时保持液压汕的正常理化特性和运行特性。
13:抗燃油透明、均匀、无沉淀、无悬浮,同时具有挥发分低、耐磨、氧化稳定性好,物理性能稳定等优点;燃点352°C,自燃566°Co其价格偏高,具有微毒性。
主汽轮机控制系统(MTC)功能简介

主汽轮机控制系统(MTC)功能简介主汽轮机控制系统是通过自动调节进入汽轮机的蒸汽流量来控制汽轮机转速及负荷的设备。
它具有升速控制、阀门切换控制、关闭所有阀门、调节器控制以及快速减负荷等控制功能。
标签:主汽轮机控制系统(MTC);可视化操作平台(VDU);控制功能1 概述主汽轮机控制系统(MTC)是通过自动调节进入汽轮机的蒸汽流量,来控制汽轮机的转速及负荷的设备。
MTC 通过位于主控室的可视化操作平台(VDU)控制汽轮机的转速和输出功率。
MTC 具有升速控制功能、阀门切换控制功能、关闭所有阀门功能、调节器控制功能、调节器自动跟踪器功能、负荷限制器控制功能、超速保护(OPC)控制功能、自动负荷调节(ALR)功能以及快速减负荷(Runback)控制功能等。
2 操作对象MTC的控制及操作对象是主汽阀(MSV),调节阀(GV),再热主汽阀(RSV)和再热调节阀(ICV)。
如图1所示。
3 控制功能3.1 升速控制功能升速控制是通过MSV控制进入高压汽轮机的主蒸汽量,按照设定的升速率,使汽轮机升速的功能。
MSV 的预启阀用于升速控制。
由于进入高压汽轮机的主蒸汽量在汽轮机升速过程中较低,因此,在控制机组从盘车转速到额定转速过程中,使用MSV 的小流量的预启阀比使用大流量的GV进行升速控制具有更好的效果。
根据规程HYG-MTS-GJP-101附件2(汽机启动):在VDU 操作屏幕上选择目标转速并选定升速率后,通过选择程序运行“GO”,使汽轮机以选定的升速率升速到目标转速。
汽轮机达到目标转速后,将自动选择程序中的“HOLD”,汽轮机转速保持不变。
可选的升速率如图2所示。
汽轮机是通过控制MSV的阀位来升速的,MSV的阀位是通过比例反馈来控制的,以便使实际转速与由目标转速和升速率确定的转速参考值一致。
由于升速控制是比例控制,会出现控制偏差。
因此,在MSV 阀位指令上叠加了作为转速参考值函数的偏差补偿,以尽可能减小转速参考值与实际转速间的偏差。
汽轮机控制系统

汽轮机控制系统包括汽轮机的调节系统、监测保护系统、自动起停和功率给定控制系统。
控制系统的内容和复杂程度依机组的用途和容量大小而不同。
各种控制功能都是通过信号的测量、综合和放大,最后由执行机构操纵主汽阀和调节阀来完成的。
现代汽轮机的测量、综合和放大元件有机械式、液压式、电气式和电子式等多种,执行机构则都采用液压式。
调节系统用来保证机组具有高品质的输出,以满足使用的要求。
常用的有转速调节、压力调节和流量调节3种。
①转速调节:任何用途的汽轮机对工作转速都有一定的要求,所以都装有调速器。
早期使用的是机械式飞锤式离心调速器,它借助于重锤绕轴旋转产生的离心力使弹簧变形而把转速信号转换成位移。
这种调速器工作转速范围窄,而且需要通过减速装置传动,但工作可靠。
20世纪50年代初出现了由主轴直接传动的机械式高速离心调速器,由重锤产生的离心力使钢带受力变形而形成位移输出。
图 1 [液压式调速器]为两种常用的液压式调速器的工作原理图[液压式调速器],汽轮机转子直接带动信号泵(图1a[液压式调速器])或旋转阻尼(图1b[液压式调速器]),泵或旋转阻尼出口的油压正比于转速的平方,油压作用于转换器的活塞或波纹管而形成位移输出。
②压力调节:用于供热式汽轮机。
常用的是波纹管调压器(图 2 [波纹管调压器])。
调节压力时作为信号的压力作用于波纹管,使之与弹簧一起受压变形而形成位移输出。
