七年级数学下册第6章《数据的分析》单元综合测试3(新版)湘教版
七级数学下册 第六章 数据的分析单元综合测试 (新版)湘教版

数据的分析(45分钟100分)一、选择题(每小题4分,共28分)1.(2013·大连中考)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元2.为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是( )A.8,8B.8.4,8C.8.4,8.4D.8,8.43.(2013·新疆中考)某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )A.99.60,99.70B.99.60,99.60C.99.60,98.80D.99.70,99.604.(2013·齐齐哈尔中考)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是=1.4,=18.8,=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( )A.甲队B.乙队C.丙队D.哪一个都可以5.(2013·贵阳中考)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子做调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )A.方差B.平均数C.中位数D.众数6.自然数4,5,5,x,y按照由小到大的顺序排列后,中位数为4,如果这组数据唯一的众数是5,那么所有满足条件的x,y中,x+y的最大值是( )A.3B.4C.5D.67.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③二、填空题(每小题5分,共25分)8.(2013·衡阳中考)某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89,92,92,95,95,96,97,从中去掉一个最高分和一个最低分,余下分数的平均数是最后得分,则该班的得分为.9.某公司80名职工的月工资如下:则该公司职工月工资数据中的众数是.10.一组正整数2,3,4,x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.11.(2013·张家界中考)若3,a,4,5的众数是4,则这组数据的平均数是.12.某农科所在8个试验点对甲、乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460440 430 450 470 440在这些试验点中, 玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(10分)某校举办八年级学生数学素养大赛.比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目得分都按一定百分比折算后记入总分.下表为甲、乙、丙三位同学的得分情况(单位:分).(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项得分分别按10%,40%,20%,30%折算记入总分.根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分为80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分,80分,甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛一等奖?14.(12分)(2013·宁夏中考)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表.(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.15.(12分)从甲、乙两种农作物中各抽取10株苗,分别测得它们的苗高如下:(单位:cm)甲:9,10,11,12,7,13,10,8,12,8;乙:8,13,12,11,10,12,7,7,9,11.哪种农作物的苗长得比较整齐?16.(13分)(2013·扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.答案解析1.【解析】选C.根据题意,这8名同学捐款的平均金额为(5×2+6×3+7×2+10×1)÷8=6.5(元).2.【解析】选B.这组数据按从小到大的顺序排列为:7,8,8,9,10,所以中位数为8,平均数为(7+8+8+9+10)÷5=8.4.3.【解析】选 B.数据99.60出现3次,次数最多,所以众数是99.60;数据按从小到大排列:98.80,99.45,99.60,99.60,99.60,99.70,99.83,中位数是99.60.4.【解析】选A.因为=1.4,=18.8,=25,所以最小,所以他应选甲队.5.【解析】选D.由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.6.【解析】选C.由题意,知x,y都小于4且不相等,所以x,y的所有值中最大一个是2,另一个是3,所以x+y 的最大值是5.7.【解析】选A.由平均数都是80,知①正确;由二班的中位数大于一班的中位数,知②正确;一班的方差大,其成绩相对不稳定,故③不正确.8.【解析】由题意知,最高分和最低分为97,89,则余下分数的平均数为:(92×2+95×2+96)÷5=94.答案:949.【解析】数据2000出现了22次,次数最多,所以该公司职工月工资数据中的众数是2000.答案:200010.【解析】因为这组数据的中位数和平均数相等,所以(3+4)÷2=(2+3+4+x)÷4,解得:x=5.答案:511.【解析】因为3,a,4,5的众数是4,所以a=4,所以这组数据的平均数是(3+4+4+5)÷4=4.答案:412.【解析】两种玉米的平均数都是450 kg,而=100,=200,所以甲种玉米的产量比较稳定.答案:甲13.【解析】(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分).(2)设趣题巧解所占的百分比为x,数学应用所占的百分比为y.由题意,得解得所以甲的总分:20+89×0.3+86×0.4=81.1>80,所以甲能获一等奖.14.【解析】(1)补全表格如下:(2)选择方差作为标准,3.2<3.8,所以(一)班可能被选取.(答案不唯一)15.【解析】甲、乙的平均数都是10,而=3.6,=4.2,所以<,所以甲农作物的苗长得比较整齐.16.【解析】(1)从条形统计图上看,甲组的成绩分别为3,6,6,6,6,6,7,8,9,10,因此甲组中位数为6,乙组成绩分别为5,5,6,7,7,8,8,8,8,9,平均分为(5×2+6+7×2+8×4+9)=7.1(分),故填表如下:(2)观察上表可知,甲组的中位数是6,乙组的是7.5,小明是7分,超过甲组的中位数,低于乙组的中位数,所以应该是甲组的学生.(3)从统计图和表格中可以看出:乙组的平均分、中位数都高于甲组,方差小于甲组,所以支持乙组同学的观点,即乙组成绩好于甲组.。
湘教版七年级下册数学第6章 数据的分析含答案(典型题)

