高一数学与方法学习-2019年教育文档

合集下载

2024年新高一数学讲义(人教A版2019必修第一册)函数的概念及其表示(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)函数的概念及其表示(解析版)

第09讲函数的概念及其表示模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念;2.体会集合语言和对应关系在刻画函数概念中的作用;3.了解构成函数的要素,能求简单函数的定义域;4.掌握函数的三种表示方法:解析法、图象法、列表法.5.会根据不同的需要选择恰当的方法表示函数.知识点1函数的概念1、函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.2、函数的四个特性:定义域内的任意一个x值,必须有且仅有唯一的y值与之对应.(1)非空性:定义的集合A,B必须是两个非空数集;(2)任意性:A中任意一个数都要考虑到;(3)单值性:每一个自变量都在B中有唯一的值与之对应;(4)方向性:函数是一个从定义域到值域的过程,即A →B .3、函数的三要素(1)定义域:使函数解析式有意义或使实际问题有意义的x 的取值范围;(2)对应关系:是函数关系的本质特征,是沟通定义域与值域的桥梁,在定义域确定的情况下,对应关系控制着值域的形态,f 可以看作是对“x ”施加的某种运算或法则.如:2()f x x =,f 就是对自变量x 求平方.(3)值域:对应关系f 对自变量x 在定义域内取值时相应的函数值的集合,其中,()y f x =表示“y 是x 的函数”,指的是y 为x 在对应关系f 下的对应值.4、函数相等:两个函数定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数为同一个函数.知识点2求函数定义域的依据1、分式中分母不能为零;2(2,)n k k N *=∈其中中;(21,)n k k N *=+∈其中中,x R ∈;3、零次幂的底数不能为零,即0x 中0x ≠;4、实际问题中函数定义域要考虑实际意义;5、如果已知函数是由两个以上数学式子的和、差、积、商的形式构成,那么定义域是使各部分都有意义的公共部分的集合.知识点3函数的表示法1、函数的表示法(1)解析法:用数学表达式表示两个变量之间的对应关系.(2)列表法:列出表格来表示两个变量之间的对应关系.(3)图象法:用图象表示两个变量之间的对应关系.2、描点法作函数图象(1)列表:先找出一些有代表性的自变量x 的值,并计算出与这些值相对应的函数值,用表格的形式表示;(2)描点:从表中得到一些列的点(x ,f (x )),在坐标平面上描出这些点;(3)连线:用光滑的曲线把这些点按自变量的值由小到大的顺序连接起来.知识点4分段函数1、定义:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2、性质:分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.3、分段函数图象的画法(1)作分段函数图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后作出函数的图象.知识点5函数解析式的求法1、待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法.(1)确定所有函数问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含有待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决.2、换元法:主要用于解决已知()()f g x 的解析式,求函数()f x 的解析式的问题.(1)先令()=g x t ,注意分析t 的取值范围;(2)反解出x ,即用含t 的代数式表示x ;(3)将()()f g x 中的x 度替换为t 的表示,可求得()f t 的解析式,从而求得()f x .3、配凑法:由已知条件()()()=f g x F x ,可将()F x 改写成关于()g x 的表达式,然后以x 替代g (x ),便得()f x 的解析式.4、方程组法:主要解决已知()f x 与()-f x 、1⎛⎫ ⎪⎝⎭f x 、1⎛⎫- ⎪⎝⎭f x ……的方程,求()f x 解析式.例如:若条件是关于()f x 与()-f x 的条件(或者与1⎛⎫⎪⎝⎭f x )的条件,可把x 代为-x (或者把x 代为x1)得到第二个式子,与原式联立方程组,求出()f x .考点一:对函数概念的理解例1.(23-24高一上·河南濮阳·月考)下图中可表示函数()y f x =的图象是()A .B .C .D .【答案】B【解析】根据函数的定义可知一个x 只能对应一个y 值,故答案为B.故选:B.【变式1-1】(23-24高一上·广东韶关·月考)设{}{}123,,,M N e g h ==,,,如下选项是从M 到N 的四种应对方式,其中是M 到N 的函数是()A .B .C .D .【答案】C【解析】对于A,集合M 中的3对应了集合N 中的两个数,A 错误;对于B,集合M 中的2N 中的两个数,B 错误;对于C,集合M 中的每个数在集合N 中都有唯一的数对应,C 正确;对于D,集合M 中的3对应了集合N 中的两个数,D 错误,故选:C.【变式1-2】(23-24高一上·四川泸州·期末)托马斯说:“函数是近代数学思想之花.”根据函数的概念判断:下列对应关系是集合{}1,2,4=-M 到集合{}1,2,4,16N =的函数的是()A .2y x =B .2y x =+C .2y x =D .2xy =【答案】C【解析】对于A ,集合M 中的元素1-按对应关系2y x =,在集合N 中没有元素与之对应,A 不是;对于B ,集合M 中的元素4按对应关系2y x =+,在集合N 中没有元素与之对应,B 不是;对于C ,集合M 中的每个元素按对应关系2y x =,在集合N 中都有唯一元素与之对应,C 是;对于D ,集合M 中的元素1-按对应关系2x y =,在集合N 中没有元素与之对应,D 不是.故选:C【变式1-3】(23-24高一上·广东佛山·期末)给定数集,(0,),,A B x y ==+∞R 满足方程20x y -=,下列对应关系f 为函数的是()A .:,()f AB y f x →=B .:,()f B A y f x →=C .:,()f A B x f y →=D .:,()f B A x f y →=【答案】B【解析】A 选项,x ∀∈R ,当0x =时,20y x ==,由于0B ∉,故A 选项不合要求;B 选项,()0,x ∀∈+∞,存在唯一确定的y ∈R ,使得2y x =,故B 正确;CD 选项,对于()0,y ∀∈+∞,不妨设1y =,此时21x =,解得1x =±,故不满足唯一确定的x 与其对应,不满足要求,CD 错误.故选:B考点二:求函数的定义域例2.(23-24高一下·广东茂名·期中)函数y =)A .()0,∞+B .()2,+∞C .[)0,∞+D .[)2,+∞【答案】D【解析】对于函数y =20x -≥,解得2x ≥,所以函数y =的定义域是[)2,+∞.故选:D【变式2-1】(23-24高一上·四川乐山·期中)函数3y =)A .[]3,3-B .()3,3-C .][(),33,∞∞--⋃+D .()(),33,-∞-+∞ 【答案】B【解析】由题知290->x ,解得33x -<<,所以函数的定义域为()3,3-.故选:B.【变式2-2】(23-24高一上·重庆璧山·月考)已知函数()f x 的定义域为[1,2]-,则(32)f x -的定义域为()A .1[,2]2B .