矩形的判定教学设计

合集下载

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)

矩形的判定定理教学设计(精选5篇)矩形的判定定理教学设计(精选5篇)作为一位杰出的教职工,时常需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?下面是小编整理的矩形的判定定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。

矩形的判定定理教学设计1一、说教材《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。

矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

二、说目标1.知识与技能在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;规范推理的书写格式;应用矩形定义、判定等知识,解决简单的实际问题。

2.过程与方法通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

3.情感、态度与价值观能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

三、说重点难点1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

判定定理都是以“定义”为基础推导出来的。

因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。

除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。

这样就猜想出对角线相等的平行四边形是矩形。

然后同学们以组为单位对判定进行证明。

这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。

矩形的判定

矩形的判定

矩形的判定篇一:矩形的判定教案20.2矩形的判定教案荆紫关一中李俊一、教学目标:1. 知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法;掌握矩形的判定方法,能根据判定方法进行初步运用。

2. 过程与方法:在探索判定方法的过程中发展学生的合理推理意识、主动探究的习惯,在画矩形的过程中,培养学生动手实践能力,积累数学活动经验。

3. 情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索的精神和独立思考合作交流的良好习惯,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

通过与他人的合作,培养学生的合作意识和团队精神。

二、教学重点与难点:教学重点:探索矩形的判定方法、突破方法:为了突出重点,以学生自主探索、合作交流为主,提出问题,让学生动眼观察,动脑猜想,动手验证,进而掌握矩形的判定方法。

教学难点:判定方法的理解和初步运用,突破方法采用教师引导和学生合作的教学方法,及化归的数学思想。

三、教具准备:教师:三角板、圆规学生:三角板、圆规、白纸四、教学过程(一)自学导纲1、创设情境导入新课师:请同学们观察教室的门窗是什么形状?工人师傅在制作这些门窗时,是怎样验证它们是矩形的?大家想不想知道?本节老师将带领大家一起探讨这一问题。

(板书课题20.2 矩形的判定)2、出示导纲,学生自学师:请同学们自学教材P107,独立完成下列问题导纲知识性问题1~4。

(二)合作互动探究新知1、师:哪们同学愿意将你自学的成果展示给大家,其他同学注意倾,看有没有与自己不同的在方。

生、汇报师:大家完成的很好,请猜想它是真命题还是假命题?你能证明一下你的猜想吗?请同学们用圆规和直尺画对角线相等的平行四边形,并与同桌交流一下,这是个什么图形?生:汇报师:这像个矩形,如何用逻辑推理的方法验证,请同学们小组合作,讨论验证。

生:小组合作交流师:请同学们说说你的证明过程(学生回答)你们为什么想到用这种方法?通过动手操作和逻辑推理明白它是个真命题,我们把它做为矩形的判定定理1(板书定理1)判定定理1对角线相等的平行四边形是矩形。

矩形的判定.教学设计

矩形的判定.教学设计

矩形的判定一、教学目标及重难点教学目标:1、知识与技能:探索并证明矩形的判定定理,会运用矩形的判定定理判定一个四边形是矩形。

2、过程与方法:本节课以平行四边形定义为基础,通过问题的提出,运用剪一剪、议一议、判一判及师生共同探索启发等方式得出矩形的三个判定方法并在运用中巩固所学知识。

3、情感态度与价值观:在学习过程中,培养学生自主探索的能力,培养学生数学的学习兴趣,体会数学的思考方法。

4、教学重点:矩形判定定理的探索证明与运用5、教学难点:矩形判定方法的理解与选择运用二、教学过程:(一)复习旧知、导入新课1、矩形的定义是怎样的?矩形的定义:有一个角是直角的平行四边形叫作矩形。

(课件展示定义的实质)(二)、创设问题、酝酿新知正在上八年级的小聪,是个爱学习的孩子!他喜欢思考问题。

学完矩形的性质一课后,数学老师布置以下三个问题要求同学们课外思考:①有一个角是直角的四边形是矩形吗?有两个角是直角呢?有三个角是直角的四边形呢?四个角都是直角的四边形呢?②对角线相等的四边形是矩形吗?③对角线相等的平行四边形是矩形吗?学生剪纸操作讨论交流解决问题①:有一个角是直角的四边形是矩形吗?有两个角是直角呢?(三)、合作交流、得出新知问题:有三个角是直角的四边形是矩形吗?如图:四边形ABCD中,∠A 、∠B 、∠C 是直角,求证:四边形ABCD是矩形由前面的探究得到矩形的判定定理1:有三个角是直角的四边形是矩形。

