3.3一元一次方程的解法

合集下载

数学人教版七年级上册3.3解一元一次方程(二) ----去括号.3解一元一次方程(二) ---去-括号

数学人教版七年级上册3.3解一元一次方程(二)  ----去括号.3解一元一次方程(二)  ---去-括号
1 2
x - 4) + 2x = 7-( x - 1)
1 3
• 训练提高 :
3x-2[3(x-1)-2(x+2)]=3(18-x)
本节课学习了什么?
• 本节课学习了用去括号的方法解一元一次方 程。 • 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
3.3 解一元一次方程(二)
—— 去括号(第一课时

解方程:6x-7=4x-1 1、一元一次方程的解法我们学了 哪几步? 移项 合并同类项
系数化为1Leabharlann 2、移项,合并同类项,系数化为1, 要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的 系数相加作为所得项的系数,字母 部分不变。 ③系数化为1,也就是说方程两边同 时除以未知数前面的系数。
2(X+3)=2.5(X-3)
注:方程中有带括号的式子时,去括
号是常用的化简步骤。 例2. 解方程:3x - 7(x-1) = 3 - 2(x+3)
例3. 解方程:3(5x-1)- 2(3x+2)=6(x-1)+2
试一试:解下列方程
1、 4x + 3(2X-3) = 12- (x+4) 2、6(
× 顺航时间=逆航速 也就是:顺航速度___ 度___ ×逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时? × 逆航时间 顺航速度___ × 顺航时间=逆航速度___
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是______ (X+3) 千米/ (X-3) 千米/ 小时,船在逆水中的速度是_______ 小时.

3.3.3一元一次方程的解法-去分母

3.3.3一元一次方程的解法-去分母

解:去分母(方程两边乘10),得 去括号,得 移项,得
15x+5-20=3x-2-4 x-6
15 x-3x+4 x=-2-6-5+20
16 x 7 7 x= 16
合并同类项,得
系数化为1,得
例 题 1. 2. 3.去分母的依据是等式性质二,去分母时应 去分母时不能漏乘没有分母的项; 去分母与去括号这两步分开写,不要跳步, 小 防止忘记变号。 在方程的两边乘所有分母的最小公倍数; 结 : 解:去分母(方程两边乘10),得
3x 1 3x 2 2 x 3 10 ( 2) 10 ( ) 2 10 5
3x 1 3x 2 2x 3 10 10 2 10 10 2 10 5
( 5 3x 1 ) 20 3x 2 2(2 x 3)
3x 1 3x 2 2 x 3 -2= - 2 10 5
解含分数系数的一元一次 方程的步骤包括哪些?
解一元一次方程的一般步骤:
变形名称 去分母 去括号 移项 依据及具体的做法
依据等式性质二 各项都乘所有的分母的最小公倍数. 依据去括号法则和乘法分配律 先去小括号,再去中括号,最后去大括号.
依据等式性质一 注意“移项要变号”
依据乘法分配律 合并同类项 将未知数的系数相加,常数项相加.

1、下列方程的解法对不对?如果不对,错在
哪里?应怎样改正?
2x 1 x 2 1 解方程: 3 2
解:去分母,得 4x-1-3x+6=1 移项,合并同类项,得 x=4
解方程: (1)
x+1 2-x -1=2+ 2 4
小试身手:
解:去分母(方程两边乘4),得
2( x+1)-4=8+(2-x )

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)

