湘教版八年级数学下全教案.doc2

合集下载

湘教版数学八年级下册《2.2.2平行四边形的判定定理》教学设计

湘教版数学八年级下册《2.2.2平行四边形的判定定理》教学设计

湘教版数学八年级下册《2.2.2平行四边形的判定定理》教学设计一. 教材分析湘教版数学八年级下册《2.2.2平行四边形的判定定理》是学生在学习了四边形的概念、性质和四边形的不稳定性等知识的基础上进行学习的。

本节内容主要介绍了平行四边形的判定方法,通过判定定理的学习,使学生能更好地理解平行四边形的性质,提高解决几何问题的能力。

教材中给出了三种判定平行四边形的方法,并通过例题和练习题进行巩固。

二. 学情分析学生在学习本节内容时,已具备了基本的几何知识,对四边形的概念和性质有一定的了解。

但学生在解决几何问题时,往往对平行四边形的性质理解不深,导致解题困难。

因此,在教学过程中,教师需要引导学生深入理解平行四边形的性质,并通过大量练习,提高学生解决几何问题的能力。

三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用判定定理解决几何问题。

2.过程与方法:通过观察、操作、探究等活动,培养学生的空间想象能力和几何思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:平行四边形的判定方法。

2.难点:如何运用判定定理解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平行四边形的判定定理,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究平行四边形的性质,培养学生的几何思维能力。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。

4.反馈评价法:及时给予学生反馈,提高学生的学习效果。

六. 教学准备1.教学课件:制作包含图片、动画和例题的教学课件,帮助学生更好地理解平行四边形的判定定理。

2.练习题:准备一定数量的练习题,用于巩固学生对平行四边形判定定理的掌握。

3.几何模型:准备一些几何模型,如平行四边形模型,让学生直观地感受平行四边形的性质。

七. 教学过程1.导入(5分钟)利用生活实例引入平行四边形的判定定理,如自行车架、门窗等,引导学生关注平行四边形的性质。

湘教版八年级数学下册教案

湘教版八年级数学下册教案

数学教案是课堂数学教学设计的载体,是课堂教学质量的基础。

下面是为大家精心整理的。

一第1章直角三角形课题§11直角三角形的性质和判定Ⅰ主备教师使用教师1、掌握“直角三角形的两个锐角互余”定理。

教学目的2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

4、巩固利用添辅助线证明有关几何问题的方法。

教学重点直角三角形斜边上的中线性质定理的应用。

教学难点直角三角形斜边上的中线性质定理的证明思想方法。

教学方法观察、比较、合作、交流、探索一个课时教学课时二教学过程个性化设计一、复习提问:1什么叫直角三角形2直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质二、新授一直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系为什么2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1、1在直角三角形中,有一个锐角为52,那么另一个锐角度数02在Rt△ABC中,∠C=90,∠A-∠B=30,那么∠A=,∠B=。

练习2在△ABC中,∠ACB=90,CD是斜边AB上的高,那么,1与∠B互余的角有2与∠A相等的角有。

3与∠B相等的角有。

二直角三角形的判定定理11、提问:“在△ABC中,∠A∠B=90那么△ABC是直角三角形吗”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A=60,∠B=30,那么△ABC是三角形。

三直角三角形性质定理21、实验操作:要学生拿出事先准备好的直角三角形的纸片量一量斜边AB的长度。

2找到斜边的中点,用字母D表示。

3画出斜边上的中线。

4量一量斜边上的中线的长度让学生猜想斜边上的中线与斜边长度之间有何关系归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________。

【精品】湘教版八年级下册全期数学教案(整理

【精品】湘教版八年级下册全期数学教案(整理

湘教版八年级下册全期数学教案(整理)八年级下册教案第一章因式分解第1节多项式的因式分解一、背景介绍因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。

因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计【教学内容分析】因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。