实质是:四边形+ 有三个角是直角= 矩形量一量、测一测:问题②:对角线相等的四边形是矩形吗?教师追问:对角线相等的平行四边形是矩形吗?如下图:已知□ABCD中, 对角线AC与DB相等,求证:□ABCD是矩形证明:∵四边形ABCD是平行四边形∴AB=DC 又BC=CB AC=DB∴△ABC≌△DCB (SSS)∴∠ABC=∠DCB又∵∠ABC+∠DCB =180°∴∠ABC=90°∴□ABCD是矩形(有一个角是直角的平行四边形是矩形)由此得到矩形的判定定理2:对角线相等的平行四边形是矩形。

矩形的判定 教案(教学设计)

矩形的判定 教案(教学设计)

矩形的判定【教学目标】1.理解并掌握矩形的判定方法。

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。

3.教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式。

【教学重难点】1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

【教学过程】一、复习提问1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?二、引入新课设问:1.矩形的判定。

2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定)。

除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法。

方法1:有三个角是直角的四边形是矩形。

(并让学生写出推理过程。

)方法2:对角钱相等的平行四边形是矩形。

(分析判定方法2和学生一道写出证明过程。

)归纳矩形判定方法(由学生小结):(1)一个角是直角的平行四边形。

(2)对角线相等的平行四边形。

(3)有三个角是直角的四边形。

3.矩形判定方法的实际应用结合生产生活实际说明判定矩形的实用价值。

4.矩形知识的综合应用。

(让学生思考,然后师生共同完成)例1:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,求证:四边形EFGH为矩形,分析:利用对角线互相平分且相等的四边形是矩形可以证明证明:∵ABCD为矩形∴AC=BD∴AC、BD互相平分于O∴AO=BO=CO=DO∵AE=BF=CG=DH∴EO=FO=GO=HO又HF=EG∴EFGH为矩形三、小结:1.矩形的判定方法l、2都是有两个条件:(1)是平行四边形;(2)有一个角是直角或对角线相等。

判定方法3的两个条件是:(1)是四边形;(2)有三个直角。

北师大版数学九年级上册《矩形的判定》教学设计1

北师大版数学九年级上册《矩形的判定》教学设计1

北师大版数学九年级上册《矩形的判定》教学设计1一. 教材分析《矩形的判定》是北师大版数学九年级上册第18章“图形的性质”中的一个知识点。

本节课的主要内容是让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。

在学习本节课之前,学生已经学习了矩形的性质,对于矩形的概念和性质有一定的了解。

本节课的内容与学生的生活实际密切相关,有助于提高学生学习数学的兴趣和积极性。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于图形的性质和判定方法有一定的了解。

但是,学生在学习过程中可能会对矩形的判定方法产生混淆,特别是在解决实际问题时,可能会出现判断错误的情况。

因此,在教学过程中,教师需要注重引导学生理解矩形的判定方法,并通过大量的练习来提高学生的判断能力。

三. 教学目标1.知识与技能目标:让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.教学重点:矩形的判定方法。

2.教学难点:如何运用矩形的判定方法解决实际问题。

五. 教学方法1.情境教学法:通过设置实际问题,激发学生的学习兴趣,引导学生主动探究。

2.合作学习法:学生进行小组讨论和交流,培养学生的团队合作意识。

3.启发式教学法:教师引导学生思考,激发学生的思维潜能,提高学生的判断能力。

六. 教学准备1.教学课件:制作课件,展示矩形的判定方法及相关实例。

2.练习题:准备一些关于矩形判定的练习题,用于巩固所学知识。

3.教学道具:准备一些实物模型,帮助学生更好地理解矩形的判定。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考矩形的判定方法。

例如,展示一个教室的平面图,让学生判断教室是不是矩形。

2.呈现(10分钟)教师通过课件呈现矩形的判定方法,并结合实例进行讲解。

初中数学《矩形》教案(精选11篇)

初中数学《矩形》教案(精选11篇)

