带电粒子在电场中的偏转

合集下载

高二物理:带电粒子在电场中的偏转(答案)

高二物理:带电粒子在电场中的偏转(答案)

高二物理:带电粒子在电场中的偏转班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1. 带电粒子在匀强电场中的偏转222y F a __________m a.t _____11qU b.y at t ,22md t 1y at ________2vtan ________v ⎧===⎪⎪⎧⎪⎪⎪=⎪⎪⎪⎪==⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪==⎪⎪⎪θ==⎪⎩0加速度:能飞出平行板电容器:运动时间打在平行极板上:离开电场时的偏移量:离开电场时的偏转角正切: 【答案】2. 解电偏转问题的三种方法方法一、分解法(速度三角形和位移三角形):加速度mdqU m qE a ==;时间0v L t =; 偏移2221v L md qU y =;偏角20mdv qUL tan =θ 方法二、推论法:①tanθ=2tanα;推导:位移偏转角2021v Lmd qU x y tan ==α;速度偏转角20v L md qU v v tan x y ==θ所以tanθ=2tanα。

②末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。

方法三、动能定理法: qEy =ΔE K 【答案】3. 带电粒子在匀强电场中偏转的功能关系(1)当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv20,其中U y =U d y ,指初、末位置间的电势差.(2)电势能的变化量:ΔE P =-qU y =-qEy 【答案】4. 电偏转中的比较与比值问题二、选择题5. (2004广东理综)图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)射入.不计重力,要使此粒子能从C 处射出,则A 、B 间的电压应为( )A 、222ql mv d B 、2202qd mvl C 、qd lmv 0 D 、v dlv q 0【答案】A【解析】图为示波管中偏转电极的示意图,相距为d 长度为l 的平行板A 、B 加上电压后,可在A 、B 之间的空间中(设为真空)产生电场(设为匀强电场).在AB 左端距A 、B 等距离处的O 点,有一电荷为+q 、质量为m 的粒子以初速度v 0沿水平方向(与平行)。