3.3-解一元一次方程—去括号与去分母(第1、2、3课时合集)
如何正确地去括号以及实际问题中的相等关系的寻找和确定.
(一)提出问题,建立模型
问题1:某工厂加强节能措施,去年下半年与上半年
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上半年每月平均
用电是多少?
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
作业:
教科书第99页习题3.3第1,2题.
3.3 解一元一次方程(二)
——去括号与去分母 (第2课时)
解下列方程: (1) 10x-4(3-x)-5(2+7x)=15x-9(x-2); (2) 3(2-3x)-3[3(2x-3)+3]=5.
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
题目:一个两位数,个位上的数是2,十位 上的数是x,把2和x对调,新两位数的2倍 还比原两位数小18,你能想出x是几吗去?括号错
移项错
小方: 解:(10x+2)-2( x+20)=18
去括号,得 10x+2-2 x-20=18
移项,得 10x-2x=18+20+2
合并同类项,得 8 x=40
系数化为1,得
系数化为1
x= 7 16
思考:解含分数系数的一元一次方程的步骤包括哪些?
1.解一元一次方程的一般步骤包括: 去分母、去括号、移项、合并同类项,系数化为1.
2.通过这些步骤可以使以x为未知数的方程逐步向 着x=a的形式转化,这个过程主要依据等式的基本 性质和运算律等.
3.巩固新知 例题规范
例3 解下列方程:
2(x+3)=2.5(x-3) 去括号,得 2x+6=2.5x-7.5
往返路程相等
移项及合并,得 0.5x=13.5

3.3解一元一次方程一一去括号与去分母(教案)

3.3解一元一次方程一一去括号与去分母(教案)
此外,我还注意到,部分学生在解题过程中容易受到已学知识的干扰,导致解题思路混乱。为了帮助学生理清思路,我将在下一节课中,通过讲解典型例题,引导学生正确运用已学知识,提高解题效率。
在课后,我会认真批改学生的作业,了解他们在去括号与去分母方面的掌握情况,并对他们在课堂上遇到的问题进行总结。针对这些问题,我将设计更具针对性的练习题,以巩固所学知识。
(2)在去分母过程中,正确找到各分母的最小公倍数;
难点解析:学生在找最小公倍数时可能不够熟练,导致去分母后方程仍然存在分数。
(3)将实际问题转化为数学方程,理解方程背后的实际意义;
难点解析:学生在分析题目时可能难以抓住关键信息,不能将实际问题抽象为一元一次方程。
(4)在解题过程中,灵活运用已学知识,如乘法分配律、最小公倍数的求法等;
3.重点难点解析:在讲授过程中,我会特别强调去括号法则与去分母法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何正确去括号和去分母。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示如何去括号与去分母解方程。
具体内容包括:
1.去括号法则:a(x+b)=ax+ab;
2.去分母法则:将方程两边同时乘以各分母的最小公倍数,使方程转化为整数方程;
3.举例说明去括号与去分母在解一元一次方程中的应用;
4.练习:解以下方程:
(1)2(x-3)+4x=10
(2)3/4x+1=5/6x-1/2
(3)5(2x-1)-3(3x+2)=8
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

3.3__一元一次方程的解法(1)

3.3__一元一次方程的解法(1)

未知数的
项移到等
移项
号Байду номын сангаас边,
合并同类项 两边同除以2
把不含未 知数的项 移到等号
右边。
移项要变号
21:07
第三单元 一元一次方程
探究新知
练 解: 一 练
城西中学
§3.3 一元一次方程的解法(1)
通常将含 未知数的 项移到等 号左边, 把不含未 知数的项 移到等号 右边。
移项要变号
21:07
第三单元 一元一次方程
探究新知
P91,练习1
练 一 练
城西中学
§3.3 一元一次方程的解法(1)
通常将含 未知数的 项移到等 号左边, 把不含未 知数的项 移到等号 右边。
移项要变号
21:07
第三单元 一元一次方程
随堂检测
§3.3 一元一次方程的解法(1)
城西中学
21:07
第三单元 一元一次方程
随堂检测
§3.3 一元一次方程的解法(1)
城西中学
21:07
第三单元 一元一次方程
作业
§3.3 一元一次方程的解法(1)
课作:P96:A组 1
家作:P91:练习2、3 学法大视野,第三单元 第3课时
城西中学
21:07
不为0的数(或同一个不是0的式子),所得结果 仍是等式.
城西中学
21:07
第三单元 一元一次方程
§3.3 一元一次方程的解法(1)
动脑筋
某探险家在2002年乘热气球在24h内连
续飞行5129km。已知热气球在前12h飞行
了2345km,求热气球在等后式1两2h飞边行同的平均速度。 减2345 等式两边同 除以12

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3解一元一次方程(二)——去括号与去分母》作业设计方案-初中数学人教版12七年级上册