[1,2]-C .[1,5]-D .5[1,]2【答案】A【解析】由于函数()f x 的定义域为[1,2]-,故1322x -≤-≤,解得122x ≤≤,即函数(32)f x -的定义域为1[,2]2.故选:A.【变式2-3】(23-24高一上·安徽蚌埠·期末)函数()2y f x =+的定义域为[]0,2,则函数()2y f x =的定义域为()A .[]4,0-B .[]1,0-C .[]1,2D .[]4,8【答案】C【解析】函数()2y f x =+的定义域为[]0,2,由[]0,2x ∈,有[]22,4x +∈,即函数()y f x =的定义域为[]2,4,令224x ≤≤,解得12x ≤≤,函数()2y f x =的定义域为[]1,2.故选:C考点三:判断两个函数是否相等例3.(23-24高一上·浙江杭州·期中)下列函数中,与函数2y x =+是同一函数的是()A .2y =B .2y =+C .22x y x=+D .2y =+【答案】D【解析】对A ,2y =的定义域为[)2,-+∞,2y x =+的定义域为R ,故A 错误;对B ,22y x ==+,故B 错误;对C ,22x y x=+的定义域为()(),00,∞∞-⋃+,故C 错误;对D ,22y x ==+,故D 正确.故选:D【变式3-1】(23-24高一上·安徽马鞍山·期中)下列各组函数中,表示同一个函数的是()A .||,y x y =B .2,x y x y x==C .01,y y x ==D .2||,y x y ==【答案】A【解析】选项A ,解析式等价,定义域也相同,所以是同一个函数;选项B ,解析式化简后相同,但定义域不同,因为分母不能取0,所以不是同一个函数;选项C ,解析式化简后都是1,但定义域不同,因为0的0次幂没有意义,所以不是同一个函数;选项D ,解析式不同,定义域也不同,所以不是同一个函数.故选:A.【变式3-2】(23-24高一上·吉林延边·月考)(多选)下列各组函数表示同一函数的是()A .xy x=与1y =B .y =与y x=C .y =|1|y x =-D .321x x y x +=+与y x=【答案】BCD 【解析】对于A ,x y x=的定义域为{}0x x ≠,而函数1y =的定义域为R ,故A 错误;对于B ,函数y x ==,x ∈R ,故B 正确;对于C ,函数1y x ==-,x ∈R ,故C 正确;对于D ,函数()2322111x x x x y x x x ++===++,x ∈R ,故D 正确.故选:BCD.【变式3-3】(23-24高一下·山东淄博·期中)(多选)下列各组函数是同一函数的是()A .()f x =()g x =B .()0f x x =与()01g x x =C .()f x =()g x =D .()22f x x x =-与()22g t t t=-【答案】BD【解析】对A :对()g x =(],0-∞,则()g x ==故()f x =与()g x =A 错误;对B :()()010f x x x ==≠,()()0110g x x x ==≠,故()0f x x =与()01g x x =是同一函数,故B 正确;对C :()f x 定义域为1010x x +≥⎧⎨-≥⎩,即1x ≥,()g x 定义域为210x -≥,即1x ≥或1x ≤-,故()f x =()g x =C 错误;对D :()22f x x x =-与()22g t t t =-定义域与对应关系都相同,故()22f x x x =-与()22g t t t =-是同一函数,故D 正确.故选:BD.考点四:简单函数的求值求参例4.(23-24高一下·云南曲靖·开学考试)已知函数()231f x x x -=-+,则()1f -=()A .5-B .1-C .2D .3【答案】D【解析】取2x =,有()212213f -=-+=.故选:D.【变式4-1】(23-24高一上·辽宁沈阳·期中)已知函数1()4f x x =-,若()2f a =,则a 的值为()A .92B .72C .52D .12-【答案】A【解析】由()2f a =,得124a =-,解得92a =.故选:A 【变式4-2】(22-23高二下·山东烟台·月考)已知函数()212f x x x -=-,且()3f a =,则实数a 的值等于()A B .C .2D .2±【答案】D【解析】令21,23x a x x -=-=,解得=1x -或3x =由此解得2a =±,故选:D【变式4-3】(23-24高一上·安徽安庆·期末)已知定义在R 上的函数()f x 满足()()()()1,12f x y f x f y f +=+-=,则()2f -=()A .1-B .0C .1D .2【答案】A【解析】在()()()1f x y f x f y +=+-中,令1,0x y ==,得()()()(1)10101f f f f =+-⇒=,令1x y ==,得()()()21112213f f f =+-=+-=,令2,2-==y x ,()()()02211f f f =+--=,解得:()21f -=-,故选:A考点五:函数的三种表示方法例5.(23-24高一上·湖南长沙·期末)已知函数(),()f x g x 分别由下表给出:则[(2)]f g 的值是()x123()f x 131()g x 321A .1B .2C .3D .1和2【答案】C【解析】由表可知:(2)2g =,则[(2)](2)3f g f ==.故选:C.【变式5-1】(23-24高一上·河北沧州·期中)已知函数()f x 的对应关系如下表,函数()g x 的图象如下图所示,则()()0f g =()x 014()f x 269A .2B .6C .9D .0【答案】C【解析】由图可知()04g =,由表格可知()()()049f g f ==.故选:C.【变式5-2】(23-24高一上·江苏南京·月考)若函数()f x 和()g x 分别由下表给出,满足()()2g f x =的x 值是()x 1234()f x 2341x1234()g x 2143A .1B .2C .3D .4【答案】D【解析】由()()2g f x =,则()1f x =,则4x =.故选:D【变式5-3】(23-24高一上·广东惠州·期末)已知定义在[]22-,上的函数()y f x =表示为:x [)2,0-0(]0,2y1-2设()1f m =,()f x 的值域为M ,则()A .{}1,2,0,1m M ==-B .{}2,2,0,1m M =-=-C .{}1,|21m M y y ==-≤≤D .{}1,|21m M y y ==-≤≤【答案】B【解析】因为1x =满足(]0,2x ∈,所以()12f m ==-,由表中数据可知:y 的取值仅有2,0,1-三个值,所以{}2,0,1M =-,故选:B.考点六:函数解析式的求解例6.(23-24高一上·全国·课后作业)图象是以()1,3为顶点且过原点的二次函数()f x 的解析式为()A .()236f x x x =-+B .()224f x x x=-+C .()236f x x x=-D .()224f x x x=-【答案】A【解析】设图象是以()1,3为顶点的二次函数()()213f x a x =-+(0a ≠).因为图象过原点,所以03a =+,3a =-,所以()()2231336f x x x x =--+=-+.故选:A【变式6-1】(23-24高一上·新疆乌鲁木齐·月考)已知()22143f x x -=+,则()f x =().A .224x x -+B .22x x +C .221x x --D .224x x ++【答案】D【解析】令21t x =-,则12t x +=,则221()4()3242t f t t t +=+=++,所以()224f x x x =++,故选:D.