七年级数学上册第二章有理数及其运算第9节有理数的乘方北师大版

合集下载

七年级数学上册第二章有理数及其运算9有理数的乘方第2课时优秀教案(新版)北师大版

七年级数学上册第二章有理数及其运算9有理数的乘方第2课时优秀教案(新版)北师大版

教课要点与难点教课要点:1.认识乘方运算结果的变化规律.2.能进行较为复杂的有理数乘方运算.教课难点:进一步理解乘方运算中的括号、符号问题.学情剖析认知基础:本节课是“有理数的乘方”第 2 课时.在第 1 课时中学生已经理解了乘方的意义,会进行简单的乘方运算,并初步认识了乘方运算结果的变化规律,但对乘方运算结果的变化规律缺少整体性的认识,并且进行有理数的混淆运算的能力不足.活动经验基础:学生经过研究有理数的加减乘除及乘方的运算法例和运算律的过程,亲身经历了概括、猜想、考证、推理、计算、沟通等数学活动;理解了有理数的算理,进一步领会了化归的思想方法;体验了数学与现实世界的亲密联系及数学活动的研究性及创建性.教课目的1.全面认识当底数大于 1 及小于 1 时乘方运算结果的变化规律,发展学生的数感.2.进一步理解有理数乘方的意义,并能解决一些有关的数学识题.3.能进行较为复杂的有理数乘方运算.教课方法本节课采纳“指引——自主研究”的教课模式,经过创建情境,为学生搭建展现思想过程的平台,全面认识乘方运算结果的变化规律,发展学生的数感.借助变式例题和反例练习,指引学生亲自经历察看、思虑、对照、计算、沟通等研究过程,培育学生进行较为复杂的有理数乘方运算即简单的混淆运算的能力并培育学生反省的意识与习惯.经过将教师的“引”与学生的“探”融为一个和睦的整体,使教课活动成为在教师指引放学生的一种自主研究的学习活动,在研究中形成自己的看法,提高计算能力、判断能力和自主研究的意识.教课过程一、情境引入设计说明教师经过设置问题情境,从生活中的实质问题作为新知识的有效切入点,既表现了数学知识根源于生活,又能激发学生的学习兴趣.有这样一个故事:一个有点小聪慧但学习不勤苦的人,刚走出校门就到一家企业打工,感觉打工很辛苦,就想着怎样利用自己的小聪慧从老板那边多赚点钱.一天他想到了数学中的乘方知识,假如和老板签署这样的合同,让他第一天给我 2 分钱的薪资,次日给 4 分钱,第三天给 16 分钱,此后每日给的钱数是前一天钱数的平方, 6 天后就会发大财,老板会破产.我想老板只看到头几日的薪资只可是是几毛钱,说不定会答应的.想到这里,他立刻跑去处老板说明自己的想法,没想到老板真的一口答应,并和他订下合同:本企业员工某某,经自己赞同,改日起的薪资按以下方案发给:第一天发给0.02 元,此后每日发的钱数为前一天发的钱数的平方,限期 6 天.哪知道 6 天后老板叫财务给了他 3 分钱,就这 3 分钱仍是送了人情,他的薪资根本就没有 3 分.你知道为何吗?为了研究解决问题的方法,教师应组织学生在独立思虑的基础长进行合作沟通,第一引导学生察看、思虑结果的巨大反差是因为底数的不一样,而后对照、概括得出当底数大于1时,它的平方比底数大,且跟着平方次数的增添,它的结果增添的速度是相当惊人;当底数小于 1 时,它的平方比底数小,且跟着平方次数的增添,结果以相当惊人的速度减小.进而对乘方运算结果的变化规律形成整体性的认识,初步培育发展学生的数感.教课说明当底数大于 1 及小于 1 时乘方运算结果的变化规律比较抽象空洞,单凭教师解说学生很难领会,并且无聊的练习使学生很简单感觉无聊.创建薪资的问题情境,是使学生参加学习的最好的“迷惑”,激发了学生的求知欲,使学生处在一种新鲜的、活跃的思想之中.二、例题剖析例1( 教材例 3)察看例 1 的结果,你能发现什么规律?