湘教版七年级下册数学第6章数据的分析含答案一、单选题(共15题,共计45分)1、某“中学生暑期环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.利用上述数据估计该小区2000户家庭一周内需要环保方便袋约()A.2000只B.14000只C.21000只D.98000只2、一组数据﹣1,2,3,﹣1,0的中位数和众数分别是()A.2,﹣1B.0,﹣1C.1.5,0D.﹣1,03、冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:.11,10,11,13,11,13,15关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是134、数据2、3、4、7、7的中位数与众数分别是()A.2,3B.3,4C.4,7D.2,75、在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩(单位:个)分别为:24,20,19,20,22,23,20,22.则这组数据中的众数和中位数分别是()A.22个、20个B.22个、21个C.20个、21个D.20个、22个6、某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是()A.10B.9C.8D.47、在一次体检中,抽得某班8位同学的身高(单位:cm)分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是()A.170,165B.166.5,165C.165.5,165D.165,165.58、一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8B.5C.D.39、为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是().A.中位数是40B.众数是4C.平均数是20.5D.极差是310、某小组 5 名学生举行“青少年禁毒”知识竞赛网上答题,以 90 分为标准,超过的分数记作正数,不足的分数记作负数,记录如下:+8,﹣1,+4,+5,﹣6.则这 5 名学生平均分为()分.A.92B.89C.94.8D.86.211、下列说法正确的是()A.“打开电视机,正在播世界杯足球赛”是必然事件B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上C.一组数据2,3,4,5,5,6的众数和中位数都是5D.甲组数据的方差S甲2=0.09,乙组数据的方差S2=0.56,则甲组数据比乙组数据稳定乙12、工厂欲招收一名技工,下表是对两名应聘者加工相同数量同一种零件的数据进行分析所得的结果,你认为录用哪位较好?()A.录用甲B.录用乙C.录用甲、乙都一样D.无法判断录用甲、乙13、某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 214、一组数据1,0,﹣1,2,3的中位数是()A.1B.0C.﹣1D.215、为了了解某校学生的课外阅读情况,随机抽查了10学生周阅读用时数,结果如下表:周阅读用时数(小4 5 8 12时)学生人数(人) 3 4 2 1则关于这10名学生周阅读所用时间,下列说法正确的是()A.中位数是6.5B.众数是12C.平均数是3.9D.方差是6二、填空题(共10题,共计30分)16、某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是________.17、一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为________.18、五名同学星期天干家务活的时间分别是2,2,3,4,5小时,它们的众数是________ ,中位数是________19、在某时段有辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这辆车的车速的中位数为________ .20、某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为________分.21、一组数据:1、2、5、3、3、4、2、4,它们的平均数为________,中位数为________,方差是________.22、市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是________.甲乙丙丁平均数8.2 8.0 8.0 8.2方差 2.1 1.8 1.6 1.423、某市青少年课外活动中心组织周末手工制作活动,参加活动的20名儿童完成手工作品的情况如下表:作品/件 5 6 7 8人数 4 7 6 3则这些儿童完成的手工作品件数的中位数是________.24、甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s甲2________s乙2(填“>”或“<”).25、给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是________;方差(精确到0.1)是________三、解答题(共6题,共计25分)26、某广告公司欲招聘一名职员,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项测试成绩如表:应试者测试成绩公关能力计算机能力创新能力甲88 50 72乙45 74 85丙67 70 67根据实际需要,为公司招聘一名网络维护人员,公司将公关能力,计算机能力,创新能力三项测试的得分按3:5:2的比例确定各人的测试成绩,计算甲、乙、丙各自的平均成绩,谁将被录用?27、学期末,根据学校统一安排,某班评选一名优秀学生干部,下表是班长、团支部书记和学习委员的得分情况:班长团支部书记学习委员思想表现24 26 28学习成绩26 24 26工作能力28 26 24若在评选优秀学生干部时,将思想表现、学习成绩、工作能力三项成绩按的比例计算个人总分,请通过计算说明谁应当选为优秀学生干部.28、在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,图7反映了不同捐款的人数比例,那么这个班的学生捐款的平均数、中位数、众数分别是多少?29、光明中学数学活动小组为了调查居民的用水情况,从某社区的500户家庭中随机抽取了20户家庭的月用水量,结果如下表所示月用水量(吨)10 15 20 25户数8 6 4 2(1)求这20户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量.30、为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、C5、C6、A7、C8、A9、A10、A11、D12、B13、B14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
湘教版 七年级数学下册 第6章数据的分析 单元试卷 (解析版)

湘教版七年级数学下册第6章数据的分析试卷一.选择题(共12小题)1.小明期末语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,把数学成绩忘记了,你知道小明数学多少分吗?()A.93分B.95分C.92.5分D.94分2.一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.123.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41B.42C.45.5D.464.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分5.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40B.41,40C.40,41D.41,416.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A.24,25B.25,26C.26,24D.26,257.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件45678数人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,68.