【变式6-2】(23-24高一上··期末)已知函数()f x 满足:2211f x x x x ⎛⎫-=+ ⎪⎝⎭,则()f x 的解析式为()A .()22f x x =+B .()2f x x=C .()()220f x x x =+≠D .()()220f x x x =-≠【答案】A【解析】因为2221112f x x x x x x ⎛⎫⎛⎫-=+=-+ ⎪ ⎪⎝⎭⎝⎭,∴()22f x x =+,故选:A.【变式6-3】(23-24高一上·河南开封·期中)已知函数()f x 的定义域为(0,)+∞,且满足14()26f x f x x x ⎛⎫+=+ ⎪⎝⎭,则()f x 的最小值为()A .2B .3C .4D .83【答案】D【解析】由14()2()6f x f x x x+=+①,令1x x =,162()(4f x f x x x+=+②,由2⨯-②①得83()2f x x x=+,所以288()333f x x x =+≥=,当且仅当2833x x =,即2x =时,取等号,所以()f x 的最小值为83.故选:D考点七:分段函数的求值求参例7.(23-24高一上·河北石家庄·期中)若21,0()2,0x x f x x x ⎧+≤=⎨->⎩,则 (3)f =()A .9B .10C .6-D .6【答案】C【解析】 (3)236f =-⋅=-.故选:C【变式7-1】(23-24高一上·安徽马鞍山·月考)已知函数()21,02,02,0x x f x x x x ⎧-<⎪==⎨⎪->⎩,则(){}1f f f =⎡⎤⎣⎦()A .2B .1C .0D .-1【答案】A【解析】因为()21,02,02,0x x f x x x x ⎧-<⎪==⎨⎪->⎩,所以()1121f =-=-,()()()211110f f f =-=--=⎡⎤⎣⎦,所以(){}()102f f f f ==⎡⎤⎣⎦.故选:A【变式7-2】(23-24高一上·浙江嘉兴·期末)已知函数()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()3f =()A .14B .12C .2D .4【答案】B【解析】因为()()31,111,12x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()()()113113212442f f f -====.故选:B.【变式7-3】(22-23高一上·天津西青·期末)已知函数()231,2,2x x f x x ax x +<⎧=⎨+≥⎩.若2123f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.则实数=a ()A .1-B .1C .2-D .2【答案】B【解析】结合题意可得:2222,=3+1=3333f ⎛⎫<∴⨯ ⎪⎝⎭,()2232,=333123f f f a ⎛⎫⎛⎫≥∴=+= ⎪⎪⎝⎭⎝⎭,解得:1a =.故选:B.【变式7-4】(23-24高一上·安徽宿州·期中)已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是()A .()2,+∞B .[)(]2,00,2-U C .(][),22,-∞-+∞U D .()()2,00,2-⋃【答案】D【解析】由()()0a f a f a -->⎡⎤⎣⎦,若0a >,则()()0f a f a -->,即()1210a a +--⨯-->⎡⎤⎣⎦,解得2a <,所以02a <<若a<0,则()()0f a f a --<,即21(1)0a a ----+<,解得2a >-,所以20a -<<,综上,不等式的解为()()2,00,2-⋃.故选:D考点八:函数图象实际应用例8.(23-24高一上·北京·期中)在股票买卖过程中,经常用到两种曲线,一种是即时曲线()y f x =(实线表示);另一种是平均价格曲线()y g x =(虚线表示).如()23f =是指开始买卖第二小时的即时价格为3元;()23g =表示二个小时内的平均价格为3元,下列给出的图象中,可能正确的是()A .B .C .D .【答案】A【解析】开始时,即时价格与平均价格相同,故排除C ;买卖过程中,平均价格不可能一直大于即时价格,故排除B ;买卖过程中,即时价格不可能一直大于平均价格,故排除D ;故选:A.【变式8-1】(23-24高一上·山东·期中)下图的四个图象中,与下述三件事均不吻合的是()(1)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(2)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(3)我从家出发后,心情轻松,一路缓缓加速行进.A .B .C .D .【答案】D【解析】(1)我骑着车离开家后一路匀速行驶,此时对应的图像为直线递增图像,只是在途中遇到一次交通堵塞,耽搁了一些时间,此时离家距离为常数,然后为递增图像,对应图像A ;(2)我离开家不久,此时离家距离为递增图像,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学,此时离开家的距离递减到0,然后再递增,对应图像C ;(3)我从家出发后,心情轻松,一路缓缓加速行进,此时图像为递增图像,对应图像B ;故选:D【变式8-2】(23-24高一上·宁夏固原·月考)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈()A B O A →→→,则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是()A .B .C .D .【答案】D【解析】当小明在弧AB 上运动时,与O 点的距离相等,所以AB 选项错误.当小明在半径BO 上运动时,与O 点的距离减小,当小明在半径OA 上运动时,与O 点的距离增大,所以C 选项错误,D 选项正确.故选:D【变式8-3】(23-24高一上·福建福州·期中)某市一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段[]0,t 内最高温度与最低温度的差),()C t 与t 之间的函数关系用下列图象表示,则下列图象最接近的是().A .B .C .D .【答案】D【解析】由题意()C t ,从0到4逐渐增大,从4到8不变,从8到12逐渐增大,从12到20不变,从20到24又逐渐增大,从4到8不变,是常数,该常数为2,只有D 满足,故选:D .一、单选题1.(23-24高一下·广东汕头·期中)函数1()2f x x =-的定义域为()A .{2|3x x >且2x ≠}B .{2|3x x <且2x >}C .2|23x x ⎧⎫≤≤⎨⎬⎩⎭D .{2|3x x ≥且2x ≠}【答案】D【解析】由题意得32020x x -≥⎧⎨-≠⎩,解得23x ≥且2x ≠,即定义域为223xx x ⎧⎫≥≠⎨⎬⎩⎭∣且.故选:D .2.(23-24高一上·湖北·期末)已知函数()21f x -的定义域为()1,2-,则函数()1f x -的定义域为()A .1,12⎛⎫- ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()2,4-D .