小船过河问题
小船过河问题-高考物理知识点

小船过河问题-高考物理知识点
小船过河问题1.一般情况的过河小船过河问题,可以把小船的渡河运动分解为它同时参与的两个运动,一是小船运动,一是水流的运动,船的实际运动为合运动。
2.以最短时间过河
过河时间最短,就是所有的船速都用来过河,这时候船头应该垂直河岸。
因为这时候船参与两个运动,一个是沿水流方向,一个是垂直河岸方向,而且这两个运动具有独立性,互不干扰。
3.以最短航程过河
“沿最短行程过河”就是和速度方向垂直河岸,那么要求在水流方向上没有速度,就是说在船速沿水流方向分解一个速度来抵消水速,而且船头应该偏向上游。
高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高中物理小船过河问题公式

小船过河问题的公式在高中物理中是一个经典的问题。
首先,我们需要理解几个重要的概念:
河宽(d)
船在静水中的速度(v船)
水流的速度(v水)
船的合速度(v合)
船头与河岸上游之间的夹角(θ)
以下是几个可能用到的公式:
当小船垂直河岸过河时,所需时间最短,这个时间为:t=d/v船。
如果小船的船头指向与河岸上游之间有一个夹角θ,那么小船的实际路径将是一个斜线。
在这种情况下,小船过河所需的时间为:t=d/(v船*cosθ)。
当小船的速度沿着河岸方向的分量大小等于水流速度时,小船的合速度垂直河岸,位移最短,为河宽d。
此时小船过河的时间为:t=d/(v船*sinθ)。
请注意,这些公式都基于一些假设和理想条件,例如水流是均匀的,船的速度是恒定的等。
在真实情况下,可能需要考虑更多的因素。
小船过河问题的总结

曲线运动习题课一、船过河模型1、处理方法:小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动,即在静水中的船的运动(就是船头指向的方向),船的实际运动是合运动。
2、若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间:3、若使小船过河的时间最短,应使船头正对河岸行驶,如图乙所示,此时过河时间(d为河宽)。
因为在垂直于河岸方向上,位移是一定的,船头按这样的方向,在垂直于河岸方向上的速度最大。
二、绳端问题(绳子末端速度分解)绳子末端运动速度的分解,按运动的实际效果进行可以方便我们的研究。
例如在右图中,用绳子通过定滑轮拉物体船,当以速度v匀速拉绳子时,求船的速度。
解析:船的运动(即绳的末端的运动)可看作两个分运动的合成:a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。
即为v;b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。
这样就可以求得船的速度为, 当船向左移动,α将逐渐变大,船速逐渐变大。
虽然匀速拉绳子,但物体A却在做变速运动。
绳子末端速度的分解问题,是本章的一个难点,同学们在分解时,往往搞不清哪一个是合速度,哪一个是分速度。
以至解题失败。
下面结合例题讨论一下。
例1、如图1所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳速度大小为v1,当船头的绳索与水平面夹角为θ时,船的速度多大解析我们所研究的运动合成问题,都是同一物体同时参与的两个分运动的合成问题,而物体相对于给定参照物(一般为地面)的实际运动是合运动,实际运动的方向就是合运动的方向。
本例中,船的实际运动是水平运动,它产生的实际效果可以A点为例说明:一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。
由图可知:v=v1/cosθ点评不论是力的分解还是速度的分解,都要按照它的实际效果进行。
小船过河问题

小船过河问题问题本质小船渡河是典型的运动的合成问题。
需要理解运动的独立性原理,掌握合速度与分速度之间的关系。
小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动v 水(水冲船的运动),和船相对水的运动v 船(即在静水中的船的运动),船的实际运动v 是合运动。
基本模型 1、v 水<v 船时间最少在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt == ,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为船v d,合运动沿v 的方向进行。
位移最小结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cosv2、v 水>v 船时间最少同前位移最小不论船的航向如何,总是被水冲向下游,即无论向哪个方向划船都不能使船头垂直于河,只能尽量使船头不那么斜。