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。

第八章 第4讲 带电粒子在电场中的偏转

第八章 第4讲 带电粒子在电场中的偏转

第4讲 带电粒子在电场中的偏转目标要求 1.掌握带电粒子在电场中的偏转规律.2.会分析带电粒子在电场中偏转的功能关系.3.掌握带电粒子在电场和重力场的复合场中的运动规律.4.会分析、计算带电粒子在交变电场中的偏转问题.考点一 带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =lv 0(如图).(2)沿电场力方向做匀加速直线运动 ①加速度:a =F m =qE m =qUmd.②离开电场时的偏移量:y =12at 2=qUl 22md v 02.③离开电场时的偏转角:tan θ=v y v 0=qUlmd v 02.1.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12m v 02在偏转电场偏移量y =12at 2=12·qU 1md ·(l v 0)2偏转角θ,tan θ=v y v 0=qU 1lmd v 02得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半. 2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 02,其中U y=Ud y ,指初、末位置间的电势差.考向1 带电粒子在匀强电场中的偏转例1 (2023·广东佛山市模拟)如图所示,正方形ABCD 区域内存在竖直向上的匀强电场,质子(11H)和α粒子(42He)先后从A 点垂直射入匀强电场,粒子重力不计,质子从BC 边中点射出,则( )A .若初速度相同,α粒子从CD 边离开B .若初速度相同,质子和α粒子经过电场的过程中速度增量之比为1∶2C .若初动能相同,质子和α粒子经过电场的时间相同D .若初动能相同,质子和α粒子经过电场的过程中动能增量之比为1∶4 答案 D解析 对任一粒子,设其电荷量为q ,质量为m ,粒子在电场中做类平抛运动,水平方向有 x =v 0t ,竖直方向有y =12at 2=12·qE m ·x 2v 02,若初速度相同,水平位移x 相同时,由于α粒子的比荷比质子的小,则α粒子的偏转距离y 较小,所以α粒子从BC 边离开,由t =xv 0知两个粒子在电场中的运动时间相等,由Δv =at =qE m t ,知Δv ∝qm ,则质子和α粒子经过电场的过程中速度增量之比为2∶1,故A 、B 错误;粒子经过电场的时间为t =xv 0,若初动能相同,质子的初速度较大,则质子的运动时间较短,故C 错误;由y =12·qE m ·x 2v 02,E k =12m v 02得y =qEx 24E k ,若初动能相同,已知x 相同,则y ∝q ,根据动能定理知:经过电场的过程中动能增量ΔE k =qEy ,E 相同,则ΔE k ∝q 2,则质子和α粒子经过电场的过程中动能增量之比为1∶4,故D正确.例2 (2020·浙江7月选考·6)如图所示,一质量为m 、电荷量为q ()q >0的粒子以速度v 0从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中.已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( )A .所用时间为m v 0qEB .速度大小为3v 0C .与P 点的距离为22m v 02qED .速度方向与竖直方向的夹角为30° 答案 C解析 粒子在电场中只受电场力,F =qE ,方向向下,如图所示.粒子的运动为类平抛运动.水平方向做匀速直线运动,有x =v 0t ,竖直方向做初速度为0的匀加速直线运动,有y =12at 2=12·qE m t 2,yx =tan 45°,联立解得t =2m v 0qE,故A 错误;v y =at =qE m ·2m v 0qE =2v 0,则速度大小v =v 02+v y 2=5v 0,tan θ=v 0v y =12,则速度方向与竖直方向夹角θ≠30°,故B 、D 错误;x =v 0t =2m v 02qE ,与P 点的距离s =x cos 45°=22m v 02qE ,故C 正确.考向2 带电粒子在组合场中的运动例3 (2023·广东湛江市模拟)示波管原理图如图甲所示.它由电子枪、偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX ′和YY ′之间都没有加电压,电子束从电子枪射出后沿直线运动,打在荧光屏中心,产生一个亮斑如图乙所示.若板间电势差U XX′和U YY′随时间变化关系图像如丙、丁所示,则荧光屏上的图像可能为()答案 A解析U XX′和U YY′均为正值,两偏转电极的电场强度方向分别由X指向X′,Y指向Y′,电子带负电,所受电场力方向与电场强度方向相反,所以分别向X、Y方向偏转,可知A正确.例4如图装置是由粒子加速器和平移器组成,平移器由两对水平放置、间距为Δd的相同平行金属板构成,极板间距离和板长均为L.加速电压为U0,两对极板间偏转电压大小相等均为U0,电场方向相反.质量为m、电荷量为+q的粒子无初速度地进入加速电场,被加速器加速后,从平移器下板边缘水平进入平移器,最终从平移器上板边缘水平离开,不计重力.下列说法正确的是()A.粒子离开加速器时速度v0=qU0 mB .粒子通过左侧平移器时,竖直方向位移y 1=L4C .Δd 与2L 相等D .只增加加速电压,粒子将不能从平移器离开 答案 B解析 根据qU 0=12m v 02,粒子离开加速器时速度为v 0=2qU 0m,故A 错误;粒子在左侧平移器电场中的偏移量为y 1=12at 2,又q U 0L =ma ,L =v 0t ,得y 1=L4,故B 正确;根据类平抛运动的特点和对称性,粒子在两平移器之间做匀速直线运动,它的轨迹延长线分别过平行板中点,根据几何关系可知Δd =L ,故C 错误;由B 选项可得y 1=qU 0L2m v 02,由A 选项可知当加速电压增大时,粒子进入平移器的速度增大,粒子在平移器中竖直方向偏移量变小,粒子可以离开平移器,位置比原来靠下,故D 错误.考点二 带电粒子在重力场和电场复合场中的偏转例5 如图所示,地面上某区域存在着水平向右的匀强电场,一个质量为m 的带负电小球(可视为质点)以水平向右的初速度v 0,由O 点射入该区域,刚好竖直向下通过竖直平面中的P 点,已知OP 与初速度方向的夹角为60°,重力加速度为g ,则以下说法正确的是( )A .所受电场力大小为3mg2B .小球所受的合外力大小为3mg3 C .小球由O 点到P 点用时3v 0gD .小球通过P 点时的动能为52m v 02答案 C解析 设OP =L ,小球从O 到P 水平方向做匀减速运动,到达P 点时水平速度为零,竖直方向做自由落体运动,则水平方向L cos 60°=v 02t ,竖直方向L sin 60°=12gt 2,解得t =3v 0g ,选项C 正确;水平方向受电场力F 1=ma =m v 0t =3mg3,小球所受的合外力是F 1与mg 的合力,可知合力的大小F =(mg )2+F 12=233mg ,选项A 、B 错误;小球通过P 点时的速度大小v P =gt =3v 0,则动能E k P =12m v P 2=32m v 02,选项D 错误.例6 (2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O 、P 是电场中的两点.从O 点沿水平方向以不同速度先后发射两个质量均为m 的小球A 、B .A 不带电,B 的电荷量为q (q >0).A 从O 点发射时的速度大小为v 0,到达P 点所用时间为t ;B 从O 点到达P 点所用时间为t2.重力加速度为g ,求:(1)电场强度的大小; (2)B 运动到P 点时的动能. 答案 (1)3mgq(2)2m (v 02+g 2t 2)解析 (1)设电场强度的大小为E ,小球B 运动的加速度为a .根据牛顿第二定律、运动学公式和题给条件,有mg +qE =ma ① 12a (t 2)2=12gt 2② 解得E =3mg q③(2)设B 从O 点发射时的速度为v 1,到达P 点时的动能为E k ,O 、P 两点的高度差为h ,根据动能定理有mgh +qEh =E k -12m v 12④且有v 1·t2=v 0t ⑤h =12gt 2⑥ 联立③④⑤⑥式得E k =2m (v 02+g 2t 2).考点三 带电粒子在交变电场中的偏转1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做周期性变化(如方波)的情形.当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线运动,沿电场方向的分运动具有周期性.2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段求解带电粒子运动的末速度、位移等. 3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间极短,带电粒子穿过电场时可认为是在匀强电场中运动.