《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)初中数学课程《3.3 解一元一次方程(二)——去括号与去分母》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生对一元一次方程中“去括号”和“去分母”的掌握,通过实际操作练习,加深对一元一次方程解法的理解,并能够熟练运用这些方法解决实际问题。

二、作业内容1. 基础知识练习:(1)通过例题讲解,让学生熟悉去括号和去分母的步骤和方法,理解其原理。

(2)布置基础练习题,包括去括号和去分母的混合练习,旨在让学生熟练掌握两种方法。

2. 实践应用题:(1)设计一系列实际问题,如购物找零、速度与时间的关系等,通过这些问题让学生运用去括号和去分母的方法解决实际问题。

(2)设置开放性问题,鼓励学生自主探索,培养其创新思维和解决问题的能力。

三、作业要求1. 学生在完成作业时,应先复习课堂所学知识,确保理解去括号和去分母的原理及步骤。

2. 学生在做题时,应按照先易后难的原则,逐步提高难度,从基础练习开始,再到实践应用题。

3. 学生在解题过程中,应注重步骤的完整性,每一步都应清晰明了,确保解题思路的连贯性。

4. 学生在完成实践应用题时,应尽量用所学知识去解决问题,尝试不同的解题方法,培养创新思维。

5. 学生在解题过程中遇到问题时,应积极思考、查阅资料或向老师请教,不轻易放弃。

四、作业评价1. 老师应根据学生完成作业的情况,给予相应的评价和指导。

2. 评价内容应包括学生对知识的掌握程度、解题思路的连贯性、解题方法的多样性等方面。

3. 对于表现优秀的学生,老师应给予表扬和鼓励,激发其学习积极性。

4. 对于表现欠佳的学生,老师应给予指导和帮助,找出问题所在,并帮助其改正。

五、作业反馈1. 老师应根据学生的作业情况,及时调整教学计划和方法,以更好地满足学生的学习需求。

2. 对于普遍存在的问题,老师应在课堂上进行讲解和指导,帮助学生解决疑惑。

3. 老师应及时将学生的作业情况反馈给学生和家长,以便家长了解孩子的学习情况并给予支持。

湘教版数学七年级上册3.3《一元一次方程的解法》教学设计4

湘教版数学七年级上册3.3《一元一次方程的解法》教学设计4

湘教版数学七年级上册3.3《一元一次方程的解法》教学设计4一. 教材分析《一元一次方程的解法》是湘教版数学七年级上册3.3节的内容,本节课主要让学生掌握一元一次方程的解法,包括代入法、加减法、移项法等。

通过本节课的学习,使学生能够熟练运用这些方法解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了整数、分数、有理数的基本运算,对解方程有一定的认识。

但部分学生在解方程时对移项、合并同类项的操作还不够熟练,需要老师在教学中加以引导和练习。

此外,学生对于将实际问题转化为方程的能力还有待提高。

三. 教学目标1.知识与技能:掌握一元一次方程的解法,能运用代入法、加减法、移项法等解决实际问题。

2.过程与方法:通过自主探究、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.重点:一元一次方程的解法。

2.难点:将实际问题转化为方程,并运用适当的解法求解。

五. 教学方法采用启发式教学法、案例教学法、合作学习法等。

通过创设情境、设置问题,引导学生自主探究、合作交流,从而达到掌握知识、提高能力的目的。

六. 教学准备1.教学PPT:制作包含教学内容、例题、练习的PPT。

2.教学素材:准备一些实际问题,用于引导学生将问题转化为方程。

3.学习任务单:为学生准备学习任务单,以便于学生记录所学内容和解题过程。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何将这些问题转化为方程。

通过提问,激发学生的学习兴趣,明确本节课的学习目标。

2.呈现(10分钟)介绍一元一次方程的解法,包括代入法、加减法、移项法等。

通过PPT展示解题步骤,让学生清晰地了解解题过程。

3.操练(10分钟)让学生在课堂上独立完成学习任务单上的练习题。

教师巡回指导,解答学生的疑问。

此环节可以帮助学生巩固所学知识,提高解题能力。

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)