()2,1-【答案】C【解析】函数()21f x -的定义域为()1,2-,所以12x -<<,224,3213x x -<<-<-<,所以()f x 的定义域为()3,3-,对于函数()1f x -,由313x -<-<,得24-<<x ,所以函数()1f x -的定义域为()2,4-.故选:C3.(22-23高一上·湖南·期中)已知函数()y g x =的对应关系如表所示,函数()y f x =的图象是如图所示,则()1g f ⎡⎤⎣⎦的值为()x123()g x 43-1A .-1B .0C .3D .4【答案】A【解析】由图象可知()13f =,而由表格可知()31g =-,所以()11g f ⎡⎤=-⎣⎦.故选:A 4.(23-24高一上·湖北·期末)已知函数()21,04,01x x f x x x x ⎧+<⎪=⎨+≥⎪+⎩,则()()()1f f f -=()A .2B .3C .3-D .5【答案】A【解析】依题意,()()2412,2221f f +-===+,所以()()()()()()1222f f f f f f -===.故选:A5.(23-24高一上·山东淄博·月考)已知()2122f x x x +=-+,则函数()f x 的解析式是()A .()263f x x x =-+B .()245f x x x =-+C .()245f x x x =--D .()2610f x x x =-+【答案】B【解析】令1t x =+,由于x ∈R ,则R t ∈,1x t =-,所以()()()()221121245f x f t t t t t +==---+=-+,得()245f t t t =-+,所以函数()f x 的解析式为()245f x x x =-+.故选:B6.(23-24高一上·山东青岛·期中)中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.已知集合{}1,2,3M =,{}1,2,3N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是()A .B .C .D .【答案】D【解析】根据函数的定义,在集合M 中任意一个数在N 中有且只有一个与之对应,选项A 中集合M 中2对应的数有两个,故错误;选项B 中集合M 中3没有对应的数,故错误;选项C 中对应法则为从M 到N 的函数,箭头应从M 指向N ,故错误;选项D 中集合M 中任意一个数在集合N 中都有唯一数与之对应,故D 正确,故选:D二、多选题7.(23-24高一上·安徽马鞍山·月考)下列各组函数表示同一函数的是()A .()(),f x x g x ==B .()(),f x x g x ==C .()()1,1f x x g t t =-=-D .()()01,f x x g x x x=+=+【答案】AC【解析】A.()(),f x x g x x ==,定义域都为R ,故表示同一函数;B.()(),f x x g x x ==,故不是同一函数;C.()()1,1f x x g t t =-=-,解析式相同,定义域都为R ,故表示同一函数;D.()()01,1f x x g x x x x =+=+=+,()f x 的定义域为R ,()g x 的定义域为{}|0x x ≠,故不是同一函数,故选:AC8.(23-24高一上·云南曲靖·月考)已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是()A .()f x 的定义域为RB .()f x 的值域为(),4-∞C .()13f =D .若()3f x =,则x【答案】BD【解析】对于A ,因为()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,所以()f x 的定义域为(,1](1,2)(,2)-∞--=-∞ ,所以A 错误;对于B ,当1x ≤-时,21x +≤,当12x -<<时,204x ≤<,所以()f x 的值域为(,1][0,4)(,4)-∞=-∞ ,所以B 正确;对于C ,因为()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,所以2(1)11f ==,所以C 错误;对于D ,当1x ≤-时,由()3f x =,得23x +=,解得1x =(舍去),当12x -<<时,由()3f x =,得23x =,解得x =x =综上,x =D 正确.故选:BD.三、填空题9.(23-24高一上·北京·期中)已知:函数()4f x x =+,()22g x x x =-+,则()f g x =⎡⎤⎣⎦.【答案】224x x -++【解析】函数()4f x x =+,()22g x x x =-+,则()()22224f g x f x x x x ⎡⎤=-+=-++⎣⎦.故答案为:224x x -++10.(23-24高一上·广东珠海·期末)函数y =的值域为.【答案】[]0,4【解析】由y =可得()80x -≥,故08x ≤≤,又()288162x x x x +-⎛⎫-≤= ⎝⎭,当且仅当8x x =-,即4x =时取等号,4≤,故函数y []0,4,故答案为:[]0,411.(23-24高一下·山东淄博·期中)已知函数()2,131,1x x f x x x ≤⎧=⎨->⎩,则不等式()()13f x f x +-<的解集为.【答案】65x x ⎧⎫<⎨⎬⎩⎭【解析】当1x ≤时,10x -≤,()()()1221423f x f x x x x +-=+-=-<,得54x <,所以1x ≤;当12x <≤时,11x -≤,()()()13121533f x f x x x x +-=-+-=-<,得65x <,所以615x <<;当2x >时,11x ->,()()()131311653f x f x x x x +-=-+--=-<,得43x <,所以无解;综上所述,不等式()()13f x f x +-<的解集为65x x ⎧⎫<⎨⎬⎩⎭.故答案为:65x x ⎧⎫<⎨⎬⎩⎭四、解答题12.(23-24高一上·河南濮阳·月考)已知函数()2,01,0132,1x x xf x x x x x ⎧≤⎪-⎪=<<⎨⎪--≥⎪⎩.(1)画出函数()f x 的图象;(2)当()2f x ≥时,求实数x 【答案】(1)作图见解析;(2)1,0,7,.3⎛⎫⎡⎛⎤-∞+∞ ⎪ ⎢⎥⎝⎦⎣⎝⎭【解析】(1)因为()2,01,0132,1x x xf x x x x x ⎧≤⎪-⎪=<<⎨⎪--≥⎪⎩,所以()f x的图象如图所示:(2)由题可得202x x ≤⎧⎨≥⎩或0112x x x<<⎧⎪-⎨≥⎪⎩或1322x x ≥⎧⎨--≥⎩,解得x ≤或103x <≤或7x ≥,所以实数x的取值范围为1,0,7,.3∞∞⎛⎫⎡⎛⎤-⋃⋃+ ⎪ ⎢⎥⎝⎦⎣⎝⎭13.(23-24高一上·广东潮州·期中)已知函数()4,11,11x x x f x x x x-⎧≤-⎪⎪=⎨-⎪>-⎪+⎩2()1g x x =-.(1)求()2f ,()2g 的值;(2)若7(())9f g a =-,求实数a 的值.【答案】(1)13-,3;(2)3±【解析】(1)因为21>-,且()4,11,11x x x f x x x x -⎧≤-⎪⎪=⎨-⎪>-⎪+⎩,所以121(2)123f -==-+.因为2()1g x x =-,所以2(2)213g =-=.(2)依题意,令()g a t =,若1t ≤-,则47(())()9t f g a f t t -===-,解得914t =>-,与1t ≤-矛盾,舍去;若1t >-,则17(())()19t f g a f t t -===-+,解得81t =>-,故2()18g a a =-=,解得3a =±,所以实数a 的值为3±;综上所述:a 的值为3±.。