那么怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos=θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 典型例题★某人以不变的速度垂直对岸游去,游到中间,水流速度加大,则此人渡河时间比预定时间A .增加B .减少C .不变D .无法确定 答案:C★某人以一定速度始终垂直河岸向对岸游去,当河水匀速流动时,他所游过的路程,过河所用的时间与水速的关系是( )A .水速大时,路程长,时间长B .水速大时,路程长,时间短C .水速大时,路程长,时间不变D .路程、时间与水速无关 答案: C★如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用B. B 沿虚线向A 游且A 沿虚线偏向上游方向游C. A 沿虚线向B 游且B 沿虚线偏向上游方向游D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游 答案:A★★一条自西向东的河流,南北两岸分别有两个码头A 、B ,如图所示.已知河宽为80 m ,河水流速为5 m/s ,两个码头A 、B 沿水流的方向相距100 m .现有一只船,它在静水中的行驶速度为4 m/s ,若使用这只船渡河,且沿直线运动,则( )A .它可以正常来往于A 、B 两个码头 B .它只能从A 驶向B ,无法返回C .它只能从B 驶向A ,无法返回D .无法判断 答案:B★在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) A .21222υυυ-d B .0 C .21υυd D .12υυd答案:C★某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速1v 与水速2v 之比为( ) (A)21222T T T - (B)12T T (C) 22211T T T - (D)21T T 答案:A★小船在s=200 m 宽的河中横渡,水流速度是2 m/s,船在静水中的航行速度为4 m/s.求: (1)小船渡河的最短时间.(2)要使小船航程最短,应该如何航行? 答案 (1)50 s 2)船速与上游河岸成60°★★一条河宽100米,船在静水中的速度为4m/s ,水流速度是5m/s ,则( )A .该船可能垂直河岸横渡到对岸B .当船头垂直河岸横渡时,过河所用的时间最短C .当船头垂直河岸横渡时,船的位移最小,是100米D .当船横渡时到对岸时,船对岸的最小位移是100米 答案: B★★河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?答案:(1)20s (2)小船的船头与上游河岸成600角时,最短航程为120m★★小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,dv k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )A 、小船渡河的轨迹为曲线B 、小船到达离河岸2d处,船渡河的速度为02v C 、小船渡河时的轨迹为直线 D 、小船到达离河岸4/3d 处,船的渡河速度为010v 答案:A★如图所示,小船从A 码头出发,沿垂直河岸的方向划船,若已知河宽为d ,划船的速度v 船恒定. 河水的流速与到河岸的最短距离x 成正比,即)其中k 为常量。
小船过河问题

图4-6
小船过河问题
【例 1】小船在 d=200m宽的河水中行驶,船在 静水中v船=4m/s,水流速度v水=2m/s。求: ①要使船能在最短时间内渡 河,应向何方划船?
演示
v船
d t v船
v实际 d v水
v水 s v水 t d v船
【例 1】小船在 d=200m宽的河水中行驶,船在 静水中v船=4m/s,水流速度v水=2m/s。求: ②要使船能够垂直地渡过河 演示 去,那么应向何方划船?
图4-3
解法:应用合运动与分运动的关系
• 绳子牵引物体的运动中,物体实际在水平面上运动,这个 运动就是合运动,所以物体在水平面上运动的速度v物是合 速度,将v物按如图4-6所示进行分解.其中:v=v物cosθ,使 绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动. • 所以v物= v
cos
v船 cos ? v实际 v水 d v船 v d 船 v 水 α( v水 S
S
v实际 v水 d v船
虚线所示即为最短路径v船<v水 S
d
α(
v实际 v水
d v船
v船 cos v水
v 船 v水 d S
v水 S d v船
速度关联类问题求解· 速度的 合成与分解
图4-12
[例1]如图4-3所示,在一光滑水平面上放 一个物体,人通过细绳跨过高处的定滑轮 拉物体,使物体在水平面上运动,人以大 小不变的速度v运动.当绳子与水平方向成θ 角时,物体前进的瞬时速度是多大?