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()成绩(分)3029282618人数(人)324211A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.极差是20B.中位数是91C.众数是98D.平均数是91 10.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分11.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误,将最高成绩写得更高了,计算结果不受影响的是()A.中位数B.平均数C.方差D.极差12.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2:甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择()A.甲B.乙C.丙D.丁二.填空题(共8小题)13.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.14.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.15.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.16.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.17.某篮球运动员在7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18则这组数据的众数是,中位数是.18.已知一组数据:4,﹣1,5,9,7,则这组数据的极差是.19.如果样本数据3,6,a,4,2的平均数为4,则这个样本的方差为.20.数据70、71、72、73的标准差是.三.解答题(共8小题)21.如图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少,是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.22.物理兴趣小组20位同学在实验操作中的得分情况如表:得分(分)10987人数(人)5843①求这20位同学实验操作得分的众数、中位数.②这20位同学实验操作得分的平均分是多少?③将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?23.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.24.某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):销售量200170130805040人数112532(1)求这14位营销员该月销售该品牌电脑的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?25.芜湖市1985年~2008年各年度专利数一览表年度专利数年度专利数年度专利数年度专利数198501991211997562003138198621992271998552004165198731993321999110200518419888199422200071200619419899199519200160200770219901319963620027120081006(1)请你根据以上专利数数据,求出该组数据的中位数为;极差为;(2)请用折线图描述2001年~2008年各年度的专利数;(3)请你根据这组数据,说出你得到的信息.26.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)2初中部a85b s初中高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?2,并判断哪一个代表队选手成绩较为稳定.(3)计算初中代表队决赛成绩的方差s初中27.一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)甲乙丙丁戊平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩一平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?28.三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?2020年湘教版七年级数学下册《第6章数据的分析》单元测试卷参考答案与试题解析一.选择题(共12小题)1.小明期末语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,把数学成绩忘记了,你知道小明数学多少分吗?()A.93分B.95分C.92.5分D.94分【分析】设她的数学分为x分,由题意得,(88+95+X)÷3=92,据此即可解得x的值.【解答】解:设数学成绩为x,则(88+95+x)÷3=92,解得x=93;故选:A.【点评】本题考查了平均数的应用.记住平均数的计算公式是解决本题的关键.2.一组数据7,8,10,12,13的平均数是()A.7B.9C.10D.12【分析】根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数进行计算即可.【解答】解:(7+8+10+12+13)÷5=50÷5=10答:一组数据7,8,10,12,13的平均数是10.故选:C.【点评】本题考查了平均数的知识,掌握一组数据平均数的求解方法是解题关键.3.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41B.42C.45.5D.46【分析】只要运用加权平均数的公式即可求出,为简单题.【解答】解:平均用电=(45×3+50×5+42×6)÷(3+5+6)=45.5度.故选:C.【点评】本题考查了平均数的定义.一组数据的平均数等于所有数据的和除以数据的个数.4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选:D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.5.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40B.41,40C.40,41D.41,41【分析】首先把所给数据重新从小到大排序,然后根据中位数和众数的定义即可求出结果.【解答】解:把已知数据重新从小到大排序后为36,38,38,39,40,40,41,41,41,42,43,∴中位数为40,众数为41.故选:C.【点评】本题用到的知识点是:①一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;②给定一组数据,出现次数最多的那个数,称为这组数据的众数.一组数据是不一定存在众数的;如果一组数据存在众数,则众数一定是数据集里的数.6.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A.24,25B.25,26C.26,24D.26,25【分析】利用中位数及平均数的定义求解即可.【解答】解:按从小到大的顺序排列数为22,22,24,26,26,26,29,由中位数的定义可得:这组数据的中位数是26,这组数据的平均数分别是=25,故选:D.【点评】本题主要考查了中位数与加权平均数,解题的关键是熟记中位数与加权平均数的定义.7.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件45678数人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,6【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()成绩(分)3029282618人数(人)324211A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分【分析】根据平均数、众数、中位数的定义进行计算即可.