北师大版(2019)高一数学必修第一册第五章第一节方程解的存在性及方程的近似解 教案

北师大版(2019)高一数学必修第一册第五章第一节方程解的存在性及方程的近似解 教案

第1节方程解的存在性及方程的近似解5.1.1利用函数性质判定方程解的存在性本部分内容是在学生学习了函数的定义、性质、图像、性质都已经熟悉的基础上,进一步研究函数与其他数学知识的有机联系,这里结合具体连续函数及其图象的特点,了解函数零点存在定理(逻辑推理),集中研究的是判定方程实数解的存在性,运用函数来解决实际问题。

(1)知识目标:理解函数零点的意义,能够判定方程解的存在性。

(2)核心素养目标:通过具体实例,感受数学的应用价值,养成严谨治学的态度和积极探索的精神。

重点:理解函数零点的意义,能够判定方程解的存在性。

难点:方程实数解的存在区间的求解。

多媒体课件一、知识引入函数零点:我们把函数y=f(x)的图像与横轴交点的横坐标称为这个函数的零点。

函数y=f(x)的零点可以理解成方程f(x)=0的解。

你能从函数y=f(x)图像中找到函数零点吗?依据定义找到函数零点: -1,1,3。

1、观察上述三个函数图像中零点附近的图像你能得什么结论吗?零点附近的图像是从上到下或者从下到上地穿过x 轴。

(零点即交点)2、零点两侧的附近区间内自变量x 对应的函数值一正一负。

(即f(a)f(b)﹤0)3、此类零点称为变号零点。

作出函数xy 1 图像确定函数有没有零点? 能否用上述结论中f(a)f(b)﹤0来判断函数有零点?得出结果:函数没有零点,用f(a)f(b)﹤0判断零点必须是在连续区间(a,b )上。