例7 在如图甲所示的极板A 、B 间加上如图乙所示的大小不变、方向周期性变化的交变电压,其周期为T ,现有一电子以平行于极板的速度v 0从两板中央OO ′射入.已知电子的质量为m 、电荷量为e ,不计电子的重力,问:(1)若电子从t =0时刻射入,在半个周期内恰好能从A 板的边缘飞出,则电子飞出时速度的大小为多少?(2)若电子从t =0时刻射入,恰能平行于极板飞出,则极板至少为多长?(3)若电子恰能沿OO ′平行于极板飞出,电子应从哪一时刻射入?两极板间距至少为多大? 答案 见解析解析 (1)由动能定理得e U 02=12m v 2-12m v 02解得v =v 02+eU 0m. (2)t =0时刻射入的电子,在垂直于极板方向上做匀加速运动,向A 极板方向偏转,半个周期后电场方向反向,电子在该方向上做匀减速运动,再经过半个周期,电子在电场方向上的速度减小到零,此时的速度等于初速度v 0,方向平行于极板,以后继续重复这样的运动;要使电子恰能平行于极板飞出,则电子在OO ′方向上至少运动一个周期,故极板长至少为L =v 0T .(3)若要使电子沿OO ′平行于极板飞出,则电子在电场方向上应先加速、再减速,减速到零后反向加速、再减速,每阶段时间相同,一个周期后恰好回到OO ′上,可见应在t =T 4+k T2(k=0,1,2,…)时射入,极板间距离要满足电子在加速、减速阶段不打到极板上,设两板间距为d ,由牛顿第二定律有a =eU 0md ,加速阶段运动的距离s =12·eU 0md ⎝⎛⎭⎫T 42≤d4,解得d ≥TeU 08m,故两极板间距至少为T eU 08m. 例8 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器极板长L =10 cm ,极板间距d =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,荧光屏足够长,在电容器两极板间接一交变电压,上极板与下极板的电势差随时间变化的图像如图乙所示.每个电子穿过极板的时间都极短,可以认为电子穿过极板的过程中电压是不变的.求:(1)在t =0.06 s 时刻,电子打在荧光屏上的位置到O 点的距离; (2)荧光屏上有电子打到的区间长度. 答案 (1)13.5 cm (2)30 cm解析 (1)设电子经电压U 0加速后的速度为v 0,根据动能定理得eU 0=12m v 02,设电容器间偏转电场的场强为E ,则有E =Ud,设电子经时间t 通过偏转电场,偏离轴线的侧向位移为y ,则沿中心轴线方向有t =Lv 0,垂直中心轴线方向有a =eE m ,联立解得y =12at 2=eUL 22md v 02=UL 24U 0d,设电子通过偏转电场过程中产生的侧向速度为v y ,偏转角为θ,则电子通过偏转电场时有v y =at ,tan θ=v y v 0,则电子在荧光屏上偏离O 点的距离为Y =y +L tan θ=3UL 24U 0d ,由题图乙知t=0.06 s 时刻,U =1.8U 0,解得Y =13.5 cm.(2)由题知电子偏移量y 的最大值为d 2,根据y =UL 24U 0d可得,当偏转电压超过2U 0时,电子就打不到荧光屏上了,所以代入得Y max=3L,所以荧光屏上电子能打到的区间长度为2Y max=3L2=30 cm.课时精练1.(多选)如图所示,一带正电的小球向右水平抛入范围足够大的匀强电场,电场方向水平向左.不计空气阻力,则小球()A.做直线运动B.做曲线运动C.速率先减小后增大D.速率先增大后减小答案BC解析对小球受力分析,小球受重力、电场力作用,合外力的方向与初速度的方向不在同一条直线上,故小球做曲线运动,故A错误,B正确;在运动的过程中合外力方向与速度方向间的夹角先为钝角后为锐角,故合外力对小球先做负功后做正功,所以速率先减小后增大,故C正确,D错误.2.(多选)(2023·辽宁葫芦岛市高三检测)如图所示,在竖直向上的匀强电场中,A球位于B球的正上方,质量相等的两个小球以相同初速度水平抛出,它们最后落在水平面上同一点,其中只有一个小球带电,不计空气阻力,下列判断正确的是()A.如果A球带电,则A球一定带负电B.如果A球带电,则A球的电势能一定增加C.如果B球带电,则B球一定带负电D.如果B球带电,则B球的电势能一定增加答案AD解析 平抛时的初速度相同,在水平方向通过的位移相同,故下落时间相同,A 球在上方,竖直位移较大,由h =12at 2可知,A 球下落的加速度较大,所受合外力较大,如果A 球带电,则A 球受到向下的电场力,一定带负电,电场力做正功,电势能减小,故A 正确,B 错误;如果B 球带电,由于B 球的竖直位移较小,加速度较小,所受合外力较小,则B 球受到的电场力向上,应带正电,电场力对B 球做负功,电势能增加,故C 错误,D 正确.3.如图所示,一电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,方向竖直向上,P 、Q 两点间的电势差为U (U >0),不计粒子重力,P 点的电势为零.则下列说法正确的是( )A .粒子带负电B .带电粒子在Q 点的电势能为qUC .P 、Q 两点间的竖直距离为d 2D .此匀强电场的电场强度为23U3d答案 D解析 由题图可知,带电粒子的轨迹向上弯曲,则粒子受到的电场力方向竖直向上,与电场方向相同,所以该粒子带正电,故A 错误;粒子从P 点运动到Q 点,电场力做正功,大小为W =qU ,则粒子的电势能减少了qU ,P 点的电势为零,可知带电粒子在Q 点的电势能为-qU ,故B 错误;Q 点速度的反向延长线过水平位移的中点,则y =d 2tan 30°=32d ,电场强度大小为E =U y =23U3d,故D 正确,C 错误.4.(多选)(2021·全国乙卷·20)四个带电粒子的电荷量和质量分别为(+q ,m )、(+q ,2m )、(+3q ,3m )、(-q ,m ),它们先后以相同的速度从坐标原点沿x 轴正方向射入一匀强电场中,电场方向与y 轴平行.不计重力,下列描绘这四个粒子运动轨迹的图像中,可能正确的是( )答案 AD解析 带电粒子在匀强电场中做类平抛运动,加速度为a =qEm ,由类平抛运动规律可知,带电粒子在电场中运动时间为t =lv 0,离开电场时,带电粒子的偏转角的正切值为tan θ=v y v x =at v 0=qElm v 02,因为四个带电的粒子的初速度相同,电场强度相同,水平位移相同,所以偏转角只与比荷有关,(+q ,m )粒子与(+3q ,3m )粒子的比荷相同,所以偏转角相同,轨迹相同,且与(-q ,m )粒子的比荷也相同,所以(+q ,m )、(+3q ,3m )、(-q ,m )三个粒子偏转角相同,但(-q ,m )粒子与上述两个粒子的偏转角方向相反,(+q ,2m )粒子的比荷比(+q ,m )、(+3q ,3m )粒子的比荷小,所以(+q ,2m )粒子比(+q ,m )(+3q ,3m )粒子的偏转角小,但都带正电,偏转方向相同,故A 、D 正确,B 、C 错误.5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)经过加速电场加速后,垂直射入偏转电场,射出后偏转位移为Y .要使偏转位移增大,下列哪些措施是可行的(不考虑电子射出时碰到偏转极板的情况)( )A .增大偏转电压UB .增大加速电压U 0C .增大偏转极板间距离D .将发射电子改成发射负离子 答案 A解析 设偏转极板长为l ,极板间距为d ,由eU 0=12m v 02,t =l v 0,a =eU md ,y =12at 2,联立得偏转位移y =Ul 24U 0d ,增大偏转电压U ,减小加速电压U 0,减小偏转极板间距离,都可使偏转位移增大,选项A 正确,B 、C 错误;由于偏转位移y =Ul 24U 0d 与粒子质量、带电荷量无关,故将发射电子改成发射负离子,偏转位移不变,选项D 错误.6.(多选)如图甲所示,真空中水平放置两块长度为2d 的平行金属板P 、Q ,两板间距为d ,两板间加上如图乙所示最大值为U 0且周期性变化的电压,在两板左侧紧靠P 板处有一粒子源A ,自t =0时刻开始连续释放初速度大小为v 0、方向平行于金属板的相同带电粒子,t =0时刻释放的粒子恰好从Q 板右侧边缘离开电场,已知电场变化周期T =2dv 0,粒子质量为m ,不计粒子重力及相互间的作用力,则( )A .在t =0时刻进入的粒子离开电场时速度大小仍为v 0B .粒子的电荷量为m v 022U 0C .在t =18T 时刻进入的粒子离开电场时电势能减少了18m v 02D .在t =14T 时刻进入的粒子刚好从P 板右侧边缘离开电场答案 AD解析 粒子进入电场后,水平方向做匀速运动,则t =0时刻进入电场的粒子在电场中运动时间t =2dv 0,此时间正好是交变电压的一个周期,粒子在竖直方向先做加速运动后做减速运动,经过一个周期,粒子的竖直速度为零,故粒子离开电场时的速度大小等于水平速度v 0,选项A 正确;在竖直方向,t =0时刻进入电场的粒子在T 2时间内的位移为d 2,则d 2=12a ·(T 2)2=U 0q 2dm (d v 0)2,计算得出q =m v 02U 0,选项B 错误;在t =T8时刻进入电场的粒子,离开电场时在竖直方向上的位移为d =2×12a (38T )2-2×12a (T 8)2=d 2,故电场力做功为W =U 0q d ×12d =12U 0q =12m v 02,电势能减少了12m v 02,选项C 错误;t =T 4时刻进入的粒子,在竖直方向先向下加速运动T4,然后向下减速运动T 4,再向上加速T 4,然后再向上减速T4,由对称可以知道,此时竖直方向的位移为零,故粒子从P 板右侧边缘离开电场,选项D 正确.7.