【解答】解:A、32+4+2+1+1=40,该班共有40名学生,故本选项错误;B、(30×32+29×4+28×2+×1+18×1)÷40=29.4,故本选项错误;C、30分出现的次数最多,众数为30,故本选项错误;D、第20和21两个数的平均数为30,故中位数为30,故本选项正确;故选:D.【点评】本题考查了众数、中位数以平均数,掌握它们的计算方法是解题的关键.9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.极差是20B.中位数是91C.众数是98D.平均数是91【分析】根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:将数据从小到大排列为:78,85,91,98,98,A、极差为98﹣78=20,说法正确,故本选项错误;B、中位数是91,说法正确,故本选项错误;C、众数是98,说法正确,故本选项错误;D、平均数是=90,说法错误,故本选项正确;故选:D.【点评】本题考查了极差、中位数、众数及平均数的知识,属于基础题,解答本题的关键是掌握各部分的定义.10.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95﹣80=15;故D正确.综上所述,C选项符合题意,故选:C.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.11.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误,将最高成绩写得更高了,计算结果不受影响的是()A.中位数B.平均数C.方差D.极差【分析】根据中位数的定义解答可得.【解答】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:A.【点评】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.12.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差S2:甲乙丙丁(秒)30302828S2 1.21 1.05 1.21 1.05要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为乙和丁的方差最小,但丁平均数最小,所以丁还原魔方用时少又发挥稳定.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二.填空题(共8小题)13.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为b>a>c.【分析】根据条形统计图计算平均数、中位数和众数并加以比较.【解答】解:平均数a=(4×4+5×3+6×3)÷10=4.9,中位数b=(5+5)÷2=5,众数c=4,所以b>a>c.故答案为:b>a>c.【点评】此题考查了平均数、中位数和众数的意义,解题的关键是准确理解各概念的含义.14.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是14.【分析】根据加权平均数的定义计算.【解答】解:所有这30个数据的平均数==14.故答案为14.【点评】本题考查了加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.15.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是﹣3.【分析】根据平均数的公式求解即可.前后数据的和相差90,则平均数相差90÷30.【解答】解:求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90;则由此求出的平均数与实际平均数的差是﹣=﹣3.故答案为﹣3.【点评】本题考查的是样本平均数的求法及运用.16.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为22.4.【分析】因为一组数据:25,29,20,x,14,它的中位数是24,则这组数据为14,20,23,25,29,所以其平均数可求.【解答】解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案是:22.4.【点评】本题考查了中位数,算术平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.17.某篮球运动员在7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18则这组数据的众数是20,中位数是20.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:∵20分出现了3次,出现的次数最多,∴则这组数据的众数是20分;把这些数从小到大排列为:17,18,18,20,20,20,23,最中间的数是20分,则中位数是20分;故答案为:20,20.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.18.已知一组数据:4,﹣1,5,9,7,则这组数据的极差是10.【分析】根据极差的定义即极差是指一组数据中最大数据与最小数据的差,由此计算即可.【解答】解:这组数据的极差是:9﹣(﹣1)=10;故答案为:10.【点评】本题考查了极差,掌握极差的定义是关键,求极差的方法是用一组数据中的最大值减去最小值;注意:极差的单位与原数据单位一致.19.如果样本数据3,6,a,4,2的平均数为4,则这个样本的方差为2.【分析】可先求出a的值,再代入方差的公式即可求出.【解答】解:依题意得:a=5×4﹣3﹣6﹣4﹣2=5,方差S2=[(3﹣4)2+(6﹣4)2+(5﹣4)2+(4﹣4)2+(2﹣4)2]=×10=2.故答案为:2.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.20.数据70、71、72、73的标准差是.【分析】要求标准差,首先求出平均数,用方差公式求出方差,再开平方即可.【解答】解:=(70+71+72+73)=71.5,方差S2=[(70﹣71.5)2+(71﹣71.5)2+…+(73﹣71.5)2]=1.25,标准差是S==.故答案为.【点评】本题考查的是标准差的计算,计算标准差需要先算出方差,计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.标准差即方差的算术平方根;注意标准差和方差一样都是非负数.三.解答题(共8小题)21.如图是小明作的一周的零用钱开支的统计图(单位:元)分析上图,试回答以下问题:(1)周几小明花的零用钱最少,是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.【分析】由条形统计图可知:周三小明花的零用钱最少,是1元;他零用钱花得最多的一天用了10元;周﹣与周五一样多都是6元,周六和周日一样多都是10元;小明一周平均每天花的零用钱为(6+4+1+5+6+10+10)÷7=6(元);【解答】解:(1)周三,1元,10;(2)周一与周五都是6元,周六和周日都是10元;(3)(6+4+1+5+6+10+10)÷7=6(元);(4)如右边.【点评】本题考查读条形统计图的能力及绘制折线图的能力.22.物理兴趣小组20位同学在实验操作中的得分情况如表:得分(分)10987人数(人)5843①求这20位同学实验操作得分的众数、中位数.②这20位同学实验操作得分的平均分是多少?③将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?