v水 cos v船
d t v 船 sin
v船
α(
vቤተ መጻሕፍቲ ባይዱ际
v水 d
重要结论---小船的两种过河方式 1.最短时间过河 v船 d v水 v实际 d v水 过河路径最短; s = d (v船>v水) 2.最短位移过河 v船 v实际
高中物理小船过河问题

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间θυυsin 1船ddt ==,显然,当︒=90θ时,即船头的指向与河岸垂直,渡河时间最小为vd,合运动沿v 的方向进行。
2.位移最小 若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水船v v =θcos 船头与河岸的夹角应为水船v v arccos =θ,船沿河漂下的最短距离为:θθsin )cos (min 船船水v dv v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ (2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽; ②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动——小船渡河问题分析1.一人以垂直河岸不变的速度(相对水)向对岸游去,若河水流动速度恒定。
下列说法中正确的是A.河水流动速度对人渡河无任何影响B.游泳者渡河的路线与河岸垂直C.由于河水流动的影响,人到达对岸的位置将向下游方向偏移D.由于河水流动的影响,人到达对岸的时间与静水中不同答案:C正确的是A.小船过河所需的最短时间是40sB.要使小船过河的位移最短,船头应始终正对着对岸C.要使小船过河的位移最短,过河所需的时间是50sD.如果水流速度增大为6m/s,小船过河所需的最短时间将增大答案:AA、下落时间越短B、下落时间越长C、落地时速度越小D、落地时速度越大答案:D4.小船匀速横渡一条宽120m的河流,当船头垂直于河岸方向航行时,30s到达河对岸下游60m处,则船在静水中的速度为;若船头保持与河岸上游成α角航行,恰好到达正对岸,则α= 。
答案:5.一小船在静水的速度为3m/s,它在一条河宽150m,水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸 B.渡河的时间可能少于50sC.以最短时间渡河时,它沿水流方向的位移大小为200mD.以最短位移渡河时,位移大小为150m答案:C6.小船在静水中的速度是v,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至河中心时,河水流速增大,则渡河时间将()A. 不变B.减小C.增大D.不能确定答案:A7.若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小。
现假设河的宽度为120m,河中心水的流速大小为5m/s,船在静水中的速度大小为3m/s,则下列说法中正确的是()A.船渡河的最短时间是40sB.船在河水中航行的轨迹是一条直线C.要使船渡河时间最短,船头应始终与河岸垂直D.要使船渡河行程最短,船头应与上游河岸成53°行驶答案:AC8.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s,关于船过河的过程,下列说法不正确的是:A.船过河的最短时间是20s B.船要垂直河岸过河需用25s的时间C.船的实际速度可能为5m/s D.船的实际速度可能为10m/s答案:D9.某船在静水中的速率为4m/s, 要横渡宽为40m的河, 河水的流速为5m/s、下列说法中不正确的是A、该船不可能沿垂直于河岸的航线抵达对岸B、该船渡河的速度最小速度是3m/sC、该船渡河所用时间至少是10sD、该船渡河所经位移的大小至少是50m 答案:B10.一只船在200m宽的河中横渡,水流速度是2m/s,船在静水中的航速是4m/s,欲使小船以最短时间渡过河去,则应使船头方向_________河岸(填“垂直”或“不垂直”)行驶,最短的时间是_________ s.答案:垂直5011.一艘船以相对于静水恒定的速率渡河,水流速度也恒定(且小于船速),若河的宽度一定,要使船到达对岸航程最短,则()A.船头指向应垂直河岸航行B.船头指向应偏向下游一侧C.船头指向应偏向上游一侧D.船不可能沿直线到达对岸答案:C12.一只小船在静水中的速度为3m/s,它要渡过一条宽度为30m的河,河水的流速为4m/s,则下列说法正确的是( )A.船不能渡过河 B.船过河的速度一定为5m/sC.船运动的轨迹不可能垂直河岸D.船过河的最短时间为10s答案:CD13.王聪同学,为了测量某河流的水速,找来一条小船,他首先保持小船对水以恒定的速度行驶.第一次,保持船头始终垂直河岸划行,经10min到达正对岸下游120m处;第二次,船头始终保持指向与上游河岸成θ角划行,经12.5min到达正对岸。
由此,你帮王聪同学计答案:12m/min;20m/min;200m解析:根据运动的合成与分解,船两次运动的情况如图甲、乙,由甲得:,,由乙得:由此得v=20m/s,L=200m.14.某人以一定速率垂直河岸向对岸游去,当水流运动是匀速时,他所游过的路程、过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关答案:C15.某船在静水中的速率为3m/s,要横渡宽为30m的河,河水的流速为5m/s。