零点的判断方法:(1)几何法:函数y=f(x)图像与x 轴交点横坐标,即有几个交点就有几个零点。

(2)代数法:零点存在定理①函数y=f(x)图像在(a,b)上是连续的。

②满足f(a)f(b)﹤0则函数f(x)在区间(a,b)上至少一个零点。

如何判定函数f(x)在区间(a,b)上有唯一零点?引导学生在上述基础上加入单调性,来确定唯一零点。

二、例题解析例1 方程3x -x 2=0在区间[-1,0]内有没有解?为什么?解设函数f(x)=3x-x2在区间[-1,0]上连续,又∵f(-1)=3-1-(-1)2=-2/3<0,f(0)=1-0=1>0,∴函数f(x)=3x-x2在区间[-1,0]上有零点;∴方程f(x)=0在区间[-1,0]内有实数解。

2019年高中数学人教版必修1全套教案

2019年高中数学人教版必修1全套教案

目录第一章 集合与函数 ............................................................................................................................................... 1 第二章 基本初等函数(Ⅰ) ............................................................................................................................. 24 第三章 函数的应用 (59)第一章 集合与函数 §1.1.1集合的含义与表示一. 教学目标: l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象; (5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义. (2)让学生归纳整理本节所学知识. 3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性. 二. 教学重点.难点重点:集合的含义与表示方法. 难点:表示法的恰当选择. 三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪. 四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容. (二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例: (1)1—20以内的所有质数; (2)我国古代的四大发明; (3)所有的安理会常任理事国; (4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点; (7)方程2560x x -+=的所有实数根; (8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么? 3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素. 4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示. (三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等. 2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由: (1)大于3小于11的偶数; (2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈. 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题: (1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么? (3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

高中数学学法指导

高中数学学法指导

三、学好高中数学的几个建议
9、正确对待例题
听老师讲例题或自己 看例题时,先不要看分析和解答,看懂题意 后自己作,真不会再看分析,看完分析后能 做出吗,能就自己做一做,做不出,再看解 答,看懂了再自己做,做完了再对照;会做 时做完了也要看着人家的解答分析比较。这 样才能真正学到这个例子所教给我们的思想 方法。且不可看完题目就看解答,有时好象 看明白了,其实不然,不自己动手做一遍你 是弄不清楚其中奥妙的。
2016/12/8
祝同学们 学习进步, 生活愉快!
28
2016/12/8
三、学好高中数学的几个建议
第三,注意做好课前的物质准备和精神准备
,以免上课时出现书、本等物丢三落四的现 象,上课前也不应做过于激烈的体育运动或 看小书、下棋、打牌、激烈争论等,以免上 课后还气喘嘘嘘,不能平静下来。 第四,就是听课要全神贯注。全神贯注就是 全身心地投入课堂学习,耳到、眼到、心到 、口到、手到。耳到:就是专心听讲,听老 师如何讲课,如何分析,如何归纳总结,另 外,还要听同学们的答问,看是否对自己有 所启发。
二、初高中数学特点的变化
2、知识内容剧增
初中数学知识少、浅、难度低、知识面
窄。高中数学知识广泛,将对初中的数 学知识进行推广和引申,也是对初中知 识的完善。 如:角的概念、数的扩充。 3、综合性增强,学科间知识相互渗透 ,相互为用,加深了学习难度。如:数 学与物理学科之间
2016/12/8
2016/12/8
三、学好高中数学的几个建议
眼到:就是在听讲的同时看课本和板书,看
老师讲课的表情,手势和演示实验的动作, 生动而深刻的接受老师所要表达的思想。心 到:就是用心思考,跟上老师的思路,分析 老师是如何抓住重点,解决疑难的。口到: 就是在老师的指导下,主动回答问题或参加 讨论。手到:就是在听、看、想、说的基础 上划出课文的重点,记下讲课的要点以及自 己的感受或有创新思维的见解。若能做到上 述“五到”,精力便会高度集中,课堂所学 的一切重要内容便会在自己头脑中留下深刻 的印象。 2016/12/8

3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册

3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册

教学课题:3.1.2 函数的表示法课型:新授课课时:2课时课标要求:1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;2、通过具体实例,了解简单的分段函数,并能简单应用。

学习目标:1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;2、通过具体实例,了解简单的分段函数,并能简单应用;3、发展学生直观想象、逻辑推理核心素养。

重点:了解简单的分段函数,并能简单应用。

难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。

教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知、引入新课引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?(生)解析法、列表法和图像法引入2:(师)你能分辨下列函数是用什么方法表示的吗?(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;(生)图象法,就是用图象表示两个变量之间的对应关系.(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;年份y2006200720082009201020112012201320142015恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57(生)列表法,就是列出表格表示两个变量之间的对应关系.(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}∈≤≤t t(生)解析法,就是用数学表达式表示两个变量之间的对应关系.设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。

二、创设情境、提出问题x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})像法表示函数y=f(x).解析:用列表法可将y=f(x)表示为笔记本数x12345钱数y510152025用图象法发可将y=f(x)表示为追问1(师)你发现图象上这些点有什么特征?(生)这些点好像都经过一条直线。