教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。

在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

【教学目标】1、认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学准备】实物投影仪、多媒体辅助教学。

【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。

湘教版八年级数学下册《平行四边形的边、角性质》教案

湘教版八年级数学下册《平行四边形的边、角性质》教案

2.2 平行四边形2.2.1 平行四边形的性质第1课时平行四边形的边、角性质【知识与技能】1.使学生理解并掌握平行四边形的定义.2.能根据定义探究平行四边形的性质.3.了解平行四边形在生活中的应用实例,能根据平行四边形的性质解决简单的实际问题.【过程与方法】经历运用平行四边形描述现实世界的过程,发展学生的抽象思维和形象思维,根据平行四边形的性质进行简单的计算与证明,通过观察、实验、归纳、证明,通过运用数学语言合乎逻辑地进行讨论与质疑,培养学生的推理能力与演绎能力.【情感态度】在应用平行四边形的性质的过程中培养独立思考的习惯,在数学学习活动中获得成功的体验.通过平行四边形的性质的应用,进一步认识数学与生活的密切联系.【教学重点】平行四边形的定义,对角、对边相等的性质,以及性质的应用.【教学难点】运用平行四边形的性质进行有关的论证和计算.一、创设情境,导入新课我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?【教学说明】用学生比较熟悉的生活中的平行四边形物体入手,感受数学与生活的密切联系,引起学生的注意,唤起学生的学习欲望,使他们很快融入到学习中去.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题1 平行四边形的定义和表示方法做一做:教材第40页“做一做”【教学说明】让学生明确平行四边形的定义及表示方法,发展学生的抽象思维能力和几何语言的表达能力,避免了强制记忆.问题2 平行四边形对边、对角的性质探究:教材第40~41页“探究”【教学说明】经历猜想——实践——验证的过程,从中体会亲自动手实践学到的知识的乐趣,获得成功的体验,同时培养了学生的推理能力及严谨的学习态度.例:教材第41页例1、例2【教学说明】训练学生利用平行四边形边、角的性质能清晰有条理的表达自己的思维过程,做到“言之有理,落笔有据”.三、运用新知,深化理解1.如图,在ABCD中,EF∥BC,GH∥AB,EF、GH相交于O,则图中有平行四边形()A.4个B.5个C.8个D.9个5BC,则较长边的长为()2. □ABCD的周长为36 cm,AB=7A.7.5cmB.10.5cmC.15cmD.21cm3.在□ABCD中,已知∠B+∠D=140°,求∠C.4.已知:如图,D是等腰△ABC的底边BC上一点,DE∥AC,DF∥AB,求证:DE+DF=AB.【教学说明】由学生独立完成,加强所学知识的理解和运用以及检测学生掌握情况,对有困难的学生及时点拨纠正错误,有针对性加强训练.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.答案:1.D 2.B3.解:∵□ABCD,∴∠B=∠D,∵∠B+∠D=140°,∴∠B=∠D=70°,∵AB∥CD,∴∠C+∠B=180°,∴∠C=110°.4.证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴DF=AE.∵AB=AC,∴∠B=∠C.∵DE∥AC,∴∠C=∠EDB,∴∠B=∠EDB,∴BE=DE,∴DE+DF=BE+AE=AB.四、师生互动,课堂小结本节课我们学习了哪些知识?你有什么收获或存在哪些问题?与大家交流.【教学说明】这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识,使学生在知识、方法、技能和态度等诸多方面得到发展.1.布置作业:习题2.2中的第3、4题.2.完成练习册中本课时练习的作业部分.。

【最新湘教版精选】湘教初中数学八下《2.1多边形》word教案 (2).doc

【最新湘教版精选】湘教初中数学八下《2.1多边形》word教案 (2).doc

2.1多边形教学目标(一)教学知识点1.了解多边形的外角定义,并能准确找出多边形的外角.2.掌握多边形的外角和公式,利用内角和与外角和公式解决实际问题.(二)能力训练要求1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观要求(1).经历多边形外角和的探索过程,培养学生主动探索的习惯;(2).通过对内角、外交之间的关系,体会知识之间的内在联系。

.教学重点:多边形的外角和公式及其应用.教学难点:多边形的外角和公式的应用.教学过程:一.巧设情景问题,引入课题清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?(请同学们探讨解决,教师总结)下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、OD′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2, ∠γ=∠3,∠δ=∠4,∠θ=∠5.大家看图,∠1、∠2、∠3、∠4、∠5不是五边形的角,那是什么角呢?它们的和叫什么呢?(这五个角是五边形的外角,它们的和叫外角和.)我们这节课就来探讨多边形的外角、外角和.二.讲授新课那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角. 另一边的反向延长线所组成的角叫做这个多边形的外角。