(2023·重庆市高三模拟)如图所示,一圆形区域有竖直向上的匀强电场,O 为圆心,两个质量相等、电荷量大小分别为q 1、q 2的带电粒子甲、乙,以不同的速率v 1、v 2从A 点沿AO 方向垂直射入匀强电场,甲从C 点飞出电场,乙从D 点飞出,它们在圆形区域中运动的时间相同,已知∠AOC =45°,∠AOD =120°,不计粒子的重力,下列说法正确的是( )A.v 1v 2=2-22+3 B.v 1v 2=2-23 C.q 1q 2=32 D.q 1q 2= 2 答案 B解析 甲、乙在电场中均做类平抛运动,沿初速度方向做匀速直线运动,它们在圆形区域中运动时间t 相同,在水平方向上,根据题图中几何关系可得x AC =v 1t =R -R cos 45°,x AD =v 2t =R +R cos 60°,联立可得v 1v 2=1-221+12=2-23,A 错误,B 正确;甲、乙在电场中沿电场力方向均做初速度为零的匀加速直线运动,则有y AC =12·q 1E m t 2=R sin 45°,y AD =12·q 2Em t 2=R sin 60°,联立可得q 1q 2=sin 45°sin 60°=23,C 、D 错误.8.(2022·浙江6月选考·9)如图所示,带等量异种电荷的两正对平行金属板M 、N 间存在匀强电场,板长为L (不考虑边界效应).t =0时刻,M 板中点处的粒子源发射两个速度大小为v 0的相同粒子,垂直M 板向右的粒子,到达N 板时速度大小为2v 0;平行M 板向下的粒子,刚好从N 板下端射出.不计重力和粒子间的相互作用,则( )A .M 板电势高于N 板电势B .两个粒子的电势能都增加C .粒子在两板间的加速度为a =2v 02LD .粒子从N 板下端射出的时间t =(2-1)L2v 0答案 C解析 由于不知道两粒子的电性,故不能确定M 板和N 板的电势高低,故A 错误;根据题意垂直M 板向右的粒子到达N 板时速度增加,动能增加,则电场力做正功,电势能减小,则平行M 板向下的粒子到达N 板时电场力也做正功,电势能同样减小,故B 错误;设两板间距离为d ,对于平行M 板向下的粒子刚好从N 板下端射出,在两板间做类平抛运动,有L2=v 0t ,d =12at 2,对于垂直M 板向右的粒子,在板间做匀加速直线运动,因两粒子相同,则在电场中加速度相同,有(2v 0)2-v 02=2ad ,联立解得t =L2v 0,a =2v 02L,故C 正确,D 错误. 9.(多选)如图所示,一充电后与电源断开的平行板电容器的两极板水平放置,板长为L ,板间距离为d ,距板右端L 处有一竖直屏M .一带电荷量为q 、质量为m 的质点以初速度v 0沿中线射入两板间,最后垂直打在M 上,则下列说法中正确的是(已知重力加速度为g )( )A .两极板间电压为mgd2qB .板间电场强度大小为2mgqC .整个过程中质点的重力势能增加mg 2L 2v 02D .若仅增大两极板间距,则该质点不可能垂直打在M 上 答案 BC解析 据题分析可知,质点在平行板间轨迹应向上偏转,做类平抛运动,飞出电场后,轨迹向下偏转,才能最后垂直打在M 屏上,前后过程质点的运动轨迹有对称性,如图所示,可知两次偏转的加速度大小相等,对两次偏转分别由牛顿第二定律得qE -mg =ma ,mg =ma ,解得a =g ,E =2mg q ,由U =Ed 得两极板间电压为U =2mgd q ,故A 错误,B 正确;质点在电场中向上偏转的距离y =12at 2,t =L v 0,解得y =gL 22v 02,故质点打在屏上的位置与P 点的距离为s =2y =gL 2v 02,整个过程中质点的重力势能的增加量E p =mgs =mg 2L 2v 02,故C 正确;仅增大两极板间的距离,因两极板上电荷量不变,根据E =U d =Q Cd =Q εr S 4πkd d =4πkQεr S可知,板间电场强度不变,质点在电场中受力情况不变,则运动情况不变,仍垂直打在M 上,故D 错误. 10.(2023·黑龙江佳木斯市第八中学调研)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一个不计重力的带正电的粒子电荷量q =10-10C 、质量m =10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后,可进入界面MN 和光屏PS 间的无电场的真空区域,最后打在光屏PS 上的D 点(未画出).已知界面MN 与光屏PS 相距12 cm ,O 是中心线RO 与光屏PS 的交点.sin 37°=0.6,cos 37°=0.8,求:(1)粒子穿过界面MN 时偏离中心线RO 的距离; (2)粒子射出平行板电容器时偏转角; (3)OD 两点之间的距离.答案 (1)0.03 m (2)37° (3)0.12 m解析 (1)带电粒子垂直进入匀强电场后做类平抛运动,加速度为a =F m =qU md水平方向有L =v 0t竖直方向有y =12at 2联立解得y =qUL 22md v 02=0.03 m(2)设粒子射出平行板电容器时偏转角为θ,v y =at tan θ=v y v 0=at v 0=qUL md v 02=34,故偏转角为37°.(3)带电粒子离开电场时速度的反向延长线与初速度延长线的交点为水平位移的中点,设两界面MN 、PS 相距为L ′,由相似三角形得L 2L 2+L ′=yY ,解得Y =4y =0.12 m.11.(2023·辽宁大连市第八中学高三检测)如图甲所示,真空中的电极可连续不断均匀地逸出电子(设电子的初速度为零),经加速电场加速,由小孔穿出,沿两个彼此绝缘且靠近的水平金属板A 、B 的中线射入偏转电场,A 、B 两板距离为d ,A 、B 板长为L ,AB 两板间加周期性变化的电场U AB ,如图乙所示,周期为T ,加速电压U 1=2mL 2eT 2,其中m 为电子质量、e 为电子电荷量,T 为偏转电场的周期,不计电子的重力,不计电子间的相互作用力,且所有电子都能离开偏转电场,求:(1)电子从加速电场U 1飞出后的水平速度v 0的大小;(2)t =0时刻射入偏转电场的电子离开偏转电场时距A 、B 间中线的距离y ;(3)在0~T2内射入偏转电场的电子中从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比.答案 (1)2L T (2) eU 0T 28md (3)50%解析 (1)电子在加速电场中加速, 由动能定理得eU 1=12m v 02-0解得v 0=2LT(2) 电子在偏转电场中做类平抛运动,水平方向L =v 0t ,解得t =T2,t =0时刻进入偏转电场的电子加速度a =eE m =eU 0md ,电子离开电场时距离A 、B 中心线的距离y =12at 2,解得y =eU 0T 28md(3)在0~T2内射入偏转电场的电子,设向上的方向为正方向,设电子恰在A 、B 间中线离开偏转电场,则电子先向上做初速度为零、加速度大小为a 的匀加速直线运动,经过时间t ′后速度v =at ′,此后两板间电压大小变为3U 0,加速度大小变为a ′=eE ′m =3eU 0md =3a电子向上做加速度大小为3a 的匀减速直线运动,速度减为零后,向下做初速度为零、加速度大小为3a 的匀加速直线运动,最后回到A 、B 间的中线,经历的时间为T 2,则12at ′2+v (T2-t ′)-12×3a (T 2-t ′)2=0,解得t ′=T4,则能够从中线上方向离开偏转电场的电子的发射时间为t ″=T 4,则在0~T2时间内,从中线上方离开偏转电场的电子占离开偏转电场电子总数的百分比η=T 4T 2×100%=50%.12.(多选)如图,质量为m 、带电荷量为q 的质子(不计重力)在匀强电场中运动,先后经过水平虚线上A 、B 两点时的速度大小分别为v a =v 、v b =3v ,方向分别与AB 成α=60°角斜向上、θ=30°角斜向下,已知AB =L ,则( )A .质子从A 到B 的运动为匀变速运动 B .电场强度大小为2m v 2qLC .质子从A 点运动到B 点所用的时间为2Lv D .质子的最小速度为32v 答案 ABD解析 质子在匀强电场中受力恒定,故加速度恒定,则质子从A 到B 的运动为匀变速运动,A 正确;质子在匀强电场中做抛体运动,在与电场垂直的方向上分速度相等,设v a 与电场线的夹角为β,如图所示.则有v a sin β=v b cos β,解得β=60°,根据动能定理有qEL cos 60°=12m v b 2-12m v a 2,解得E =2m v 2qL ,B 正确;根据几何关系可得,AC 的长度为L sin 60°=32L ,则质子从A 点运动到B 点所用的时间为t =32L v a sin β=Lv ,C 错误;在匀变速运动过程中,当速度方向与电场力方向垂直时,质子的速度最小,有v min =v a sin β=32v ,D 正确.。