初中数学《矩形》教案初中数学《矩形》教案(精选11篇)作为一名教师,就有可能用到教案,借助教案可以更好地组织教学活动。

那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的初中数学《矩形》教案,希望对大家有所帮助。

初中数学《矩形》教案篇1一、教学目标1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力二、重点、难点1.重点:矩形的判定.2.难点:矩形的判定及性质的综合应用.三、例题的意图分析本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.四、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)五、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2 (补充)已知ABCD的对角线AC、BD相交于点O,△AOB 是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴ AO= AC,BO= BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC= (cm).例3 (补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:∵ 四边形ABCD是平行四边形,∴ AD∥BC.∴ ∠DAB+∠ABC=180°.又 AE平分∠DAB,BG平分∠ABC ,∴ ∠EAB+∠ABG= ×180°=90°.∴ ∠AFB=90°.同理可证∠AED=∠BGC=∠CHD=90°.∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).六、随堂练习1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD 到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.七、课后练习1.工人师傅做铝合金窗框分下面三个步骤进行:⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵ 摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数初中数学《矩形》教案篇2教学目标:知识与技能目标:1.掌握矩形的概念、性质和判别条件.2.提高对矩形的性质和判别在实际生活中的应用能力.过程与方法目标:1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.情感与态度目标:1、在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2、通过对矩形的探索学习,体会它的内在美和应用美.教学重点:矩形的性质和常用判别方法的理解和掌握.教学难点:矩形的性质和常用判别方法的综合应用.教学方法:分析启发法教具准备:像框,平行四边形框架教具,多媒体课件.教学过程设计:一. 情境导入:演示平行四边形活动框架,引入课题.二.讲授新课:1. 归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)结论:有一个内角是直角的平行四边形是矩形.八年级数学上册教案2.探究矩形的性质:(1). 问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)结论:矩形的四个角都是直角.(2). 探索矩形对角线的性质:让学生进行如下操作后,思考以下问题:(幻灯片展示)在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①. 随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?(学生操作,思考、交流、归纳.)结论:矩形的两条对角线相等.(3). 议一议:(展示问题,引导学生讨论解决.)①. 矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.②. 直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?(4). 归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:(性质的运用,渗透矩形对角线的“化归”功能.)如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米.求BD与AD的长.(引导学生分析、解答.)探索矩形的判别条件:(由修理桌子引出)(1). 想一想:(学生讨论、交流、共同学习)对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.(理由可由师生共同分析,然后用幻灯片展示完整过程.)(2). 归纳矩形的判别方法:(引导学生归纳)有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三.课堂练习:(出示P98随堂练习题,学生思考、解答.)四.新课小结:通过本节课的学习,你有什么收获?(师生共同从知识与思想方法两方面小结.)五.作业设计:P99习题4.6第1、2、3题.课后反思:在平行四边形及菱形的教学后。

华师大版八下数学19.1.2《矩形的判定》教学设计

华师大版八下数学19.1.2《矩形的判定》教学设计

华师大版八下数学19.1.2《矩形的判定》教学设计一. 教材分析《矩形的判定》是华师大版八下数学19.1.2的教学内容,本节课主要让学生掌握矩形的判定方法,并能够运用这些方法解决实际问题。

教材通过引入矩形的定义和性质,引导学生探索矩形的判定方法,培养学生的逻辑思维能力和空间想象能力。

本节课的内容是学生进一步学习几何图形的基础,对于学生形成完整的几何知识体系具有重要意义。

二. 学情分析学生在学习本节课之前,已经学习了矩形的定义和性质,具备了一定的几何知识基础。

同时,学生通过之前的学习,已经掌握了一定的逻辑思维能力和空间想象能力。

然而,学生在运用矩形的判定方法解决实际问题时,仍然存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主探究、合作交流的方式,深入理解矩形的判定方法,提高学生的解题能力。

三. 教学目标1.知识与技能:使学生掌握矩形的判定方法,能够运用矩形的判定方法解决实际问题。

2.过程与方法:通过自主探究、合作交流,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的团队协作精神和自主学习能力。

四. 教学重难点1.教学重点:矩形的判定方法。

2.教学难点:运用矩形的判定方法解决实际问题。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,提高学生的学习积极性。

2.自主探究法:引导学生通过自主学习,探索矩形的判定方法,培养学生的自主学习能力。

3.合作交流法:学生进行小组讨论,促进学生之间的思维碰撞,提高学生的团队协作能力。

4.案例教学法:通过分析典型例题,引导学生运用矩形的判定方法解决问题,提高学生的解题能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学方案。

2.学生准备:预习相关知识点,了解矩形的定义和性质。

七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“判断一个四边形是否为矩形”,激发学生的学习兴趣,引导学生思考矩形的判定方法。