③流量调节:用于驱动高炉鼓风机等流体机械的变速汽轮机。
流量信号通常用孔板两侧的压力差(1-2)来测得。
图3 [压差调节器]是流量调节常用压差调节器波纹管与弹簧一起受压变形而将压力差信号转换成位移输出。
汽轮机除极小功率者外都采用间接调节,即调节器的输出经由油动机(即滑阀与油缸)放大后去推动调节阀。
通常采用的是机械式(采用机械和液压元件)调节系统。
而电液式(液压元件与电气、电子器件混用)调节系统则用于要求较高的多变量复合系统和自动化水平高、调节品质严的现代大型汽轮机。
汽轮机控制

负荷扰动
从CCS来 TD指令
给 定 处 理 回 路
+ + K1 频率 校正
调 频 投 入
阀 门 管 理
动电 机液 及转 阀换 门、 油
蒸 汽 容 积
机 械 功 率
高 压 缸 +
电功率
发电机
+ 3000r/min
-
转速 测量
图3—16参加机组协调控制时的汽轮机控制系统结构
在协调控制方式下,禁止负荷控制投 入和做阀门试验。 当有以下条件产生时协调控制方式被切除: 1. CCS请求信号消失; 2. 从CCS来的给定信号故障; 3. 油开关跳闸; 4. 汽机已跳闸; 5. 操作人员将CCS控制切除; 等。
四、协调控制(CCS)
协调控制方式一般须满足下列条件: (1)机组已并网; (2)收到协调允许信号。
第四节 控制功能与控制系统特性
一、控制功能
1.转速控制
OA手动给定
ATC自动给定 同步信号
给 定 处 理 回 路
转速 调节器
+ -
阀 门 管 理
动电 机液 及转 阀换 门、 油
转速
汽轮发电机 组
转速测量
一次调频的投入条件如下: 1. 机组已并网; 2. 控制系统在“操作员自动”状态; 3. 负荷大于10%额定负荷。
3. 协调控制
汽轮发电机组一般满足以下条件时可投 入协调控制: 1. 机组已并网; 2. 接收到CCS请求信号; 3. 由CCS来的给定信号正常; 等。
中 间 再 热 器
中 、 低 压 缸
T T T
×
f (x) T × ∑
阀门试 验逻辑 顺序阀系数
f(x)
阀门试 验逻辑 顺序阀系数
f(x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3自动调节
100 调节汽门开度(%) 1 中压调节汽门
2 高压调节汽门
0
20
40
60
80
100
图3-2调节汽门开度与功率关系
功率 (100%)
汽轮机的主要控制参数是功率、转速和主蒸汽压力 调节汽轮机的进汽量(也即改变发电机功率角)可控制汽轮 发电机组的输出电功率(有功功率)。
4汽轮机自动启停控制
2 汽轮机进汽方式 汽轮机进汽方式可分为:全周进汽方式 和部分进汽方式两种方式。这时对应的高 压调节阀运行方式为单阀方式(节流调节) 与和顺序阀方式(喷嘴调节)。
图3-7中的高压调节阀的顺序阀开启顺序 可设计为GV1/GV2,GV3 GV4,即GV1和 GV2同时开启,然后是GV3,GV4最后开 启。关闭顺序与此相反。
阀 位 指 令
阀 位 反 馈
测 量 信 号 EH高压抗燃油 供油系统
汽轮机数字控制器 (DCS) AST1 AST3
隔膜阀
润滑油供油系统 超速保护OPC(1) 系统连接信号 TD,AS,RB等 紧急跳闸ETS OPC(2) AST2 AST4 机械遮断 手动遮断
排油
图3-3 汽轮机控制系统构成原理图
汽轮机控制
中压主汽阀SV
中压调节阀IV
低压旁路阀
高压主汽阀TV 过 热 器 再 热 器 高 压 旁 路 阀
高压调节阀GV 断路器
锅 炉
高 压 缸
中 压 缸
低 压 缸
低 压 缸
~
反流阀 真空阀
发电机
高压排汽止回阀
给水泵 图3-1机组热力系统简图
凝汽器
第一节 汽轮机控制系统