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转(含问题详解)

带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2mdt 2,t = 2mdy qU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd离开电场时的偏移量:y =12at 2=Uql 22md v 20离开电场时的偏转角:tan θ=v y v 0=Uql md v20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·(l v 0)2tan θ=qU 1lmd v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C ,质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2 a =F m =qU dm L =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cm k qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL m v 20 (3)3qEL 22m v 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2Lv 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eqm所以v y =a L v 0=qELm v 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELm v 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2m v 20 又x =y +L tan α, 解得:x =3qEL 22m v 20解法二 x =v y ·L v 0+y =3qEL 22m v 20.解法三 由x y =L +L 2L 2得:x =3y =3qEL 22m v 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12m v 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得: E =3×103 N/C ≈1.732×103 N/C (3)由动能定理得:qU ab =12m (v 21+v 2y )-0 联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点D.先后到达屏上不同点答案 B解析一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴a、b、c,最后分别落在1、2、3三点.则下列说确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴c所带电荷量最多答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R = 2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有 y =v 0tx 2+y 2=R 2 解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12m v 20代入数据解得E k =2.5×10-5 J.8、如图所示,在正方形ABCD 区域有平行于AB 边的匀强电场,E 、F 、G 、H 是各边中点,其连线构成正方形,其中P 点是EH 的中点.一个带正电的粒子(不计重力)从F 点沿FH 方向射入电场后恰好从D 点射出.以下说确的是( )A .粒子的运动轨迹一定经过P 点B .粒子的运动轨迹一定经过PE 之间某点C .若将粒子的初速度变为原来的一半,粒子会由ED 之间某点射出正方形ABCD 区域 D .若将粒子的初速度变为原来的一半,粒子恰好由E 点射出正方形ABCD 区域 答案 BD解析 粒子从F 点沿FH 方向射入电场后恰好从D 点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过P 点,所以粒子轨迹一定经过PE 之间某点,选项A 错误,B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C 错误,D 正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg′,大小为mg ′=(qE )2+(mg )2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等 效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=m v 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知:-2mg ′R =12m v 2D -12m v 20 解得v 0=103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR 3. 答案 v ≥ 103gR 3 10、在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定的初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示.由此可见( )A .电场力为3mgB .小球带正电C .小球从A 到B 与从B 到C 的运动时间相等D .小球从A 到B 与从B 到C 的速度变化量的大小相等答案 AD解析 设AC 与竖直方向的夹角为θ,带电小球从A 到C ,电场力做负功,小球带负电,由动能定理,mg ·AC ·cos θ-qE ·BC ·cos θ=0,解得电场力为qE =3mg ,选项A 正确,B错误.小球水平方向做匀速直线运动,从A到B的运动时间是从B到C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从A到B与从B到C竖直方向的速度变化量的大小相等,水平方向速度不变,小球从A到B与从B到C的速度变化量的大小相等,选项D正确.。