在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?(360°)刚才我们又研究了五边形的外角和,它为360°,那大家想一想:如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?(学生讨论,得出结论)(六边形的外角和是360°,八边形的外角和是360°)那么能不能由此得出:多边形的外角和都等于360°呢?能得证吗?因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°= 360°.性质:多边形的外角和都等于360°由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来想一想、议一议:利用多边形外角和的结论,能不能推导多边形内角和的结论呢?(请学生思考后回答)(因为对于n(n是大于或等于3的整数)边形,每个顶点处的内角及其一个外角恰好组成一个平角.因此,n边形的内角和与外角和的和为n·180°,所以,n边形的内角和就等于n·180°-360°=n·180°-2×180°=(n-2)·180°).三.知识应用[例1]一个多边形的内角和等于它的外角和的3倍,它是几边形?分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答)解:设这个多边形是n边形,则它的内角和是(n-2)·180°,外角和等于360°,所以:(n-2)·180°=3×360°解得:n=8这个多边形是八边形.四.课堂练习(一)课本P83随堂练习1.一个多边形的外角都等于60°,这个多边形是n边形?解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是:360°÷60°=62.下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?解:这种正多边形是正六边形,理由是:设:这个正多边形的一个内角为x °,则由题图得:3x =360°.x =120°.再根据多边形的内角和公式得:n ×120°=(n -2)×180°.解得n =6(二)试一试1.是否存在一个多边形,它的每个内角都等于相邻外角的51?为什么? 解:不存在,理由是:如果存在这样的多边形,设它的一个外角为α,则对应的内角为180°-α,于是: 51×α=180°-α,解得α=150°. 这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.2.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?解:最多能有三个钝角,最多能有三个锐角.理由是:设四边形的四个内角的度数分别为:α°,β°,γ°,δ°,则α+β+γ+δ=360°,α、β、γ、δ的值最多能有三个大于90°,否则α、β、γ、δ都大于90°.α+β+γ+δ>360°.同理最多能有三个小于90°.五.课时小结本节课我们探讨了多边形的外角及其外角和公式.知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便.六.课后作业:。

湘教版八年级数学下册全册教案.doc

湘教版八年级数学下册全册教案.doc

湘教版八年级数学下全教案第1章因式分解一、背景介绍因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学目标认知目标1、了解因式分解的意义;2、理解因式分解与多项式乘法的相互关系;3、初步了解,运用因式分解的提取公因式法和运用公式法。

能力目标1、通过对因式分解与多项式乘法的关系的理解,克服学生的思维定势,培养学生的观察、发现、对比、化归、概括以及他们的逆向思维能力;2、在相互交流的过程中,养成学生表述、抽象、类比、总结的思维习惯,初步培养学生在探索和归纳新知识的过程中进行合情推理的能力.情感目标1、让学生体验数学学习活动中的成功与快乐,增强他们的求知欲和学好数学的自信心;2、感受多项式乘法与因式分解之间的对立统一观点,从而向学生渗透辩证唯物主义的认识论的思想,引导学生树立科学的人生观和价值观;三、教学重点与难点重点是因式分解的概念及提取公因式法、公式法的运用,难点是理解因式分解与多项式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

●课时安排7课时第一课时●课题§1.1 多项式的因式分解●教学目标(一)教学知识点使学生了解因式分解的意义,知道它与多项式乘法在整式变形过程中的相反关系.(二)能力训练要求通过观察,发现因式分解与多项式乘法的关系,培养学生的观察能力和语言概括能力.(三)情感与价值观要求通过观察,推导因式分解与多项式乘法的关系,让学生了解事物间的因果联系.●教学重点1.理解因式分解的意义.2.识别因式分解与多项式乘法的关系.3.初步了解因式分解在解决其它数学问题中的桥梁作用。