18.2.1矩形的判定(教案)2023-2024学年八年级下册数学人教版(安徽)

18.2.1矩形的判定(教案)2023-2024学年八年级下册数学人教版(安徽)
此外,我还发现部分学生在几何证明的书写上存在一些问题,如逻辑顺序混乱、符号使用不规范等。在今后的教学中,我将加强对学生几何证明书写规范的指导,帮助他们提高证明过程的严谨性。
最后,我还要时刻关注学生的反馈,根据他们的学习情况适时调整教学方法和节奏,以提高课堂教学效果。同时,也要鼓励学生们多提问、多思考,培养他们的自主学习能力。这样,我相信他们在矩形的判定这一章节上会有更大的进步。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是一组对边平行且相等的四边形,它在几何学中具有重要地位,广泛应用于日常生活和工程领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析矩形家具的形状,学习如何运用判定定理来判断一个图形是否为矩形。
3.重点难点解析:在讲授过程中,我会特别强调矩形的定义和判定定理这两个重点。对于难点部分,如直角定理和对角线定理,我会通过举例和比较来帮助大家理解。
举例:通过比较矩形与平行四边形的区别,让学生理解矩形特有的性质。
(2)矩形判定定理的掌握:包括直角定理、对角线定理和一组对边平行且相等定理。这些定理是判断一个四边形是否为矩形的关键,需要学生熟练掌握。
举例:通过具体实例,让学生运用不同判定定理来判断一个四边形是否为矩形。
(3)矩形性质的应用:运用矩形的性质解决实际问题,如计算矩形的面积、周长等。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的几何直观和空间想象能力,通过观察、分析矩形的特点,使学生能够直观感知矩形的基本性质,并在头脑中构建出矩形的空间模型。
2.培养学生的逻辑推理和论证能力,通过矩形的判定定理的学习,引导学生运用严密的逻辑推理方法,证明矩形的相关性质,并能够运用这些定理解决实际问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的判定
【教学目标】
1、知识与技能
✧在对矩形性质认识的的基础上,探索并掌握矩形的判别方
法;
✧规范推理的书写格式;
✧应用矩形定义、判定等知识,解决简单的实际问题。

2、过程与方法
通过对逆命题的猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

3、情感、态度与价值观
能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

重点与难点
1、重点:矩形的判定。

2、难点:矩形的判定及性质的综合应用。

教法学法:
教师由平行四边形的判定引导学生自主探究与合作交流,从整体上把握“矩形的判定定理”,利用多媒体等教学手段,激发学生学习兴趣。

教学过程
一、复习引入
我们已经知道,有一个角是直角的平行四边形是矩形,这是矩形的定义,我们可以依此判定一个四边形是矩形。

除此之外,我们能否找到其他的判定矩形的方法呢?引出课题:矩形的判定
教师提问:我们一起回顾矩形性质。

性质:1、矩形的两组对边分别平行且相等;
2、矩形的四个内角都是直角;
3、矩形的两条对角线相等且互相平分。

矩形是一个中心对称图形,也是一个轴对称图形。

二、探究新知
(一)判定定理1的探究与证明
1、引导学生说出性质2的逆命题:四个内角是直角的四边形是
矩形。

2、引出三个内角是直角的四边形是矩形。

(同学们自己写逻
辑推理过程)
已知:四边形ABCD中,∠A=∠B=∠C=90°。

求证:四边形ABCD是矩形。

3、得到判定定理:三个内角是直角的四边形是矩形。

(二)判定定理2的探究与证明
(1)教师提问:矩形的第3条性质:“矩形的两条对角线相等且互相平分”的逆命题是什么?
(2)学生回答后教师加以总结:上述性质定理的逆命题是:两条对角线相等且互相平分的四边形是矩形。

(3)引导学生证明该命题是真命题。

(4)得到判定定理:对角线相等的平行四边形是矩形,或对角线互相平分且相等的四边形是矩形。

(三)、小应用
二、例题讲解
1、如图,O是矩形ABCD的对角线AC与BD的交点,E、F、G、H 分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH。

求证:四边形EFGH是矩形。

教师要求学生书写证明过程,并强调学生书写的规范。

2、变式训练:
三、随堂练习:
96页的没练习的1、2。

四、课堂总结
通过这节课的学习,你有什么收获?
五、布置作业
96页习题20.2的1、2题。

相关文档
最新文档