【分析】①得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数.②平均分=总分数÷总人数.③扇形①的圆心角=百分比×360°【解答】解:①得9分的有8人,频数最多;20个数据的中位数是第10个和第11个同学的得分的平均数即(9+9)÷2=9.所以众数为9,中位数为9.②平均分=分;③圆心角度数=(1﹣25%﹣40%﹣20%)×360°=54°.【点评】本题用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.扇形的圆心角=扇形百分比×360度.23.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有15人;(2)该公司的工资极差是20050元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.【分析】(1)高级技工人数=总数﹣各类员工人数;(2)根据极差=最大值﹣最小值计算即可;(3)先求出平均数,中位数和众数,再继续判断;(4)去掉最高工资的前五名,再去掉最低工资的后五名,再根据加权平均数的公式:计算即可.【解答】解:(1)50﹣1﹣4﹣2﹣3﹣22﹣3=15人(2分)(2)21000﹣950=20050元(4分)(3)员工的说法更合理些.这组数据的平均数是2606元,中位数是1700元,众数是1600元由于个别较大数据的影响,平均数不能准确地代表平近水平,此时中位数或众数可以较好的反映工资的平均水平,因此员工的说法更合理一些.(9分)(4)(元)这样计算更能代表员工的平均工资水平.(12分)【点评】本题为统计题,考查极差、平均数、众数与中位数的意义.极差是指一组数据中最大数据与最小数据的差.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.24.某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):销售量200170130805040人数112532(1)求这14位营销员该月销售该品牌电脑的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?【分析】(1)用加权平均数的求法求得其平均数,出现最多的数据为众数,排序后位于中间位置的数即为中位数;(2)众数和中位数,是大部分人能够完成的台数.【解答】解:(1)平均数:=90台;∵共14人,∴中位数:80台;有5人销售80台,最多,故众数:80台;(2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务.【点评】本题考查了中位数、众数的确定及加权平均数的计算方法,解决本题的关键是正确的从表中整理出所有数据,并进行正确的计算和分析.25.芜湖市1985年~2008年各年度专利数一览表年度专利数年度专利数年度专利数年度专利数198501991211997562003138198621992271998552004165198731993321999110200518419888199422200071200619419899199519200160200770219901319963620027120081006(1)请你根据以上专利数数据,求出该组数据的中位数为46;极差为1006;(2)请用折线图描述2001年~2008年各年度的专利数;(3)请你根据这组数据,说出你得到的信息.【分析】(1)利用中位数和极差的概念即可求解;(2)根据画折线图的具体步骤画图即可;(3)开放性题目,根据图中所获信息,描述合理即可.【解答】解:(1)中位数为46,极差为1006;(2)如图:(3)芜湖的专利数从无到有,近几年专利数增加迅速.(必须围绕专利数据来谈)【点评】数据中最大的数减去最小的数即为极差;对于中位数;因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;画折线图可用描点法画图.26.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.。
七年级数学下册第6章数据的分析单元综合试题(含解析)(新版)湘教版

数据的分析.;;一、选择题(共18小题);;1.(2013•苏州)一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5 B.3 C.3.5 D.52.(2013•广东)数字1、2、5、3、5、3、3的中位数是();A.1 B.2 C.3 D.53.(2013•湛江)气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A.24 B.22 C.20 D.174.(2013•上海)数据 0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和25.(2013•防城港)已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5 B.6 C.7 D.86.(2013•锦州)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.47.(2013•吉林)端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22 B.24 C.25 D.278.(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,109.(2013•桂林)7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A.6 B.8 C.9 D.1010.(2013•河南)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A.47 B.48 C.48.5 D.4911.(2013•湖州)在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是();A.3元B.5元C.6元D.10元12.(2013•株洲)孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是()A.6 B.7 C.8 D.913.(2013•辽阳)数据4,5,8,6,4,4,6的中位数是()A.3 B.4 C.5 D.614.(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,315.(2013•黔南州)某学校绿化小组,在植树节这天种下银杏树的棵数如下:10,6,11,8,10,9,则这组数据中的中位数是()A.8 B.9 C.9.5 D.1016.(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量量17 21 19 18 20 19这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是()A.18,2000 B.19,1900 C.18.5,1900 D.19,185017.(2014•厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b 岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=1318.(2014•台湾)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34二、填空题(共12小题)19.(2013•东营)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.20.(2013•泰州)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.21.