数学解题方法面面观-2019年精选学习文档

数学解题方法面面观-2019年精选学习文档

数学解题方法面面观数学的解题方法是随着对数学对象的研究的深入而发展起来的,钻研习题、精通解题方法、练好解题的基本功,就能真正切实地提高解题水平。

下面罗列的这些解题方法,都是初中数学中最常用的,也是最重要的,有些方法甚至在高中数学的学习中都有重要的地位,希望同学们多加重视。

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,使其中的某些项配成一个或几个多项式正整数次幂的和的形式,通过配方解决数学问题的方法叫做配方法。

其中,用的最多的是配成完全平方式,配方法是数学中一种重要的恒等变形的方法,它的应用十分广泛。

在因式分解、化简根式、解方程、证明等式和不等式、求函数的最大值最小值以及解析式等方面,都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,因式分解是恒等变形的基础之一,它作为数学的一个有力工具、一种解题方法,在代数、几何、三角的解题中起着重要的作用,因式分解的方法有许多,除课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法外,还可利用拆项添项、求根分解、换元、待定系数等来分解。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法,我们通常把未知数或变数称为元。

所谓换元法,就是在一个比较复杂的数学式中,用新的变元去代替原式的一个部分,或改造原来的式子,使它简化,从而使问题易于解决。

比如,在解分式方程时就会用到这种方法。

4、待定系数法在解数学题时,有时所求的结果具有某种确定的形式,其中含有某些待定的系数,那么我们可以根据题设条件列出关于待定系数的等式,然后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题。

这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

在反比例函数、一次函数的问题中,经常用到这种方法。

5、构造法在解题时,我们常常会采用这样的方法:通过对条件和结论的分析,构造辅助元素(它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等),架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,称为构造法,运用构造法解题,可以使代数、几何、三角等各种数学知识互相渗透,有利于问题的解决。

数学高一人教a版2019知识点

数学高一人教a版2019知识点

数学高一人教a版2019知识点数学是一门重要的学科,对于学生来说,在高中阶段的数学学习是非常关键的。

高一数学主要以数学基础知识为主,为同学们打下坚实的数学基础。

下面,将介绍高一人教A版2019教材中的数学知识点。

一、函数与方程1. 函数的概念与性质:介绍函数的定义,函数的自变量、因变量,函数图象,函数的奇偶性等基本性质。

2. 一次函数与二次函数:介绍一次函数与二次函数的定义及相关概念,如函数的图像、性质、解析式等。

3. 数列与序列:介绍数列与序列的概念,等差数列、等比数列及其通项公式等。

4. 方程与不等式:介绍方程与不等式的基本概念,解方程与不等式的方法和步骤。

二、空间几何与图形1. 二元一次方程组:介绍二元一次方程组的概念,解法和应用。

2. 点与直线:介绍点与直线的性质,点到直线的距离、两直线的位置关系等。

3. 角与三角形:介绍角的概念,角的性质,三角形的分类及性质,勾股定理等。

4. 圆与圆的位置关系:介绍圆的概念,圆的性质,圆与直线,圆与圆的位置关系。

三、概率与统计1. 概率的基本定义:介绍概率的基本概念,事件的概率,样本空间等。

2. 随机事件与概率:介绍随机事件的概念,计算概率的方法,事件的独立性等。

3. 统计与统计图表:介绍统计的基本概念,频数、频率等,常用的统计图表的制作方法。

四、解析几何1. 坐标系与直线:介绍平面直角坐标系的建立,直线的方程与性质。

2. 直线与圆的位置关系:介绍直线与圆的位置关系,相交、相切、相离等情况。

3. 曲线与方程:介绍二次曲线的性质,如抛物线、椭圆、双曲线等的方程与图形。

这些知识点是高一数学的基础,对于学生打好数学基础至关重要。

掌握了这些知识,同学们就能够顺利进行高中数学的后续学习,为高考打下坚实的基础。

希望同学们能够认真学习,勤于练习,从而取得优异的成绩。

加油!。

2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质

2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质

2019-2020年人教版高中数学必修一说课稿:2-2对数函数及其性质一、教材分析本节课选自人教版高一数学(必修一)第二单元2.2.2《对数函数及其性质》第一课时。

对数函数是重要的基本初等函数之一,是指数函数知识的拓展和延伸. 它的教学过程,体现了“数形结合”的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨论证的思维能力有重要作用.本节课也为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。

二、学情分析学生前面已经学习了指数函数,用研究指数函数的方法,进一步研究和学习对数函数的概念、图像和性质以及初步应用,启发引导学生进一步完善初等函数的知识的系统性,加深对函数的思想方法的理解。

教学过程中,发挥大多数学生动手能力较强的特点,让学生自己通过列表、描点、连线画对数函数图像。

这样也利于对对数函数性质的理解。

三、教学目标1.知识目标:让学生掌握对数函数的概念,能正确描绘对数函数的图象,掌握对数函数的性质.2.能力目标:通过对对数函数的学习,培养学生观察,思考,分析,归纳的思维能力.3.情感目标:培养学生勇于探索的精神,让学生主动融入学习.四、教学重点和难点重点:在理解对数函数定义的基础上,掌握对数函数的图象和性质。

难点:对数函数性质的应用。

五、教法与学法说教法教学过程是教师和学生共同参与的过程,启发学生自主性学习,教师主导,学生为主体,根据这样的原则和所要完成的教学目标,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

说学法教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学与方法学习
【编者按】高中的数学只要一步步跟紧老师的步伐,是比较容易学的,即便是自学,也要偶尔听下老师的课,在老师的教学里边,有些题是有很多种做法,而课本给我们的一般只有一种
千万不要说凭自已一个人就可以学好,无论你会不会解题目,跟同学的交流是很必要的。