带电粒子在电场中的偏转及在电场中的运动综合应用

带电粒子在电场中的偏转及在电场中的运动综合应用

带电粒子在电场中的偏转及在电场中的运动综合应用知识要点一、带电粒子在电场中的偏转以初速v0垂直场强方向射入匀强电场中的带电粒子,受恒定电场力作用,做类似平抛的匀变速运动,如图所示。

有关参量如下:1、运动时间:在初速度v0方向上是匀速运动,射出板间时其位移为l,故l=v0t,所以。

2、加速度:忽略重力影响,物体所受电场力即合力,所以。

3、偏转位移:带电粒子在沿电场方向做初速度为零的匀加速直线运动,。

4、出射速度射出板间时速度大小。

5、速度偏角:。

二、带电粒子的加速与偏转问题综合应用如图所示,一个质量为m、带电量为q的粒子,由静止开始,先经过电压为U1的电场加速后,再垂直于场强方向射入两平行金属板间的匀强电场中,两金属板板长为l,间距为d,板间电压为U2。

1、粒子射出两金属板间时偏转的距离y加速过程使粒子获得速度v0,由动能定理。

偏转过程经历的时间,偏转过程加速度,偏转的距离。

2、偏转的角度φ:偏转的角度。

3、说明(1)偏转的距离y和偏转的角度φ都仅由加速电场和偏转电场的情况决定,与带电粒子的电量、质量无关。

(2)要增大偏转的距离y和偏转的角度φ,可采取的措施有:减少加速电压U1或增大偏转电压U2等。

三、用功能关系分析带电粒子在电场中的运动1、电场力及电场力做功的特点(1)电场力与带电粒子所处的运动状况无关,在匀强电场中的电场力是一个恒力,在点电荷电场中的电场力是一个中心力,受力方向一定沿着电场线.(2)电场力做功与带电粒子的具体路径无关,仅由始末位置的电势差决定.当带电粒子同时受到除电场力以外的其他力作用时,电场力的功对应着电势能的变化,合力的功对应着动能的变化.2、注意分清微观粒子和普通带电微粒研究微观粒子(如电子、质子、α粒子等)在电场中的运动,通常不必考虑其重力及运动中重力势能的变化;研究普通的带电微粒(如油滴、尘埃等)在电场中的运动,必须考虑其重力及运动中重力势能的变化.3、研究带电粒子在电场中运动的两条主要线索带电粒子在电场中的运动,是一个综合电场力、电势能的力学问题,研究的方法与质点动力学相同,它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动量定理、动能定理、功能原理等力学规律.研究时,主要可以按以下两条线索展开.(1)力和运动的关系——牛顿第二定律根据带电粒粒子受到的电场力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理根据电场力对带电粒子所做的功,引起带电粒子的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电粒子的速度变化,经历的位移等.这条线索同样也适用于不均匀的电场.4、研究带电粒子在电场中运动的两类重要的思维技巧(1)类比与等效电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电粒子的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.(2)整体法(全过程法)电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运功的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题入口或简化计算.典型例题[例1] 如图所示,两个电子a和b先后以大小不同的速度,从同一位置沿垂直于电场的方向射入匀强电场中,其运动轨迹如图所示,那么[]A.b电子在电场中运动的时间比a长B.b电子初速度比a大C.b电子离开电场时速度比a大D.两电子离开电场时的速度大小关系不确定[解析]电子在电场中只受电场力作用,做类平抛运动由图可见t b>t a,v b<v a又,因eU相同,故v0较大则v t较大,所以CD不对,选A。

一轮复习:带电粒子在电场中的偏转

一轮复习:带电粒子在电场中的偏转

6.示波器的工作原理 (1)构造:①电子枪;②偏转极板;③荧光屏。(如图所示) (2)工作原理 ①YY′上加的是待显示的信号电压,XX′上是仪器自身产生的锯 齿形电压,叫做扫描电压。
②观察到的现象
a.如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出 的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑。
6.(多选)如图所示,水平放置的平行金属板A、B连接一恒定 电压,两个质量相等的带电粒子M和N同时分别从极板A的边缘
和两极板的正中间沿水平方向进入板间电场,两带电粒子恰好
在板间某点相遇。若不考虑带电粒子的重力和它们之间的相互 作用,则下列说法正确的是A( C ) A.M的电荷量大于N的电荷量 B.两带电粒子在电场中运动的加速度相等 C.从两带电粒子进入电场到两带电粒子相遇,电场力对M做 的功大于电场力对N做的功 D.M进入电场的初速度大小与N进入电场的初速度大小一定相 同
3.两个结论 (1)不同的带电粒子从静止开始经过同一电场加速后再 从同一偏转电场射出时,偏移量和偏转角总是相同的。 证明:由 qU0=12mv20 y=12at2=12·qmUd1·vl02 tanθ=mqUdv1l20 得:y=4UU10l2d,tanθ=2UU10ld。 (2)粒子经电场偏转后,合速度的反向延长线与初速度延 长线的交点 O 为粒子水平位移的中点,即 O 到偏转电场边 缘的距离为2l 。
(1)13.5 cm (2)30 cm
Байду номын сангаас
2L qEL 3qEL2 (1) v0 (2)mv20 (3) 2mv20
2.(多选)如图,质子(11H)、氘核(21H)和 α 粒子(42He)都沿
平行板电容器中线 OO′方向垂直于电场线射入板间的匀强

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

带电粒子在电场中的偏转--2024新高考物理一轮复习题型归纳(解析版)