与伙伴进行沟通.1例 2计算:(1) -3×24;(2)( -3×2) 4 ;(3)( -3) ×( - 5) 2;(4)[( -3) ×( - 5)] 2;(5)( -2 ( -4×3) 2 .4×3) +解: (1) -3×24=- 3×16=- 48; (2)( -3×2) 4=( - 6) 4= 1 296 ; (3)( -3) ×( - 5) 2= ( -3) ×25=- 75; (4)[( -3) ×( - 5)] 2= 152=225;(5)( 2 2+ 144=- 36+ 144=108.-4×3) + ( -4×3) = ( -4×9) 教课说明本例题设计了 5 个小题, 能够松手让学生自己解决, 再与同学沟通, 培育他们的计算能力,而后指引学生对照 (1) 与 (2) 、(3) 与 (4) 、(5) 式加 号前后的运算, 思虑结果不一样的原由,领会运算次序不一样,结果不一样,进而培育学生反省的意识与习惯. 三、解决实质问题(1) 教材中的“做一做”. 学生着手研究得出的结论是意想不到的, 一张纸对折 20 次后的高度有几层楼高.进而领会“底数”的作用.(2) 教材中的“想想”.领会数学在生活中的应用. 四、反应练习1.判断以下各题的解法能否正确,假如错误,请给出正确的解答:(1) - 22×( - 32) = 4×( - 9) =- 36; (2)( -2) 2×( - 3) 2 =4×( - 9) =- 36; (3)( -22) ×( - 32) =4×( - 9) =- 36;(4)( -2) 2×( - 32) =4×( - 9) =- 36;2 2=- 36+ 144= 108.(5)( -4×3) - ( -4×3) = ( -4×9) - ( - 144) 答案: (1) ×; (2) ×; (3) ×; (4) √; (5) ×. 正解: (1) - 22×( - 32) =- 4×( - 9) =36; (2)( - 2) 2×( - 3) 2=4×9= 36;(3)( -22) ×( - 32) =( -4) ×( - 9) = 36;22(5)( -4×3) - ( -4×3) = ( -4×9) - 144=- 36- 144=- 180. 教课说明 在教课中, 教师不只要让学生知道什么是对的, 还要让学生知道什么是错的, 错误的原因是什么, 怎样更正.此题练习设计了 5 个小题, 并不是每一个小题的答案都是错误的, 需要学生经过自己的思虑判断每个小题的对错,找寻错误的原由,在与伙伴思想的碰撞中澄 清、 加强认识. 既能提高学生的计算水平, 又有益于调换学生的主人翁意识, 培育学生自主学习 的能力.五、讲堂总结 学完本节课你有哪些收获、 感悟?还有哪些疑惑?教师参加学生议论, 共同概括总结出: 1.当底数大于 1 时,跟着乘方次数的增添,它的结果增添的速度相当惊人;当底数小于 1 时,跟着乘方次数的增添,结果以相当惊人的速度减小.2.较为复杂的有理数乘方运算要特别注意括号和运算次序,括号和运算次序不一样,结 果不一样.评论与反省在学生的学习过程中, 教师不该考虑怎样去控制学生的学习活动, 而应当考虑怎样创建优秀的学习环境去促使学生主动地建构知识.本节课教师第一为学生创建了薪资的问题情境,引起了学生的认知矛盾,而后经过学生自己经历察看、思虑、对照、类比等研究过程获得问题的答案.同时,本节课教师多次用到了对照的方法,比如薪资问题中 2 分和 0.02 元的情境对照, 例 1 在学生自己计算解决问题以后前后两个小题及同一个小题的两部分之间的反省对 比,练习中正确答案和错误答案的正反对照等,使学生在对照中澄清认识、提高能力.2。