3.3 解一元一次方程(二)第2课时去分母导学案1. 掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.★知识点1:去分母解一元一次方程通过去分母使方程的系数化为整数,减少分数参与计算,降低计算的难度,另外把握去分母的理论依据是等式的性质2,两边同乘以的数应为所有分母的最小公倍数.注意:①去分母时要注意分数线的括号作用;②去分母时不要漏乘不含分母的项.★知识点2:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a转化.1. 解一元一次方程的过程中,去分母的具体做法是:,依据是.2. 解一元一次方程的一般步骤是:①,②,③,④,⑤.英国伦敦博物馆保存着一部极其珍贵的文物——纸草书,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.草片文书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?追问1:题中涉及哪些相等关系?追问2:应怎样设未知数?如何根据相等关系列出方程?问题2:这个方程与前面学过的一元一次方程有什么不同?怎样解这个方程呢?问题3:不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?追问1:怎样去分母呢?追问2:去分母的依据是什么?问题4:解方程:31322322105x x x+-+-=-.追问1:解含分数系数的一元一次方程的步骤包括哪些?追问2:以x为未知数的方程逐步向着x=a的形式转化的主要依据是什么?例1:解下列方程:(1)121224x x+--=+;(2)1213323x xx--+=-.解下列方程:(1)121163x x-+-=;(2)490.30.250.32x x x++--=.1. 方程5717324x x++-=-去分母正确的是( )A. 3-2(5x+7) = -(x+17)B. 12-2(5x+7) = -x+17C. 12-2(5x+7) = -(x+17)D. 12-10x+14 = -(x+17)2. 若代数式12x-与65的值互为倒数,则x= .3. 解下列方程:(1)334515x x-+=-;(2)5415523412y y y+--+=-.4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路. 上帝给予的童年占六分之一. 又过十二分之一,两颊长胡. 再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”1.(2022•黔西南州)小明解方程12123x x+--=的步骤如下:解:方程两边同乘6,得3(x+1)-1=2(x-2)①去括号,得3x+3-1=2x-2②移项,得3x-2x=-2-3+1③以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④2. (4分)(2020•重庆A卷7/26)解一元一次方程11(1)123x x+=-时,去分母正确的是()A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x(1)本节课学习了哪些主要内容?(2)去分母的依据是什么?去分母的作用是什么?(3)用去分母解一元一次方程时应该注意什么?(4)去分母时,方程两边所乘的数是怎样确定的?【参考答案】1. 方程各项都乘所有分母的最小公倍数;等式的性质2;2. 去分母;去括号;移项;合并同类项;系数化为1.例1:解:(1)去分母(方程两边乘4),得2(x+1) -4 = 8+ (2 -x). 去括号,得2x+2 -4 = 8+2 -x.移项,得2x+x= 8+2 -2+4.合并同类项,得3x = 12.系数化为1,得x = 4.(2)去分母(方程两边乘6),得18x+3(x-1) =18-2 (2x-1).去括号,得18x+3x-3 =18-4x +2.移项,得18x+3x+4x =18 +2+3.合并同类项,得25x = 23.系数化为1,得2325x=.解:(1)去分母(方程两边乘6),得(x-1) -2(2x+1) = 6. 去括号,得x-1-4x-2 = 6.移项,得x-4x = 6+2+1.系数化为1,得 x = -3.(2)整理方程,得49325532x x x ++--=, 去分母(方程两边乘30),得 6 (4x +9) -10(3+2x ) = 15(x -5). 去括号,得 24x+54-30-20x = 15x -75.移项,得 24x -20x -15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.1. C ;2. 83; 3. (1)56x =;(2)47y =. 4. 解:设该单位参加旅游的职工有x 人,由题意得方程: 4014050x x +-=, 解得x =360.答:该单位参加旅游的职工有360人.5. 解:这个班有x 名学生,依题意得6247x x x x +++=, 解得x =56.答:这个班有56个学生.解:设丢番图活了x 岁,据题意得5461272x x x x x +++++=, 解得x =84.答:丢番图活了84岁.1.【解答】解:方程两边同乘6应为:3(x +1)-6=2(x -2), 所以出错的步骤为:①,故选:A .2. 【解答】解:方程两边都乘以6,得:3(x+1)=6-2x,故选:D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5 x 1.5 x 0.5 0.6 2
分析:当分母中含有小数时,可以应用分数的基本性质把它们先化为整数,如
1.5 x 10 1.5 x 15 x 5 x 0.6 10 0.6 6 2 5 x 1.5 x 0.5 解:将原方程化为 2 2
去分母,得 去括号,得
例2、解下列方程:
3 (4 x 3) 7
有括号时要先去括 号,再移项,合并同 类项.
3 (4 x 3) 7
解: 去括号,得 3 4 x 3 7
移项,得
4 x 7 3 3
合并同类项,得 4 x 1
1 两边同除以-4,得 x 4
探究3 解方程:
1 2 -y y 3 3 3 y 2 y ________ y 4. 3y-4y-(-2y)=_______
探究1
x+2x+4x=140
思考:怎样解 这个方程呢?
x 2x 4x 140
合并同类项
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.
7 x 140
5x (1.5 x) 1
5 x 1.5 x 1
移项,合并同类项,得