●教学难点通过观察,归纳因式分解与多项式乘法的关系.●教学方法观察讨论法●教学过程一.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在多项乘法中学习的.从式子(a+b)(a -b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.二.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y 2-6y +9=( )2.[生]把等号左右两边的式子调换一下即可.即: [师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是多项式乘积的形式.一般地,对于两个多项式f 与g ,如果有多项式h 使得f=gh ,那么我们把g 叫做f 的一个因式,此时,h 也是f 的一个因式。

新湘教版八年级数学下册教案

新湘教版八年级数学下册教案

新湘教版八年级数学下册教案八年级数学下册教案1教学过程一、复习等腰三角形的判定与性质二、新授:1.等边三角形的性质:三边相等;三角都是60°;三边上的中线、高、角平分线相等2.等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半注意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。

推论3反映的是直角三角形中边与角之间的关系.3.由学生解答课本148页的例子;4.补充:已知如图所示, 在△ABC中, BD是AC边上的中线, DB⊥BC于B,∠ABC=120o, 求证: AB=2BC分析由已知条件可得∠ABD=30o, 如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.八年级数学下册教案2一、教材分析本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二.教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.三、教学目标1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。

【湘教版】八年级数学下册教案(全)

【湘教版】八年级数学下册教案(全)

1.1 多项式的因式分解教学目标1.了解分解因式的意义,以及它与整式乘法的相互关系.2.感受因式分解在解决相关问题中的作用.3.通过因式分解培养学生逆向思维的能力。

重点与难点重点:理解分解因式的意义,准确地辨析整式乘法与分解因式这两种变形。

难点:对分解因式与整式关系的理解教学过程一、创设情境,导入新课1 回顾整式乘法和乘法公式填空:计算:(1)2ab(3a+4b-1)=_________, (2)(a+2b)(2a-b)=__________(3)(x-2y)(x+2y)=__________; (4) =_____________(5) =________2 你会解方程:吗?估计学生会想到两种做法:(1)一是用平方根的定义,(2)二是:解:(x+1)(x-1)=0,根据两个因式相乘等于0,必有一个因式等于0,得到:x+1=0或者x-1=0,因此:得x=1或-1指出:把叫因式分解,为什么要把一个多项式因式分解呢?这节课我们来学习这个问题。

二合作交流,探究新知1 因式的概念(1)说一说: 6=2×___,(2)指出:对于6与2,有整数3使得6=2×3,我们把2叫6的一个因数,同理,3也是6的一个因数。

类似的:对于整式与x+2,有整式x-1使得,我们把x+2叫多项式的一个因式,同理,x-2也叫多项式的一个因式。

你能说说什么叫因式吗?1一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫f 的一个因式,同样,h也是f的一个因式。

(3)考考你:你能说出下面多项式有什么因式吗?A ab+ac,BC D2 因式分解的概念(1)指出;一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解。

(2)考考你:下面变形叫因式分解吗?E =F =说明:因式分解的对象是含有字母的多项式因此 A 不是因式分解,因式分解的目的是把含字母的多项式化成均含字母的乘积的形式,因此B不是,因为不是多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学教案——八年级下册姓名:班次:韶山实验中学2011 年2月---- 7月第1章因式分解一、背景介绍因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学目标认知目标1、了解因式分解的意义;2、理解因式分解与多项式乘法的相互关系;3、初步了解,运用因式分解的提取公因式法和运用公式法。

能力目标1、通过对因式分解与多项式乘法的关系的理解,克服学生的思维定势,培养学生的观察、发现、对比、化归、概括以及他们的逆向思维能力;2、在相互交流的过程中,养成学生表述、抽象、类比、总结的思维习惯,初步培养学生在探索和归纳新知识的过程中进行合情推理的能力.情感目标1、让学生体验数学学习活动中的成功与快乐,增强他们的求知欲和学好数学的自信心;2、感受多项式乘法与因式分解之间的对立统一观点,从而向学生渗透辩证唯物主义的认识论的思想,引导学生树立科学的人生观和价值观;三、教学重点与难点重点是因式分解的概念及提取公因式法、公式法的运用,难点是理解因式分解与多项式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