推荐K12七年级数学上册第二章有理数及其运算第9节有理数的乘方教案新版北师大版

推荐K12七年级数学上册第二章有理数及其运算第9节有理数的乘方教案新版北师大版

课题:有理数的乘方●教学目标:一、知识与技能目标:理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

二、过程与方法目标:1. 使学生能够灵活地进行乘方运算。

2.通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

三、情感态度与价值观目标:通过对实例的讲解,让学生体会数学与生活的密切联系。

(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

●重点:正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则●难点正确理解各种概念并合理运算●教学流程:一、回顾旧知,情景导入1.(1)边长为a的正方形的面积怎么表示?⋅a a记作a2读作:a的平方(a的二次方)(2)棱长为a的正方体的体积怎么表示?a a a记作a3 读作a的立方(a的三次方)⋅⋅猜想:5个3相乘可以记作什么3×3×3×3×3记作2.某种细胞每过30min便由1个分裂成2个,经过5h,这种细胞由1个能分裂成多少个?1个细胞30min后分裂成2个,1h后分裂成2×2个,h后分裂成2×2×2个……5h后要分裂10次,分裂成2×2×…×2×2=1024(个)10 个2二、讲授新知为了简便,可将2×2×…×2×2记为210.一般地,n个相同的因数a相乘,记作a n,即10个2n个aa×a×…×a×a=a n这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数,a n”读作“a的n次幂”(或“a的n次方”)注意:负数和分数的乘方,在书写时一定要把整个负数和分数(连同符号),用小括号括起来.这也是辨认底数的方法。

如:()4 ()6 29(-1)4三、同步练习1. 在56中,5是 _底数,4是指_数,读作5的4次方(5的4次幂);表示6 个 5 相乘的积。

北师大版数学七年级上册第二章有理数及其运算9有理数的乘方第2课时有理数的乘方(二)课件

北师大版数学七年级上册第二章有理数及其运算9有理数的乘方第2课时有理数的乘方(二)课件

(D )
A. 32与-32
B. (-2)2与-22
C. ∣-2∣与-∣+2∣
D. (-2)3与-23
典例精析
【例1】下列说法正确的是
(D
)
A. 一个数的偶次幂一定是正数
B. 一个正数的平方比原数大
C. 一个负数的立方比原数小
D. 互为相反数的两个数的立方仍互为相反数
举一反三
1. 当n为整数时,(-1)2n-1+(-1)2n的值为( B )
典例精析
【例4】13世纪数学家斐波那契的《计算书》中有这样一个
问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛
驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7
把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为
A. 42
B. 49
( C)
C. 76
D. 77
举一反三
4. 生物学家指出:在生态系统中,每输入一个营养级的能
举一反三
5. 有一块面积为64 m2的正方形纸片,第1次剪掉一半,第2 次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的 纸片的面积是多少平方米?
答:第6次后剩下的纸片的面积是1 m2.
谢谢
A. -2
B. 0
C. 1
D. 2
典例精析
【例2】不运算,判断下列各运算结果的符号:(-3)19,(-
2)24,(-1.7)2 019,
,-(-2)23,02 020.
解: (-3)13的运算结果是负,(-2)24的运算结果是正, (-1.7)2 019的运算结果是负, 的运算结果是正, -(-2)23的运算结果是正,02 020的运算结果是0.
量,大约只有10%的能量能够流动到下一个营养级. 在

福州市二中七年级数学上册第二章有理数及其运算9有理数的乘方说课稿新版北师大版6

福州市二中七年级数学上册第二章有理数及其运算9有理数的乘方说课稿新版北师大版6

《有理数的乘方》说课稿一、教材分析1、教程内容:北师大版七年级上册第二章第九节《有理数的乘方》.2、教材的地位与作用:有理数乘方是有理数的一种基本运算。

从教材编排的结构上看,共需2个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

二、学情分析:在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。

所以在本节课的学习中应全面系统的加以讲述。

在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。

所以在本节课的教学中应予以简单明白,深入浅出的分析。

在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。

所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

三、教学目标:根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:⑴、知识与技能:让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