第八章 静电场带电粒子在电场中的偏转【考点预测】1. 带电粒子在电场中的类平抛2. 带电粒子在电场中的类斜抛3. 带电粒子在电场中的圆周运动4. 带电粒子在电场中的一般曲线运动【方法技巧与总结】带电粒子在匀强电场中的偏转带电粒子在匀强电场中偏转的两个分运动(1)沿初速度方向做匀速直线运动,t =l v 0(如图).(2)沿静电力方向做匀加速直线运动①加速度:a =F m =qE m =qUmd②离开电场时的偏移量:y =12at 2=qUl 22m d v 20③离开电场时的偏转角:tan θ=v y v 0=qUlm d v 201.两个重要结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:在加速电场中有qU 0=12mv 20在偏转电场偏移量y =12at 2=12·qU 1md ·l v 0 2偏转角θ,tan θ=v y v 0=qU 1lm d v 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0dy 、θ均与m 、q 无关.(2)粒子经电场偏转后射出,速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为偏转极板长度的一半.2.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.【题型归纳目录】题型一:带电粒子在电场中的类平抛题型二:带电粒子在周期性电场中的运动题型三:带电粒子在电场中的偏转的实际应用题型四:带电粒子在电场中的非平抛曲线运动【题型一】电荷守恒定律【典型例题】1如图所示,在立方体的塑料盒内,其中AE 边竖直,质量为m 的带正电小球(可看作质点),第一次小球从A 点以水平初速度v 0沿AB 方向抛出,小球在重力作用下运动恰好落在F 点。

M 点为BC 的中点,小球与塑料盒内壁的碰撞为弹性碰撞,落在底面不反弹。

带电粒子在电场中的偏转

带电粒子在电场中的偏转

mg=qU1/d
60V 小球向下做匀加速直线运动; 当U2=60V时,小球向下做匀加速直线运动; 60 d h
mg-qU2/d=ma 由 h=at2/2 求出时间 t 。
3、带电粒子的偏转(限于匀强电场) 带电粒子的偏转(限于匀强电场)
(1)运动状态分析: )运动状态分析:
带电粒子以速度V 垂直于电场线方向进入匀强电场, 带电粒子以速度 0垂直于电场线方向进入匀强电场,受到与 初速度垂直的恒定的电场力作用,而做匀变速曲线运动。 初速度垂直的恒定的电场力作用,而做匀变速曲线运动。 轨迹为抛物线) (轨迹为抛物线) v0




E
2、如图:在xoy平面以下区域为匀强电场,场强为 , 、如图: 平面以下区域为匀强电场, 平面以下区域为匀强电场 场强为E, 方向竖直向上, 以上无电场, 方向竖直向上,在xoy以上无电场,有一质量为 的 以上无电场 有一质量为m的 带电量为+q的小球从离 的小球从离xoy上方高为 处自由下落, 上方高为h处自由下落 带电量为 的小球从离 上方高为 处自由下落, 然后进入电场。 然后进入电场。设qE>m,求: , 坐标值。 (1)小球下落到最低处的 坐标值。 )小球下落到最低处的z坐标值 (2)小球完成一次周期性运动所需的时间。 )小球完成一次周期性运动所需的时间。
基本规律
研究此类问题的思路: 研究此类问题的思路:
牛顿第二定律; (1)力和运动的关系 )力和运动的关系--------牛顿第二定律; 牛顿第二定律 (2)功和能的关系--------动能定理; )功和能的关系 动能定理; 动能定理
1、带电粒子的平衡 、
①粒子在电场中静止; 粒子在电场中静止; 粒子在电场中做匀速直线运动; ②粒子在电场中做匀速直线运动; 处理方法: 处理方法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U 2l qUl 2 y 2 2mv0 d 4U 1d
2
tan
eU 2l U 2l 2 mv0 d 2U 1d
2. 两个结论:
3.两种方法:
C
eU L h 2 md v0
2
先找到物理量表达式
h eL 2 U 2mdv0
2
先看常量后看变量
强化练习
qUl tan 2 mv0 d
2、质量为m、带电量为q的粒子以初速度v从中线垂
直进入偏转电场,刚好离开电场,它在离开电 场后偏转角正切为0.5,则下列说法中正确的是 A、如果偏转电场的电压为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 B、如果带电粒子的比荷为原来的一半,则粒子离 √ 开电场后的偏转角正切为0.25 C、如果带电粒子的初速度为原来的2倍,则粒子 离开电场后的偏转角正切为0.25 D、如果带电粒子的初动能为原来的2倍,则粒子 √ 离开电场后的偏转角正切为0.25
二、加速和偏转一体 _ + + + + + -q m
U1
vy
+
+
y
φ
v0
U2
析与解
对加速过程由动能定理: qU1 2 mv0 qUl 2 2 U 2l 2 mv0 2qU1 y 2 2mv0 d 4U 1d eU 2l U 2l tan 2 2U 1d mv0 d
第二个结 - - - - - 论 L 1
侧移
U F
v0 v
l
试根据类平抛运动的知识,推导: 偏移量 y和偏转角θ
vy
偏转角
带电粒子的偏转——类平抛运动 1.加速度:
2.飞行时间:
3.侧移距离: 4.偏转角:
5.出射速度:
带电粒子的偏转:(侧移距离)
F qE qU a m m md
l t v0
类平抛运动
与粒子比荷q/m成正比
1 2 qUl y at 2 2 2mv0 d
2
与粒子初速度v0平方成反比
与电场的属性U、l、d有关
带电粒子的偏转:(偏转角)
F qE qU a m m md l qUl t v y at v0 mv0 d
类平抛运动
与粒子比荷q/m成正比
qUl tan 2 mv0 d v0
有时需要结合直线运动和曲线运动的条件进行分析。
你来试一试:
一带电粒子以竖直向上的初速度v自A点进入场强为E、方向 水平向右的匀强电场,粒子受到的电场力大小等于重力.当粒子 到达B点时,速度大小仍等于v,但方向变为水平,那么A、B之间 的电势差等于多少?从A到B所经历的时间时多少? B V 解:带电粒子在竖直方向上做竖直上抛运动, 水平向右做初速度为零的匀加速直线运动。
⑵对电子运动的整个过程根据动能定理得:
U2 U2 EK eU e e(U ) ⑤ 2 2
挑战升级
9、如图所示,有一电子(电量为e、质量为m)经电压U0 加速后,沿平行金属板A、B中心线进入两板,A、B板 间距为d、长度为L, A、B板间电压为U,屏CD足够 大,距离A、B板右边缘2L,AB板的中心线过屏CD的 中心且与屏CD垂直。试求电子束打在屏上的位置到屏 中心间的距离。