一、控制任务
1自动监测
汽轮机监测仪表(Turbine Supervisory Instrumentation, TSI)
f2(x)
GV1顺序阀开度L1SEQ ×
T
运行RUN
GV1阀位开度指令 图3-10 高压调节阀GV1阀位指令形成原理
其阀位开度=L1SIN×kSIN+L1SEQ×kSEQ
1 0 顺序阀方式 T 手动系统复位 T 1
& T ≥1 &
汽轮机复位 控制偏差大于4% 阀转换在进行 总流量需求值≥99.9%
汽轮机控制系统都设有ATC(Automation Turbine Control)功能,即具有汽轮机自动盘车、 自动升速、自动并网到自动带负荷功能。
二、控制系统构成
目前汽轮机控制系统广泛采用DEH(Digital Electro-Hydraulic)技术,同时将汽轮机 和发电机构成的汽轮发电机组作为被控对 象进行控制,因此汽轮机控制系统实际上 是汽轮发电机组控制系统。
(2)切换过程中,出现以下二种情况时,暂停 切换,等到异常情况消失后,再继续切换。 1)汽轮机复位,手动系统复位; 2)当控制差大于4%停止切换,这是由于在实 际的阀门切换过程中,前面分析中的假设条件是难 以成立的,所以不可避免地会有负荷扰动,负荷扰 动的大小与阀门特性曲线的准确性、汽轮机运行工 况和控制回路的投运有关。
∑
转速 调节器
f(x)
功率
功率控制切除
T ∑
调节级压力 控制投入
T T < 脱网 阀位限制 手动 回路 跳闸或超速 快卸动作 中压缸启动为0 高中压启动为1 f (x) 阀门试验 单阀系数 T × ∑ 运行 运行 手动增 手动减
手动 0 快卸指令 K f(x) 阀门试验 单阀系数 T 阀门试 验逻辑 -3% T 阀门试验 T 阀门试 验逻辑 -3% -3%
二、汽轮机自启动(ATC)
ATC程序根据机组运行需要,能自动完 成: (1)变更转速; (2)改变升速率; (3)产生转速保持; (4)改变负荷变化率; (5)产生负荷保持。
三、自动同期(AS)
采用自动同期方式一般须满足下列条件: 1. 控制在“操作员自动方式”或“汽轮机自 启动”方式; 2. 机组的转速由高压调门控制; 3. 发电机变压器组断路器断开(未并网); 4. 自动同期允许; 5. 汽轮机转速在同步范围。
T T T
×
f (x) T × ∑
阀门试 验逻辑 顺序阀系数
f(x)
阀门试 验逻辑 顺序阀系数
f(x)
×
×
复位运行 T
T
-3%
T
到IV1伺服
到IV4伺服
到GV1伺服
到GV4伺服
操作员目标值 T ATC目标值 T 自动同期目标值 T
操作员手动
ATC运行方式
自动同期方式
非临界区目标值 T
自动设定目标值
i 1 i 1
4
4
由于4个高压调节阀设计相似,理想情况下认为完全 相同,并假设经阀门曲线修正后,阀门开度与流量成 正比,阀门开度与汽轮机负荷成正比,则
fi ( Li ) kLi
所以,满足阀门无扰切换的条件为
f (L
i fi ( LiSEQ ) fi ( Li )
i 1 4
顺序阀方式下: ySEQ fi ( LiSEQ )
i 1
4
单阀/顺序阀切换的中间过程任意状态下:
y fi ( Li )
i 1 4
如果要求单阀/顺序问方式及切换过程中 负荷无扰动,则应有
ySIN ySEQ y
f (L
i 1 i
4
iSIN
) fi ( LiSEQ ) fi ( Li )
i 1 i 1
4
4
L
i 1
iSIN
LiSEQ Li
i 1 i 1
4
4
显然,这个问题有很多解。为简化问题, 可以设定边界条件:
Li Fi (LiSIN , LiSEQ )
满足该边界条件的最简单解是
Li kSIN LiSIN kSEQ LiSEQ