⑵、过程与方法:在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

⑶、情感、态度和价值观:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

3、教学重点与难点:有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

四、教法学法1、教学策略:根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。

【北师大版】初中数学7-9年级教材目录

【北师大版】初中数学7-9年级教材目录

新版北师大初中数学七年级(上册)新版北师大初中数学七年级(下册)第一章丰富的图形世界第一章整式的乘除1.生活中的立体图形1.同底数幂的乘法2.展开与折叠2.幂的乘方与积的乘方3.截一个几何体3.同底数幂的除法4.从三个不同方向看物体的形状4.整式的乘法第二章有理数及其运算5.平方差公式1.有理数6.完全平方公式2.数轴7.整式的除法3.绝对值第二章相交线与平行线4.有理数的加法1.两条直线的位置关系5.有理数的减法2.探索直线平行的条件6.有理数的加减混合运算3.平行线的性质7.有理数的乘法4.用尺规作角8.有理数的除法第三章变量之间的关系9.有理数的乘方1.用表格表示的变量间关系10.科学计数法2.用关系式表示的变量间关系11.有理数的混合运算3.用图像表示的变量间关系12.用计算器进行运算第四章三角形第三章整式及其加减1.认识三角形1.字母表示数2.图形的全等2.代数式3.探索三角形全等的条件3.整式4.用尺规作三角形4.整式的加减5.利用三角形全等测距离5.探索与表达规律第五章生活中的轴对称第四章基本平面图形1.轴对称现象1.线段、射线、直线2.探索轴对称的性质2.比较线段的长短3.简单轴对称图形3.角4.利用轴对称进行设计4.角的比较第六章频率初步5.多边形和圆的初步认识1.感受可能性第五章一元一次方程2.频率的稳定性1.认识一元一次方程3.等可能事件的概率2.求解一元一次方程3.应用一元一次方程——水箱变高了4.应用一元一次方程——打折销售5.应用一元一次方程——“希望工程”义演6.应用一元一次方程——追赶小明第六章数据的收集与整理1.数据的收集2.普查和抽样调查3.数据的表示4.统计图的选择新版北师大初中数学八年级(上册)新版北师大初中数学八年级(下册)第一章勾股定理第一章证明(二)1.探索勾股定理1.等腰三角形2.一定是直角三角形吗2.直角三角形3.勾股定理的应用3.线段的垂直平分线第二章实数4.角平分线1.认识无理数第二章一元一次不等式和一元一次不等2.平方根式组3.立方根1.不等关系4.估算2.不等式的基本性质5.用计算器开方3.不等式的解集6.实数4.一元一次不等式7.二次根式5.一元一次不等式与一次函数第三章位置与坐标6.一元一次不等式组1.确定位置第三章图形的平移与旋转2.平面直角坐标系1.图形的平移3.轴对称与坐标变化2.图形的旋转第四章一次函数3.中心对称1.函数4.简单的图案设计2.一次函数与正比例函数第四章因式分解3.一次函数的图象1.因式分解4.一次函数的应用2.提公因式法第五章二元一次方程组3.公式法1.认识二元一次方程组第五章分式与分式方程2.求解二元一次方程组1.认识分式3.应用二元一次方程组——鸡兔同笼2.分式的乘除法4.应用二元一次方程组——增收节支3.分式的加减法5.应用二元一次方程组——里程碑上的数4.分式方程6.二元一次方程与一次函数第六章平行四边形7.用二元一次方程组确定一次函数表达式1.平行四边形的性质8.※三元一次方程组2.平行四边形的判别第六章数据的分析3.三角形的中位线1.平均数4.多边形的内角和与外角和2.中位数与众数3.从统计图分析数据的集中趋势4.数据的离散程度第七章平行线的证明1.为什么要证明2.定义与命题3.平行线的判定4.平行线的性质5.三角形内角和定理新版北师大初中数学九年级(上册)新版北师大初中数学九年级(下册)第一章直角三角形的边角关系第一章证明(二)1.锐角三角函数1. 特殊的平行四边形2.特殊角的三角函数值3.三角函数的有关计算2.菱形的性质与判定4.解直角三角形3.矩形的性质与判定 5.三角函数应用4.正方形的性质与判定 6.利用三角形求高第二章一元二次方程第二章二次函数1.认识一元二次方程1.二次函数2.用配方法求解一元二次方程2.二次函数的图像与性质3.用公式法求解一元二次方程3.确定二次的表达式4.用因式分解法求解一元二次方程 4.二次函数5.一元二次方程的根与系数的关系 5.用三种方式表示二次函数应用6.应用一元二次方程6.二次函数与一元二次方程第三章概率的进一步认识第三章圆1.用树状图或表格求概率1.圆2.用频率估计概2.圆的对称性第四章相似图形3.垂径定理1.成比例线段4.确定圆的条件2.平行线分线段成比例5.圆周角与圆心角的关系3.相似多边形4.探索三角形相似的条件5.相似三角形判定定理的证明6.利用相似三角形测高7.相似三角形的性质8.图形的位似第五章视图与投影1.投影2. 视图第六章反比例函数反比例函数。