U 1 1 2 2 q U y mv mv0 d 2 2
5. 一个电子以4.0×106m/s的速度沿与 电场垂直的方向从A点飞进匀强电场,并且从另一端B 点沿与场强方向成1500角方向飞出,那么,A、B两点间 的电势差为多少伏?(电子的质量为9.1×10-31 kg).
解:电子垂直进入匀强电场中,做类平抛运动 0 vA v cos 60 v ① 根据动能定理得
vy
与粒子初速度v0平方成反比
与电场的属性U、l、d有关
强化练习
1. 如图是一个说明示波管工作的部分原理图, 电子经过加速后以速度v0垂直进入偏转电场,离开偏转 电场时偏移量为h,两平行板间距为d,电压为U,板长 为L,每单位电压引起的偏移量(h/U)叫做示波管的灵 敏度,为了提高灵敏度,可采用的办法是( ) A.增加两极板间的电势差U v0 B.尽可能缩短板长L C.尽可能减小板间距d h D.使电子的入射速度v0大些
v0
2
强化练习
6、如图所示,二价氦离子和质子的混合体, 经同一加速电场由静止加速后,垂直射入 同一偏转电场中,偏转后,打在同一荧光 ABC 屏上,则它们( ) A、侧移相同 B、偏转角相同 C、到达屏上同一点 D、到达屏上不同点
y
U 2l 4U 1d
2
与粒子的电量q、 质量m无关
思考:不同的量有哪些?
tan
U 2l 2U 1d
强化练习
8. 一束电子流经 U=5000V 的电压加速后,在距两极板等间距处 垂直进入平行板间的匀强电场中,若两板间距 d=1.0cm,板长 l=5.0cm,那么,要使电子能从平行板间飞出,两个板之间的电
压U2最多能加多少?此时电子飞出的动能是多少? 解:电子在加速电场中加速过程中
新问题:出了偏转电场后做什么运动?
+ dd
-q
v0
+
+
+
θ
+
+
v
y
Y =?
l /2 x
- - -l - - y tan l l ( x) ( ) 2 2 Y
ql l Y ( x )U U 2 2 mv0 d
析与解
对加速过程由动能定理:
1 2 eU0 mv0 2 Ul tan 2U 0 d
由于带电粒子在匀强电场中所受的电场力与重力都 是恒力,因此其处理方法有以下两种:
1、“正交分解法”.处理这种运动的基本思想与 处理偏转运动是类似的.可以将复杂的运动分解为两 个互相正交的比较简单的直线运动; 2、“等效重力法”.将重力和电场力进行合成, 则其等效于“重力”, a=F合/m,等效于“重力加速 度”.F合的方向等效于“重力”的方向即重力场中 的竖直向下的方向。
第一条 结论 4、试证明:带电粒子垂直进入偏转电场,离开电
qUl y 2 2mv0 d
场时就好象是从初速度所在直线的中点沿直线离 开电场的。 2 x
θ
qUl tan 2 mv0 d
2
qUl 2 y 2mv0 d x qUl tan 2 mv0 d
l 2
还有其他方法列式吗? 功 与 能 观 点 从入射到射出,据动能定理有: 必须是y对 U 1 1 2 2 y mv mv0 注意符 q 应的u d 2 2
1 2 eU mv0 ① 2 电子在偏转电场中做类平抛运动过程中
d 1 eU 2 L ② 2 2 md v0
2 2
2
·
U
可得两个极板上所加电压的最大值
2d 2 0.01 U2 2 U 5000V 400V 2 L 0.05
强化练习 7、如图,电子在电势差为U1的加速电场中由静止 开始加速,然后射入电势差为U2的两块平行极板间 的电场中,入射方向跟极板平行。整个装置处在真 空中,重力可忽略。在满足电子能射出平行板区的 条件下,下述四种情况中,一定能使电子的偏转角 θ变大的是 ( ) A、U1变大、U2变大 B、U1变小、U2变大 C、U1变大、U2变小 D、U1变小、U2变小
强化练习
3、质子(质量为m、电量为e)和二价氦离子(质 量为4m、电量为2e)以相同的初动能垂直射入 同一偏转电场中,离开电场后,氦离子和质子 的偏转角正切之比为 2:1,侧移之比 为 。 2:1
qUl tan 2 mv0 d
与电量成正比
qUl y 2 2mv0 d
与电量成正比
2
强化练习
0 v gt ①
A、B之间的电势差
v d t ② 2 U Ed ③
t v g
V
E A
由①式解出从A到B所经历的时间

2
联立② ③④式解出A、B间的电势差
曲线运动的基本解法是运动的合成和分解。将曲线运动分解 为两个互相正交的简单的直线运动。
Ev ⑤ U 2g
本节课我学到了什么?
1.两组式子:
1.带电粒子在匀强电场中的加速有 哪些处理方法?非匀强电场呢? 2.从静止开始的加速,其末速度与 哪些量有关? 3,分析学案能力提升 8.
一、 带电粒子在电场中的偏转
运动分 受力分析? + + + + + + + + + 析?
(不计重力、匀强电场、V0与E垂直)
d
q、 m +
v0
y
+ θ - - - - - - - - - - -
mv0 2eU 0
2
电子离开电场,就好象从中点沿直线离开的:
l y' ( 2l ) tan 2 2 5Ul 4U 0 d
y'
θ
+
1,带电小球在第一第 二阶段受力如如何? 各做什么运动?
+
qE
2.这样的复合场问 题有哪些解决方法?
+
v0
mg E
a
b
带电粒子在电场和重力场的复合场中的运动
B A
强化练习
A
eU AB
1 2 1 2 mvB mv A ② 2 2
·
1500 v B A 0
60
联立①②两式解出AB两点的电势差
·
vy
U AB 1.4 10 2V 0
负号说明A点的电势比B点低 vB 学会用能量的观点处理带电粒子在电场中的运动问题; 曲线运动的基本解法就是运动的合成和分解。
相关文档
最新文档