●课时安排7课时第一课时●课题§1.1 多项式的因式分解●教学目标(一)教学知识点使学生了解因式分解的意义,知道它与多项式乘法在整式变形过程中的相反关系.(二)能力训练要求通过观察,发现因式分解与多项式乘法的关系,培养学生的观察能力和语言概括能力.(三)情感与价值观要求通过观察,推导因式分解与多项式乘法的关系,让学生了解事物间的因果联系.●教学重点1.理解因式分解的意义.2.识别因式分解与多项式乘法的关系.3.初步了解因式分解在解决其它数学问题中的桥梁作用。

●教学难点通过观察,归纳因式分解与多项式乘法的关系.●教学方法观察讨论法●教学过程一.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在多项乘法中学习的.从式子(a+b)(a -b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.二.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99³992-99=99³(992-1)=99³9800=99³98³100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.[生]把等号左右两边的式子调换一下即可.即: [师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是多项式乘积的形式.一般地,对于两个多项式f 与g ,如果有多项式h 使得f=gh ,那么我们把g 叫做f 的一个因式,此时,h 也是f 的一个因式。

在现代数学文献中,把单项式看成是只有一项的多项式。

一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解(factorization ).[师]在(1)中我们知道从左边推右边是多项式乘法;在(2)中由多项式推出多项式乘积的形式是因式分解.4.想一想 由a (a +1)(a -1)得到a 3-a 的变形是什么运算?由a 3-a 得到a (a +1)(a -1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[师]非常棒.下面我们一起来总结一下. 如:m (a +b +c )=ma +mb +mc (1) ma +mb +mc =m (a +b +c ) (2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个多项式的积化成一个多项式的形式,是乘法运算. 等式(2)是把一个多项式化成几个多项式的积的形式,是因式分解.即ma +mb +mcm (a +b +c ).所以,因式分解与多项式乘法是相反方向的变形. 5.例题三、因式分解在解决其它数学问题中的桥梁作用 1、把12分解质因数2、质数或素数——基本建筑块3、因式分解在解决其它数学问题中的桥梁作用它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

如:解方程:012=-x四.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个多项式的积的形式;还学习了多项式乘法与分解因式的关系是相反方向的变形.五.课后作业习题1.1 P4--P5教学后记:第二课时●课题§1.2.1 提公因式法(一)●教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法因式分解.(二)能力训练要求通过找公因式,培养学生的观察能力.(三)情感与价值观要求在用提公因式法因式分解时,先让学生自己找公因式,然后大家讨论结果的正确性,让学生养成独立思考的习惯,同时培养学生的合作交流意识,还能使学生初步感到因式分解在简化计算中将会起到很大的作用.●教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.●教学难点让学生识别多项式的公因式.●教学方法独立思考——合作交流法.●教具准备投影片两张●教学过程Ⅰ.创设问题情境,引入新课投影片[师]从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.Ⅱ.新课讲解1.公因式与提公因式法、因式分解的概念.[师]若将刚才的问题一般化,即三个矩形的长分别为a 、b 、c ,宽都是m ,则这块场地的面积为ma +mb +mc ,或m (a +b +c ),可以用等号来连接.ma +mb +mc =m (a +b +c ) 从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?[生]等式左边的每一项都含有因式m ,等式右边是m 与多项式(a +b +c )的乘积,从左边到右边是分解因式.[师]由于m 是左边多项式ma +mb +mc 的各项ma 、mb 、mc 的一个公共因式,因此m 叫做这个多项式的各项的公因式.即:几个多项式的公共的因式它们的公因式。