(2013•牡丹江)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.22.(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是分.23.(2014•岳阳)体育测试中,某班某一小组1分钟跳绳成绩如下:176,176,168,150,190,185,180(单位:个),则这组数据的中位数是.24.(2014•龙岩)若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是.25.(2014•莆田)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是.26.(2014•宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是℃.景点名称影视城苏峪口沙湖沙坡头水洞沟须弥山六盘山西夏王陵温度(℃)32 30 28 32 28 28 24 3227.(2014•漳州)在《中国梦•我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是分.28.(2014•铁岭)根据某班40名同学一周的体育锻炼情况绘制了如下统计表,那么关于该班40名同学一周的体育锻炼时间的中位数是小时.时间(小时)7 8 9 10人数(人) 3 17 14 629.(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是.30.(2014•铜仁地区)在某市五•四青年歌手大赛中,某选手得到评委打出的分数分别是:9.7,9.6,9.3,9.4,9.6,9.8,9.5,则这组数据的中位数是.湘教新版七年级(下)近3年中考题单元试卷:第6章数据的分析参考答案与试题解析一、选择题(共18小题)1.(2013•苏州)一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5 B.3 C.3.5 D.5【考点】中位数.【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;故选B.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).2.(2013•广东)数字1、2、5、3、5、3、3的中位数是()A.1 B.2 C.3 D.5【考点】中位数.【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.故选:C.【点评】本题考查了中位数的知识,属于基础题,掌握中位数的定义及计算方法是关键.3.(2013•湛江)气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A.24 B.22 C.20 D.17【考点】中位数.【分析】先把这组数据从小到大排列,再找出最中间的数即可.【解答】解:把这组数据从小到大排列为:17、17、20、22、24,最中间的数是20,则这组数据的中位数是20;故选C.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.4.(2013•上海)数据 0,1,1,3,3,4 的中位数和平均数分别是()A.2和2.4 B.2和2 C.1和2 D.3和2【考点】中位数;加权平均数.【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为: =2.故选B.【点评】本题考查了中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.(2013•防城港)已知一组从小到大的数据:0,4,x,10的中位数是5,则x=()A.5 B.6 C.7 D.8【考点】中位数.【分析】根据中位数是5,得出(4+x)÷2=5,求出x的值即可.【解答】解:一组从小到大的数据:0,4,x,10的中位数是5,则(4+x)÷2=5,x=6;故选B.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,是一道基础题.6.(2013•锦州)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.4【考点】中位数;算术平均数.【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为: =8.4.故选B.【点评】本题考查了中位数和平均数的知识,属于基础题,解答本题的关键是掌握中位数和平均数的定义.7.(2013•吉林)端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A.22 B.24 C.25 D.27【考点】中位数;折线统计图.【分析】根据中位数的定义把这组数据从小到大排列,找出最中间的数即可.【解答】解:把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;故选B.【点评】此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).8.(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,10【考点】中位数;加权平均数.【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为: =11,中位数为:10.故选D.【点评】本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.9.(2013•桂林)7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A.6 B.8 C.9 D.10【考点】中位数.【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,所以这组数据的中位数为8.故选B.【点评】本题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.10.(2013•河南)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A.47 B.48 C.48.5 D.49【考点】中位数.【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【解答】解:这组数据的中位数为=48.5.故选C.【点评】本题考查了中位数的知识,解答本题的关键是掌握中位数的定义,注意在求解前观察:数据是否为从小到大排列.11.(2013•湖州)在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是()A.3元B.5元C.6元D.10元【考点】中位数.【分析】根据中位数的定义,结合所给数据即可得出答案.【解答】解:将数据从小到大排列为:3,5,5,5,5,6,6,10,中位数为:5.故选B.【点评】本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.(2013•株洲)孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】将数据从小到大排列,根据中位数的定义即可得出答案.【解答】解:将数据从小到大排列为:6,7,8,9,9,中位数为8.故选C.【点评】本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(2013•辽阳)数据4,5,8,6,4,4,6的中位数是()A.3 B.4 C.5 D.6【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:4,4,4,5,6,6,8,则中位数为:5.故选C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.14.