七年级数学上册 第二章 有理数及其运算 9 有理数的乘方课件上册数学课件

七年级数学上册 第二章 有理数及其运算 9 有理数的乘方课件上册数学课件
12/7/2021
1.(-7)7表示 ( ) A.7个-7的积 B.-7与7的积 C.7个-7的和 D.-7与7的和 答案 A (-7)7=(-7)×(-7)×(-7)×(-7)×(-7)×(-7)×(-7). 2.下列各幂中是负数的是 ( ) A.23 B.(-2)2 C.(-1)2 018 D.(-1)5 答案 D 正数的任何次幂都是正数,负数的偶次幂是正数,奇次幂是负 数,故选D.
12/7/2021
易错点 对幂的相关定义理解不透彻
例 计算:(1)(-5)2;(2)-54;(3)- 2 2 .
5
错解 (1)(-5)2=-5×2=-10.
(2)-54=(-5)×(-5)×(-5)×(-5)=625.
(3)- 2 2 =-2 2× 4=- .
5 5 5 25
正解 (1)(-5)2=(-5)×(-5)=25.
(2)-54=-5×5×5×5=-625.
(3)- 2 2 =-2 2=- 4 .
5
55
错因分析 将乘方与乘法混淆,误认为(-5)2=(-5)×2;-54的底数是5而不是
-5;22的底数是2, 52 的 2 底数是
2
5
.
12/7/2021
知识点一 有理数乘方的意义 1.(2017北京房山期中)乘积(-3)×(-3)×(-3)×(-3)可以表示为 ( ) A.-34 B.-(+3)4 C.(-3)4 D.-(-3)4 答案 C (-3)×(-3)×(-3)×(-3)=(-3)4. 2.下列说法正确的是 ( ) A.-25的底数是-2 B.-110读作“负1的10次幂” C.(-3)3与-33意义相同 D.(-1)2 017=-12 017 答案 D -25的底数是2;-110读作“负的1的10次幂”;(-3)3表示3个-3相 乘,-3123/表7/2示0213个3相乘的相反数;(-1)2 017=-12 017=-1.只有D选项正确.

有理数的乘方 北师大版数学七年级上册

有理数的乘方  北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)