由上式可知,把多项式ma +mb +mc 写成m 与(a +b +c )的乘积的形式,相当于把公因式m 从各项中提出来,作为多项式ma +mb +mc 的一个因式,把m 从多项式ma +mb +mc 各项中提出后形成的多项式(a +b +c ),作为多项式ma +mb +mc 的另一个因式,这种因式分解的方法叫做提公因式法.即:如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法.2写出下列多项式各项的公因式. (1)ma +mb (m ) (2)4kx -8ky (4k ) (3)5y 3+20y 2 (5y 2) (4)a 2b -2ab 2+ab (ab )3.例题讲解[例1]将下列各式分解因式: (1)3x +6; (2)7x 2-21x ;(3)8a 3b 2-12ab 3c +abc(4)-24x 3-12x 2+28x .(如何判定符号)(5)z xy y x 242128分析:首先要找出各项的公因式,然后再提取出来. [师]请大家互相交流. 4.议一议[师]通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤. [生]首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab ,相同字母的指数取次数最低的.5.想一想[师]大家总结得非常棒.从例1中能否看出提公因式法分解因式与单项式乘以多项式有什么关系?[生]提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.Ⅲ.课堂练习(一)随堂练习把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m3-6m2=2m2(2m-3)(4)a2b-5ab+9b=b(a2-5a+9)(5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)(6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)(二)补充练习[生]解:3x-6xy+x=x(3x-6y)[师]大家同意他的做法吗?[生]不同意.改正:3x2-6xy+x=x(3x-6y+1)[师]后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x²1,这样可知提出一个因式x后,另一个因式是1.Ⅳ.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.(5)如何判定符号4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5.公因式相差符号的,如(x-y)与(y-x)要先统一公因式,同时要防止出现符号问题.Ⅴ.课后作业1、P8 1,2,32、活动与探究利用分解因式计算:(1)32004-32003;(2)(-2)101+(-2)100.第三课时●课题§1.2.2 提公因式法(二)●教学目标(一)教学知识点进一步让学生掌握用提公因式法进行因式分解的方法.(二)能力训练要求进一步培养学生的观察能力和类比推理能力.(三)情感与价值观要求通过观察能合理地进行因式分解的推导,并能清晰地阐述自己的观点.●教学重点能观察出公因式是多项式的情况,并能合理地进行因式分解.●教学难点准确找出公因式,并能正确进行因式分解.●教学方法类比学习法●教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了用提公因式法因式分解,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜.Ⅱ.新课讲解请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立: (1)2-a =__________(a -2); (2)y -x =__________(x -y ); (3)b +a =__________(a +b ); (4)(b -a )2=__________(a -b )2; (5)-m -n =__________-(m+n ); (6)-s 2+t 2=__________(s 2-t 2). 一、例题讲解[例1]下列多项中各项的公因式是什么? a (x -3)+2b (x -3) a (x -3)+2b (3-x )22))(())((a b c a b a c a ----+6(m -n )3-12(n -m )2.)(18)(1222y x y x y x xy +++-分析:虽然a (x -y )与b (y -x )看上去没有公因式,但仔细观察可以看出(x -y )与(y -x )是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y -x =-(x -y ).(m -n )3与(n -m )2也是如此.[例2]把a (x -3)+2b (x -3)分解因式.分析:这个多项式整体而言可分为两大项,即a (x -3)与2b (x -3),每项中都含有(x -3),因此可以把(x -3)作为公因式提出来.解:a (x -3)+2b (x -3)=(x -3)(a +2b )[师]从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [生]不是,是两个多项式的乘积. [例3]把下列各式分解因式: (1)a (x -y )+b (y -x ); (2)6(m -n )3-12(n -m )2(3)22))(())((a b c a b a c a ----+ (4))(18)(1222y x y x y x xy +++- Ⅲ.课堂练习把下列各式分解因式: 解:(1)x (a +b )+y (a +b ) =(a +b )(x +y );(2)3a (x -y )-(x -y ) =(x -y )(3a -1);(3)6(p +q )2-12(q +p ) =6(p +q )2-12(p +q ) =6(p +q )(p +q -2);(4)a (m -2)+b (2-m ) =a (m -2)-b (m -2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2=mn(m-n)-m(m-n)2=m(m-n)[n-(m-n)]=m(m-n)(2n-m).Ⅳ.课时小结本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.Ⅴ.课后作业习题1.2活动与探究把(a+b-c)(a-b+c)+(b-a+c)²(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)]=(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)第四课时复习:提公因式法一.重点与难点:1.重点:运用提公因式法分解因式提公因式法分解因式是最简单的同时也是最基本的因式分解的方法,在对一个多项式进行因式分解时,首先要考虑的就是提公因式法,它有时也和其它的方法混合在一起运用。

相关文档
最新文档