(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,3【考点】中位数;算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【解答】解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=3.5,中位数为:3.故选:A.【点评】本题考查了众数、中位数及平均数的定义,掌握基本定义是解题关键.15.(2013•黔南州)某学校绿化小组,在植树节这天种下银杏树的棵数如下:10,6,11,8,10,9,则这组数据中的中位数是()A.8 B.9 C.9.5 D.10【考点】中位数.【分析】题目中数据共有六个,故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数.【解答】解:这组数据的中位数是(9+10)=9.5.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好大小顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.16.(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获时,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量量17 21 19 18 20 19这组数据的中位数为m,樱桃的总产量约为n,则m,n分别是()A.18,2000 B.19,1900 C.18.5,1900 D.19,1850【考点】中位数;用样本估计总体;加权平均数.【专题】图表型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;根据已知数据利用平均数的计算公式求出6棵树上的樱桃的平均产量,然后利用样本估计总体的思想即可求出樱桃的总产量.【解答】解:先对这组数据按从小到大的顺序重新排序:17,18,19,19,20,21.位于最中间的数是19,19,所以这组数的中位数是m=(19+19)÷2=19;从100棵樱桃中抽样6棵,每颗的平均产量为(17+18+19+19+20+21)=19(千克),所以估计樱桃的总产量n=19×100=1900(千克);故选:B.【点评】此题考查了中位数、平均数、样本估计总体等知识,综合性比较强,要求学生熟练掌握定义并且能够运用这些知识才能很好解决问题.17.(2014•厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b 岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13【考点】中位数;加权平均数.【专题】压轴题.【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】解:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选:A.【点评】此题考查了中位数和平均数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.18.(2014•台湾)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?()A.a=16 B.a=24 C.b=24 D.b=34【考点】中位数.【分析】先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.【解答】解:甲箱98﹣49=49(颗),∵乙箱中位数40,∴小于、大于40各有(49﹣1)÷2=24(颗),∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.故选D.【点评】此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题(共12小题)19.(2013•东营)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 2 .【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.【点评】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.20.(2013•泰州)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15 岁.【考点】中位数.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.21.(2013•牡丹江)一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是 5 .【考点】中位数;算术平均数.【分析】根据这组数据的中位数和平均数相等,得出(3+4)÷2=(2+3+4+x)÷4,求出x的值即可.【解答】解:∵这组数据的中位数和平均数相等,∴(3+4)÷2=(2+3+4+x)÷4,解得:x=5.故答案为:5.【点评】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,关键是根据中位数和平均数相等列出方程.22.(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是92 分.【考点】中位数.【分析】根据中位数的定义先把这组数据从小到大排列,再找出最中间的数即可.【解答】解:将这组数据从小到大排列为:60,80,92,97,125,最中间的数是92,则这5名同学成绩的中位数是92;故答案为:92.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).23.(2014•岳阳)体育测试中,某班某一小组1分钟跳绳成绩如下:176,176,168,150,190,185,180(单位:个),则这组数据的中位数是176 .【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:150,168,176,176,180,185,190.位于最中间的数是176,所以这组数据的中位数是176.故答案为:176.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.24.(2014•龙岩)若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是 4 .【考点】中位数;算术平均数.【分析】首先根据平均数为4,求出x的值,然后根据中位数的概念求解.【解答】解:根据题意可得, =4,解得:x=0,这组数据按照从小到大的顺序排列为:0,3,4,5,8,则中位数为:4.故答案为:4.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.25.(2014•莆田)在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82 .【考点】中位数.【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】解:把这组数据从小到大排列为:77、79、81、83、84、87,最中间两个数的平均数是:(81+83)÷2=82;故答案为:82.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,熟练掌握中位数的概念是本题的关键.26.(2014•宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是29 ℃.景点名称影视城苏峪口沙湖沙坡头水洞沟须弥山六盘山西夏王陵温度(℃)32 30 28 32 28 28 24 32【考点】中位数.