式中:kSIN为单阀系数;kSEQ为顺序阀系数。 当阀门处于单阀方式时: k =1, k =0
假设阀门切换过程中汽轮机运行工况稳 定,即真空和主蒸汽参数不变,不考虑抽 汽的影响,汽轮机的负荷仅由蒸汽流量决 定,而各个调节阀所控制的流量也只和阀 门开度有关,那么可以认为汽轮机负荷进 仅是阀门开度的单函数。用y表示汽轮机负 荷,L表示阀门开度,设有4个高压调节阀。 在单阀方式下:
ySIN fi ( LiSIN )
四、协调控制(CCS)
协调控制方式一般须满足下列条件: (1)机组已并网; (2)收到协调允许信号。
第四节 控制功能与控制系统特性
一、控制功能
其它阀阀位指令形成
中压调节阀阀位指令与高压调节阀阀位指 令产生原理基本相同。 高压主汽阀阀位指令
中压主汽阀阀位指令
0% 阀室预暖 10% 100% 计算基准值 T 0% & 跳闸汽轮机 主汽阀泄漏试验 T 运行RUN T 手动系统复位
T
≥1
f(x) 试验阀门开度值 T 汽轮机跳闸 0% T 0% 左高压主汽阀试验 试验阀门开度值
三、控制原理
转速 调节器 + - 中 间 再 热 器 中 、 低 压 缸
中 、 低 压 缸 功 率 励磁电流
OA手动给定
N
ATC自动给定 CCS的TD指令 同期信号 给 定 处 理 回 路
N Y
N
Y
功率 调节器 + + + - 负 荷 控 制 投 入 - K2 调节级压 力调节器
Y
K3 K4 并 网
• 数字电液控制系统(又称DEH系统, Digital Electro-Hydraulic Control System)是20世纪70年代后期发展起来的 大型汽轮发电机组的自动控制装置,早期 的DEH系统采用专用的数字控制装置,但 现在汽轮机控制系统普遍采用分散控制系 统DCS(Distributed Control Systems) 系统予以实现。
SIN SEQ
当阀门处于顺序阀方式时: kSIN =0, kSEQ=1 当阀门处于切换的中间状态时:
0 kSIN 1,0 kSEQ 1
kSIN kSEQ 1
总流量需求值 阀切换系数 中压缸启动为0 高中压启动为1
×
f 1(x) 阀门试验值 T 阀门试验逻辑 GV1单阀开度L1SIN 单阀系数k SIN × + ∑ -3% + 顺序阀系数k SEQ
高压缸配汽
高压调节阀GV2
Ⅱ 高压调节阀GV3 Ⅲ Ⅳ Ⅰ
高压调节阀GV4
高压调节阀GV1
高压主汽阀TV1
高压主汽阀TV2
过热器蒸汽
图3—7汽轮机阀门布置图
3 阀门管理
(1)线性化
阀门 开度 L
总流量需求值Q
÷
单阀流量需求值 f(x)
流量 阀位开度L
调节阀数目 图3-8 单阀控制时阀位计算
在顺序阀控制方式下
CCS目标值(TD指令) T
CCS方式
保持方式 T 变化率限制 V≯ 运行方式
设定值 图3—6 给定值处理逻辑
第二节 阀门管理
1阀门配置与作用
高压缸配汽 高压调节阀GV2 高压调节阀GV4
Ⅱ
Ⅳ
高压调节阀GV3
Ⅲ
Ⅰ
高压调节阀GV1
高压主汽阀TV1
高压主汽阀TV2
过热器蒸汽
图3—7汽轮机阀门布置图
• 高压主汽阀具有危急状态时快速关闭、截断进汽 和启动时调节汽轮机转速两个功能。当高压调节 阀失效时能提供一个额外的保护。高压主汽阀在 汽轮机全速旋转时和正常工况下保持全开。 • 当汽轮机发电机组正常运行时,通过调节高压调 节阀门开度,改变进汽流量,达到速度和负荷控 制的目的。 • 中压主汽阀的作用是在紧急情况下快速地关闭以 便切断进入中压缸的再热蒸汽。 • 中压调节阀的基本作用是在将要发生突发事故时 起保护作用。它在汽轮机保护系统动作时进行关 闭。第二个作用是在汽轮机启动和升负荷时,控 制再热蒸汽流量。