还有,高一是基础,千万不要等高二高三才补,那时的你已经顾不上了。

高中的数学要有个适应期的。

不比初中,它的难度一下子会上升很多,像我们高一时,每天一节新课,一个学期教两本书(更厉害的实验班听说可以三分钟讲完知识点然后做习题)。

高一是整个高中的基础!如果你能做到以下几点,你的成绩肯定会上去。

1、和数学老师建立良好的沟通,有不懂的就问,如果在哪个阶段你有什么心得也可以和老师沟通,自己的任课老师总归是胜过外面的家教的,在老师眼中学生是平等的,但你可以
让自己与众不同!
2、摸清自己的能力,理性选择教参。

如果是数学基础较好的,可以买一些提升空间大的参考书(高中数学光看书是不行的,教参上的知识点更详细),但如果你初中时数学就不拔
尖,那么到书店挑书就尤其要谨慎了,书店的导购员一般会推荐几款销路最好的,说什么重点中学的都买啊之类的话,你要想清楚适合自己的书才是最好的。

3、课堂笔记尤其认真。

初中时因为课程难度低,所以许多学生的笔记习惯不是很正确,我这里有一个我们实验班同学的笔记方法:首先基本上每一门课都要备一本笔记本的。

为了
让自己坚持下去,可以挑一本漂亮点的,增加数学学习的兴趣。

最好买本大点的,每一页都可以分开来用用线划分成两部分,纵向三七开最好了,左边用来记上课的笔记,右
边写上学习心得,预复习情况,不懂的问题等。

这样,你的笔记本价值就比别人高很多很多了。

注意保存笔记,便于高三复习。

4、和数学老师建立良好的沟通,有不懂的就问,如果在哪个阶段你有什么心得也可以和老师沟通,自己的任课老师总归是胜过外面的家教的,在老师眼中学生是平等的,但你可以
让自己与众不同!
5、高一的数学预习十分重要,预习下一天的课程会让你在新课时胸有成竹,老师讲起来你会更易理解,对于预习中不懂的问题,更要认真听讲。

6、和数学老师建立良好的沟通,有不懂的就问,如果在哪
个阶段你有什么心得也可以和老师沟通,自己的任课老师总归是胜过外面的家教的,在老师眼中学生是平等的,但你可以
让自己与众不同!
7、公式是基础,在新课时就熟记数学公式,不仅做题方便,在你高考复习时你会受益匪浅的。

8、建议高一时就准备错题集。

慢慢积累,会是无穷的财富。

偶尔翻翻,成绩会不知不觉提高。

9、坚持题目是自己做的,这点非常重要,除非你是数学天才,仅凭上课听听就能掌握所有知识点。

抄作业和不抄作业完全是两个境界,刚开始差距不明显,到高二高三时两极分化
马上就出来,抄作业者的分数只是独立完成者的零头。

高中数学任重道远,说实话,就连最优秀的学生也不敢轻易说它好对付,关键在于态度,我今天介绍的方法其实适用于高中所有课程。

希望你顺利度过高中的起始阶段。

顺便再给你点小小建议:
1。

上课永不开小差
也许你看到很多人上课和下课似的。

开小差。

睡觉。

聊天。

看小说。

甚至打打望啊什么的。

而且考试也还不错。

你特别羡慕。

呵呵。

鄙视他们吧。

这种人
无外乎两种。

一种是天才。

不学也能OK。

不过。

请问天才。

既然你认为在这学不到东西。

你怎么不直接到中科大 ?二种就是有些智商。

然后下课后在你看不到的时
候努力学习或者是什么。

晚上放电影啊什么的。

但是。

为什么你就不能加上上课的时间呢?不就能更好么?这样就显得他们没智商了。

笔记挑重点。

说这么多。

只是想你知道:上课的时间贵入黄金!!我是过来人。

你以后就会知道。

2。

环环相扣,啥都不丢
永远记住:你的教科书是非常经典的杰作。

里面的东西也许你认为很简单。

一看就明白。

就放松下。

这是绝对不行的 !!所有的内容全是经过专家仔细商订的。


多余。

甚至是书上的习题。

一般非常简单。

很多人不管了。

包括一些老师。

其实那些你一看都明白的东西非常重要。

你可以试一下,用一个小时来看一个例题。

用半个
小时来看一道习题。

你的收获绝对不会低与做三十道题!! 当然如果你就把它望着。

那我也没办法了。

要想。

为什么。

会这样。

这个题的背景。

出题的角度是怎么样的。

出题人是想考你什么。

他还有什么其他目的。

题目陷阱有哪些。

类似的题目怎么一下子就辨认出来
并且从方法中选出一种最好的。

这个方法你有什么认识。

怎么拓展。

自己再试着出出题。

把你对这个题目的认识写下来。

并且灌输到你的新题目中去。

如果你照着做了。

你会发现。

一道小题中就藏着大海。

不得不佩服出题的人!!特别是当你学了后面的知识在看前面的题目。

你会看到那是上帝和你之间的最好联系。

再次佩服。

3。

错题本必备和必背
学习就是在错误中成长。

所有的学科都一样。

数学更简单。

所有的错题全都记下。

背下。

什么程度呢?就是一看到类似的。

就能给别人把这题复述出来。

包括几种
方法。

各种方法的好差原理(再拓展。

这个后面说)。

易错点啊什么的。

然后你就有一个大脑题库了。

在考试的时候你会发现百分之九十的题都做过。

而且非常清晰。

思路方法。

易错点速度比较。

全都是一下子就涌现出来。

呵呵。

想想这样的考试是不是很享受啊?。

相关文档
最新文档