则下列说法中正确的是A.该船不可能渡过河去B.该船渡河的最小距离为30mC.该船渡河所用时间至少是10sD.该船渡河所经位移的大小至少是50m答案:CD16.一只小船在静水中的速度为5m/s,它要渡过一条宽为50m的河,河水流速为4m/s,则()A.这只船过河位移不可能为50mB.这只船过河时间不可能为10sC.若河水流速改变,船过河的最短时间一定不变D.若河水流速改变,船过河的最短位移一定不变答案:C17.如图所示,直线AB和CD是彼此平行且笔直的河岸,若河水不流动,小船船头垂直河岸由A点匀速驶向对岸,小船的运动轨迹为直线P。
若河水以稳定的速度沿平行河岸方向流动,且整个河流中水的流速处处相等,现仍保持小船船头垂直河岸由A点匀加速驶向对岸,则小船实际运动的轨迹可能是图中的()A.直线P B.曲线QC.直线R D.曲线 S答案:D答案:100s、125s19.某小船在静水中的速度大小保持不变,该小船要渡过一条河,渡河时小船船头垂直指向河岸.若船行至河中间时,水流速度突然增大,则()C.小船渡河时间增加D.小船到达对岸地点不变答案:A20.如图6—4所示,河宽为L,船对水的速度为V船,水的流速为V水,试分析:(1)船怎样渡河,所需时间最短?最短时间为多少?(2)当V船>V水时,船怎样渡河位移最小?最小位移是多少?(3)当V水<V船时,船怎样渡河位移最小?最小位移是多少?解析:(1)船渡河的时间t取决于V船垂直于河岸的分量V y和河宽L,而与V水无关。
设船头与河岸的夹角为θ,则渡河时间可以表示为可见,当sinθ=1,θ=90??即船头垂直河岸时,如图6—5所示渡河时间最短(2)如图6—6所示,当V船>V水时,船的合速度v垂直河岸时,渡河位移最小,且等于河宽,即S min=L,所以船头应斜对上游,且河岸的夹角为(3)如图6—7所示,当V水<V船时,以V水末端为圆心,以V船大小为半径画半圆,船的实际速度为以V水的始端为始端,以圆周上一点为末端的矢量。
其中与河岸的夹角最大的方向,即沿图示切线方向时,渡河路径最短。
21.某人乘船横渡一条小河,船在静水中的速度和水速一定,且船速大于水速. 若渡河最短时间为t1,用最短位移渡河时间为t2,则船速与水速之比为多少?解析:设小河河宽为d,则当船以最短的时间渡河时:t1=……①当船以最短的位移渡河时t2=……②得:22.已知河水的流速为v1,小船在静水中的速度为v2,且v2>v1,下面用小箭号表示小船及船头的指向,则能正确反映小船在最短时间内渡河、最短位移渡河的情景图示依次是()A.①②B.①⑤ C.④⑤D.②③答案:C解析:设两岸距离为d。
小船在最短时间过河,如图1,应对应于分运动是垂直河岸的,但小船的实际航线是沿合运动方向,即图1中v的方向,即有。
所以正确答案为④。
小船在最短位移过河,如图2,小船的合运动是垂直于河岸的,即v的方向,而船头是沿上游即v2的方向,有最短位移S=d。
所以正确答案为⑤。
综合得答案C正确。
23.河水的流速随与河岸的距离的变化关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则()A.船渡河的最短时间是60 sB.船在行驶过程中,船头始终与河岸垂直C.船在河水中航行的轨迹是一条直线D.船在河水中的最大速度是5 m/s答案:BD解析:因为船在行驶过程中,船头始终与河岸垂直24.一只小船在静水中的速度大小始终为8m/s,在流速为4m/s的河中航行,则河岸上的人能看到船的实际航速大小可能是()A.1m/s B.4m/s C.8m/s D.14m/s答案:BC解析:河岸上的人能看到船的实际航速大小范围是,所以只有BC符合。
25.某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了5.T1;若此船用最短的位移过河,则需时间为T2,若船速大于水速,则船速与水速之比为()(A) (B)(C) (D)答案:A解析:设船速为,水速为,河宽为d ,则由题意可知:①当此人用最短位移过河时,即合速度方向应垂直于河岸,如图所示,则②联立①②式可得:,进一步得26.河宽d=60m,水流速度v1=6m/s,小船在静水中的速度v2=3m/s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?解析:(1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间(2)渡河航程最短有两种情况:①船速v2大于水流速度v1时,即v2>v1时,合速度v与河岸垂直时,最短航程就是河宽;②船速v2小于水流速度v l时,即v2<v1时,合速度v不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
可由几何方法求得,即以v1的末端为圆心,以v2的长度为半径作圆,从v1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
设航程最短时,船头应偏向上游河岸与河岸成θ角,则,最短行程,小船的船头与上游河岸成600角时,渡河的最短航程为120m。
技巧点拔:对第一小问比较容易理解,但对第二小问却不容易理解,这里涉及到运用数学知识解决物理问题,需要大家有较好的应用能力,这也是教学大纲中要求培养的五种能力之一。