最新北师大版初中数学目录

最新北师大版初中数学目录

北师大版七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从三个方向看物体的形状回顾与思考复习题第二章有理数及其运算1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的剑法6.有理数的加减混合运算7.有理数的乘法8.有理数的除法9.有理数的乘方10.科学计数法11.有理数的混合运算12.用计算器进行运算回顾与思考复习题第三章整式及其加减1.字母表示数2.代数式3.整式4.整式的加减5.探索与表达规律回顾与思考复习题第四章基本平面图形1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形与圆的初步认识回顾与思考复习题第五章一元一次方程1.认识一元一次方程2.求解一元一次方程3.应用一元一次方程---水箱变高4.应用一元一次方程---打折销售5.应用一元一次方程---“希望工程”6.应用一元一次方程---追赶小明回顾与思考复习题第六章数据的收集与整理1.收据的收集2.普查与抽样调查3.数据的表示4.统计图的选择回顾与思考复习题综合与实践探寻神奇的幻方关注人口老龄化制作一个尽可能大的无盖长方体课题学习制作一个尽可能大的无盖长方体总复习北师大版七年级下册第一章整式的乘法1.同底数幂的乘法2.幂的乘方与积的乘方3.同底数幂的除法4.整式的乘法5.平方差公式6.完全平方公式7.整式的除法回顾与思考复习题第二章相交线与平行线1.两条直线的位置关系2.探索直线平行的条件3.平行线的性质4.用尺规作角回顾与思考总复习第三章三角形1.认识三角形2.图形的全等3.探索三角形全等的条件1.用尺规作三角形2.利用三角形全等测距离回顾与思考总复习第四章变量之间的关系1.用表格表示的变量之间的关系2.用关系式表示的变量之间的关系3.用图像表示的变量之间的关系回顾与思考总复习第五章生活中的轴对称1.轴对称现象2.探索轴对称的性质3.简单的轴对称图形4.利用轴对称进行设计回顾与思考总复习第六章概率初步1.感受可能性2.频率的稳定性3.等可能事件的概率回顾与思考总复习综合与实践设计自己的运算程序综合与实践七巧板总复习北师大版八年级上册第一章勾股定理1.探索勾股定理2.一定是直角三角形吗3.勾股定理的应用回顾与思考复习题第二章实数1.认识无理数2.平方根3.立方根4.估算5.用计算器开方6.实数7.二次根式回顾与思考复习题第三章位置与坐标1.确定位置2.平面直角坐标系3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题第四章一次函数1.函数2.一次函数与正比例函数3.一次函数图像4.一次函数的应用回顾与思考复习题第五章二元一次方程组1.认识二元一次方程组2.求解二元一次方程组3.应用二元一次方程组--鸡兔同笼4.应用二元一次方程组--增收节支5.应用二元一次方程组--里程碑的数6.二元一次放陈玉一次函数7.用二元一次方程组确定一次函数8.三元一次方程组回顾与思考复习题第六章数据的分析1.平均数2.中为数与众数3.从统计图分析数据的集中趋势4.数据的离散程度回顾与思考复习题第七章平行线的证明1.为什么要证明2.定义与命题3.平行线的判定4.平行线的性质5.三角形内角和定理回顾与思考复习题综合与实践计算器运用与功能探索综合与实践哪一款手资费套餐更合适综合与实践哪个城市更热北师大版八年级下册第一章三角形的证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计回顾与思考复习题第四章因式分解1.因式分解2.提公因式法3.公式法回顾与思考复习题第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程回顾与思考复习题第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和回顾与思考复习题综合与实践生活中的“一次模型”综合与实践平面图形的镶嵌总复习旧版资源第一章一元一次不等式和一元一次方程第二章因式分解第三章分式第四章相似图形第五章数据的收集与处理第六章证明(一)总复习北师大版九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线回顾与思考复习题第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618回顾与思考复习题第三章证明(三)1.平行四边形2.特殊的平行四边形回顾与思考复习题第四章视图与投影1.视图2.太阳光与影子3.灯光与影子回顾与思考复习题第五章反比例函数1.反比例函数2.反比例函数的图像与性质3.反比例函数的应用回顾与思考复习题课题学习猜想、证明与拓广第六章频率与概率1.频率与概率2.投针试验3.生日相同的概率4.池塘里有多少条鱼回顾与思考复习题总复习北师大版九年级下册第一章直角三角形的边角关系1.从梯子的倾斜成都谈起2.30、45、60角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗5.测量物体的高度回顾与思考复习题第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数图像5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程回顾与思考复习题课题学习拱桥设计第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角与圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆与圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积回顾与思考复习题课题学习设计遮阳蓬第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗回顾与思考复习题总复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:有理数的乘方
●教学目标:
一、知识与技能目标:
理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。

二、过程与方法目标:
1. 使学生能够灵活地进行乘方运算。

2.通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

三、情感态度与价值观目标:
通过对实例的讲解,让学生体会数学与生活的密切联系。

(2)学会数学的转化思想,培养学生灵活处理现实问题的能力。

●重点:
正确理解乘方的意义,弄清底数、指数、幂等概念,掌握乘方运算法则
●难点
正确理解各种概念并合理运算
●教学流程:
一、回顾旧知,情景导入
1.(1)边长为a的正方形的面积怎么表示?

a a记作a2读作:a的平方(a的二次方)
(2)棱长为a的正方体的体积怎么表示?
a a a记作a3 读作a的立方(a的三次方)
⋅⋅
猜想:5个3相乘可以记作什么
3×3×3×3×3
记作
2.某种细胞每过30min便由1个分裂成2个,经过5h,这种细胞由1个能分裂成多少个?
1个细胞30min后分裂成2个,1h后分裂成2×2个,h后分裂成2×2×2个……
5h后要分裂10次,分裂成
2×2×…×2×2=1024(个)
10 个2
二、讲授新知
为了简便,可将2×2×…×2×2记为210.一般地,n个相同的因数a相乘,记作a n,即
10个2
n个a
a×a×…×a×a=a n
这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数,a n”读作“a的n次幂”(或“a的n次方”)
注意:负数和分数的乘方,在书写时一定要把整个负数和分数(连同符号),用小括号括起来.这也是辨认底数的方法。