5 x 12
6 x 2.5
中考 试题
例1
3 的倒数与 2a - 9 互为相反数,那么a的值为( C a 3 -3 A. 3 B. C.3 D.-3 2 2
分析

解方程即可求出a的值.
).
3 a + 2a - 9 因为 a 的倒数是 a ,根据“互为相反数之和等于 0” 可得 , 3 3 3
系数化为1,得
x=-13
探究2
3x+20 = 4x-25
提问1:怎样解这个方程?它与前面遇到
的方程有何不同? 方程的两边都有含x的项(3x与4x)和 不含字母的常数项(20与-25).
提问2:如何才能使这个方程向x=a的形式转化?
3x+20=4x-25
(利用等式性质1)
3x+20-4x=4x-25-4x
移项时应注意改变 项的符号
2x 1 5 解:移项,得 2 x 4 即 两边同除以2得 x=-2
5 2x 1 2x 1 5
( 2)
8 x 3x 2
8 x 3x 2
x 3x 2 8
3 两边同除以-4,得 x 2
解:移项,得 x 3x 2 8 合并同类项,得 4 x 6



移项,得 合并同类项,得 两边同除以一次项系数,得
20 x 36 x 60 56 x 60 x 15 14
故,应选择A.
小结与复习
这节课我们学了什么? 你最大的收获是什么?


单位:北京二中分校 姓名:孙妍
本节内容 3.3
一元一次方程的解法
首先把宇宙万物的所有问题都转化为数 学问题;其次,把所有的数学问题转化为代 数问题;最后,把所有的代数问题转化为解 方程. ---笛卡儿(法国)
用合并同类项进行化简: 8x 1. 20x -12x= ________
2. x + 7x-5x= ________ 3x
移项
3x-4x=-25-20 合并同类项 -x=-45 系数化为1 x=45
提问3:以上解方程“移项”的依据是什么?
移项的依据是等式的性质1
提问4: “移项”起了什么作用? 通过移项,使等号左边仅含未知数的 项,等号右边仅含常数的项,使方程 更接近x=a的形式.
例1:解下列方程
( 1)
5 2x 1
中考 试题 例3
3 1 x 2 的解是( 方程 x 6 36 12 5 x 1 1 3 15 A. 15 B. 14 C. 45 14 14
A
).
D. 45 14

3 x 1 2 x 12 36 12 方程两边同乘以6,得 6 x 5 3x 去中括号,得 6 x 36 12 1 2 x 12 5 3 移项,合并同类项,得 4 x 24 12 x 1 0 5 36 去小括号,得 4 x 24 x 12 0 5 合并同类项,得 4 x 12 36 x 0 5 去分母,得 20 x 60 36x 0
1 1 x + 2 = x + 5 解法一 : 去括号 ,得 7 4 1 1 x x 52 移项,得 7 4 3 x = 3 合并同类项,得 28 3 28 (或同乘 ) 得 x = - 28 两边同除以28 3
你有几种不同的解法?
1 1 ( x 14) ( x 20) 7 4
解法二 :
由已知条件可得 a + 2a -9 =0 ,去分母,得a+2a-9=0, 3 3 合并同类项,得3a=9,系数化为1,得a=3. 故,应选择C.
中考 试题
例2
3 4 1 1 解方程 x 8 3 x . 4 3 2 4 2
分析