如:()4 ()6 29(-1)4
三、同步练习
1. 在56中,5是 _底数,4是指_数,读作5的4次方(5的4次幂);表示6 个 5 相乘的积。

2.在(-b)n中,底数是 -b ;指数是 n ;读作(-b)的n次方(幂);表示n 个 -b 相乘的积。

3. a看成幂的话,底数是a ,指数是 1 ,可读作 a的1次方
4. (-0.8)4=________(-0.8)×(-0.8)×(-0.8)×(-0.8)
()3=()×()×()
5.12 13 11016(-1)4 (-1)5 (-1)2007(-1)2016
1、1的任何次幂都为_1___
-1的奇次幂是__-1__
-1的偶次幂是_1___
四、实例演练深化认识
例1 计算
(1)53 (2)(-3)4(3)(-)3
解:(1)53=5×5×5=125
(2)(-3)4=(-3)×(-3)×(-3)×(-3)=81
(3)(-)3=(-)×(-)×(-)=-
例2计算
(1)-(-2)3(2)-24(3)-
解:(1)-(-2)3=-[(-2)×(-2)×(-2)]=-(-8)=8
(2)-24=-(2×2×2×2)=-16
(3)-=- =-
例3 计算
(1)102,103,104,105(2)(-10)2,(-10)3, (-10)4, (-10)5
解:(1)102=100 103=1000 104=10000 105=100000
(2)(-10)2=100 (-10)3=-1000
(-10)4=10000 (-10)5=-100000
五、提出问题,启发引导
观察例3的结果,你发现了什么规律?
正数的任何次幂都是正数
当指数是奇数时,负数的幂是__数;(负)
当指数是偶数时,负数的幂是__数。

(正)
六、想一想
和- 、()² 和意义一样吗?
不一样
表示的是4个(-2)相乘, -是4个2相乘的结果取相反数
()² 表示2个相乘,表示的是
七、思考探究
0.12= 0.13= 0.14=
(-0.1)2= ______ (-0.1)3= _________
(-0.1)4=______
你得到了什么规律?
对于0.1n ,n是几,1前面就有n个0
(包括小数点前的1个0)
八、做一做
有一张厚度为0.1mm的纸,将它对折1次后,厚度为2×0.1mm
(1)对折2次后,厚度为多少毫米? 22×0.1=0.4
(2)假设对折20次,厚度为多少毫米?220×0.1=104857.6
(3)每层楼平均高度为3m,这张纸对折20次后有多少层楼高?
104857.6mm=104.8576m
104.8576÷3≈35层
“乘方”精神:虽然是简简单单的重复,但结果却是惊人的。

九、想一想
你见过拉面师傅拉面条吗?拉面师傅将一根粗面条拉长、两头捏合,再拉长、捏合,重复这样,就拉成许多根面条了,据报道,在一次比赛中,某拉面师傅用1千克面粉拉出约290万根面条,你知道是怎样得出这个结果的吗?
第一次------2根面条;第二次------22根面条;第三次------23根面条;
…第x次-------2x根面条.只要看师傅拉了多少次就可以求得面条的根数
2x≈2900000,
解得x=21.
所以这个师傅拉了21次
十、达标检测
1. 已知(x+2)2=9,求x.
x+2=±3,所以x=1或-5
2.若(a-2)a+1=1,则a=()(1,-1,3)
2.计算(-2)10-29-28
=1024-512-256
=256
3. 把下列乘法式子写成乘方的形式
(-3)×(-3)×(-3)×(-3)= ;(-3)4
=()5
4.计算下列各式
计算:(1)-(-3)3;(2)(- )2;(3)(- )3.
(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)(- )2= × = .
(3)(- )3=-(××)=- .
十一、拓展练习
1.一杯饮料,第一次倒去一半,第二次倒去剩下的一半,…如此倒下去,第五次后剩
下饮料是原来的几分之几?第n次后呢?
设这杯饮料为1,根据题意得
第一次后剩下饮料是原来的:1- = ,
第二次后剩下饮料是原来的:1- - (1- )=(1- )2= ,
第三次后剩下饮料是原来的:(1- )- (1- )- [(1- )- (1- )]=(1- )3 = ,第五次后剩下饮料是原来的:(1- )5=( )5= ,
第n次后剩下饮料是原来的(1- )n=( )n=
2.若a=25,b=-3,则a2003+b2004的末位数是多少?
解:a2003的末位数为5
b的乘方尾数依次按3,9,7,1循环,
2004÷3=668所以可得b2004的末位数为1
因此有:a2003+b2004的末位数是5+1=6
十二、体验收获
今天我们学习了什么?
1.乘方的概念
2.乘方的计算
十三、布置作业
课本第62页第2、3 题。

相关文档
最新文档