本题如果按解一元一次方程的一般步骤去解,则比较复杂,观察 方程的特点,可以看出本题若采用由外及里的方法去括号,可使运算 较简单. 3 4 1 1 3 x 8 x 4 4 2 3 2 1 1 3 x ,即 去中括号,得 x 6 2 4 2 1 x 1 6 3 x 2 4 2 x 1 x 1 6 . 移项,得 3 2 2 4 ∴ x = 6 1 4
3y 1 7 y 6 6 (根据什么?) 3 6

去括号,得
2(3 y 1) 7 y
6y 2 7 y 移项,得 6 y y 7 2 合并同类项,得 5 y 5 两边同除以5,得 y 1
(2 )
x 3 2x x 5 2
2 x 5(3 2 x) 10 x
2(3x 1) 6 (4 x 1)
6x 2 6 4x 1
6x 1 1 4x 1 6x 4x 1 1 1
移项,合并同类项,得 10 x 9

1 2 x 1,即x 2

9 x 10
去分母
去括号
移项
合 并 同类项
两边同除以未 知数的系数
4、 解方程
17 x 5 25 x 7
2(2 x 1) 1 (3 x)
x=0
练习
2、解方程:
x x6 2 2 x 3 12 3
18 x 11
练习
3、下面方程的解法对吗?若不对,请改正.
解方程
3x 1 4x 1 1 3 6
去分母,得 去括号,得
不对
解:去分母,得 2(3x 1) 1 4x 1 去括号,得 移项,得
怎样去分母呢?
例3、解下列方程:
• 1、
3y 1 7 y 3 6
分析:由于方
程中的某些项含 有分母,我们可 先利用等式的性 质,去பைடு நூலகம்方程的 分母,再进行去 括号、移项、合 并同类项等变形 求解.
• 2、
x 3 2x x 5 2
(1) 3 y 1 7 y
3 6
解:方程的两边同乘以6,得
(等式的性质2) (分配律)
(1)去分母 (2)去括号 (3)移项 (4)合并同类项
(等式的性质1)
(合并同类项法则)
(5)两边都除以未知数系数 (等式的性质2) 即未知数系数化为1.
练习
1、解下列方程:
(1)
2 3( x 5) 2 x
4(4 y) 3( y 3)
(2)
(3)
(合并同类项)
3x+20-4x= -25
(利用等式性质1)
3x+20-4x-20=-25-20
(合并同类项)
3x-4x=-25-20
3x + 20 = 4x -25
3x -4x = -25 -20
把等式一边的某一项改变符号后移到另一边, 叫做移项.
下面的框图表示了解这个方程的具体过程:
3x+20=4x-25
系数化为1
x 20
上面解方程中”合并同类项”起了什么作用?
解方程中的“合并”是利用分配律将含有 未知数的项和常数项分别合并为一项.它使方 程变得简单,更接近x = a的形式.
例1、
解方程: (1)
3 2
x+2x=14
2
解:
合并同类项,得 7 x=14
系数化为1,得
x=4
(2) 7x-2.5x+3x-1.5x=-15×4-6×3 解: 合并同类项,得 6x=-78
解:方程的两边同乘以10,得
去括号,得
2 x 15 10 x 10x
2 x 10 x 10 x 15
想一想: 去分母时,方程的 两边应同乘以一 个怎样的数?
移项,得
合并同类项,得 两边同除以2,得
2 x 15
15 x 2
分母的最小公倍数
结论
你能归纳出解一元二次方程的一般步 骤吗?它的依据又是什么呢?
, 方程的两边同乘以 28,得 去括号,得 移项,得
4 x 14 7 x 20
4 x 56 7 x 140
4 x 7 x 140 56 3 x 84 合并同类项,得
两边同除以-3,得
x 28
你能说一说第二种解法的最大特点吗?
先利用等式的性质去分母,再用移项、合并同类 项等变形来解方程.
相关文档
最新文档