【专题】图表型.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:24,28,28,28,30,32,32,32,则中位数为: =29.故答案为:29.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.27.(2014•漳州)在《中国梦•我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是9 分.【考点】中位数.【分析】将所有成绩排序后找到中间位置的数就是这组数据的中位数.【解答】解:5个数据分别为:8,8,9,9,10,位于中间位置的数为9,故中位数为9分,故答案为:9.【点评】考查了中位数的定义,正确的排序是解答本题的关键,难度较小.28.(2014•铁岭)根据某班40名同学一周的体育锻炼情况绘制了如下统计表,那么关于该班40名同学一周的体育锻炼时间的中位数是8.5 小时.时间(小时)7 8 9 10人数(人) 3 17 14 6【考点】中位数.【分析】根据中位数的定义,将这组数据从小到大重新排列,求出最中间两个数的平均数即可.【解答】解:∵共有40个数,∴这组数据的中位数是第20、21个数的平均数,∴这组数据的中位数是(8+9)÷2=8.5(小时).故答案为:8.5.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.29.(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是 3 .【考点】中位数;算术平均数;众数.【专题】常规题型.【分析】先根据数据2,3,x,y,12的平均数是6,求出x+y=13,再根据数据2,3,x,y,12中,唯一的众数是12,求出x,y的值,最后把这组数据从小到大排列,即可得出答案.【解答】解:∵数据2,3,x,y,12的平均数是6,∴(2+3+x+y+12)=6,解得:x+y=13,∵数据2,3,x,y,12中,唯一的众数是12,∴x=12,y=1或x=1,y=12,把这组数据从小到大排列为:1,2,3,12,12,则这组数据的中位数是3;故答案为:3.【点评】本题考查了众数、平均数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,如果数据个数为奇数,则最中间的那个数为这组数据的中位数;如果数据个数为偶数,则最中间两个数的平均数为这组数据的中位数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.30.(2014•铜仁地区)在某市五•四青年歌手大赛中,某选手得到评委打出的分数分别是:9.7,9.6,9.3,9.4,9.6,9.8,9.5,则这组数据的中位数是9.6 .【考点】中位数.【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】解:把这组数据从小到大排列为:9.3,9.4,9.5,9.6,9.6,9.7,9.8,最中间的数是9.6,则中位数是9.6,故答案为:9.6.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).。
2020年湘教版七年级数学下册第6章数据的分析单元综合评价试卷含解析

2020年湘教版七年级数学下册第6章数据的分析单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(本大题共8小题,每小题3分,共24分)1.有一组数据2,2,4,5,7,这组数据的中位数为()A.2B.4C.5D.72.某大赛计分规则:去掉7位评委评分中的一个最高分和一个最低分,其平均分为选手的最后得分.下表是7位评委给某位选手的评分(单位:分)情况:评委1号2号3号4号5号6号7号评分9.39.49.89.69.29.79.5则这位选手的最后得分是()A.9.4分B.9.5分C.9.6分D.9.7分3.在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图1所示的条形统计图,则这50辆车的车速的众数(单位: km/h)为()图1A.60B.50C.40D.154.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位: cm)的平均数与方差为==13,==15;==3.6,==6.3,则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁5.某小学校园足球队22名队员的年龄情况如下:年龄(岁)1211109人数41062则这个队队员年龄的众数和中位数分别是()A.11岁,10岁B.11岁,11岁C.10岁,9岁D.10岁,11岁6.某射击运动员在训练中射击了10次,成绩如图2所示:图2下列结论不正确...的是()A.众数是8环B.中位数是8环C.平均数是8.2环D.方差是1.27.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己是否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变二、填空题(本大题共7小题,每小题4分,共28分)9.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该教师的综合成绩为分.10.在创建“平安校园”活动中,某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是5,8,7,7,8,6,8,9,则这组数据的众数是.11.若a,b,c三个数的平均数为4,则a-1,b-5,c+3的平均数是.12.为了了解学生使用零花钱的情况,小军随机抽查了他们班30名学生,结果如下表:每天使用零花钱(元)2461012人数410862这些学生每天使用零花钱的众数是,中位数是.13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89.7分,方差分别是=2.83,=1.71,=3.52,你认为适合参加决赛的选手是.14.现有一组数据2,7,6,9,8,则这组数据的中位数是.15.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是.三、解答题(本大题共4小题,共48分)16.(10分)(1)求数据4203,4204,4200,4194,4204,4201,4195,4199的平均数;(2)求数据51,63,72,84分别以0.4,0.3,0.2,0.1为权的加权平均数.17.(12分)为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图3所示的条形统计图(得分为整数,满分为10分,最低分为6分).请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数.图318.(13分)某校为了解初中学生每天在校的体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果,绘制出如图4所示的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,图①中的m的值为;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数.图419.(13分)图5是某市连续5天的天气情况.图5(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据图中提供的信息,请再写出一个不同类型的结论.答案1. B2.B3.C4. D5. B6.D7. D8.B9. 88.810. 811. 312. 4元6元13.乙14. 7 15.16.解:(1)=(4203+4204+4200+4194+4204+4201+4195+4199)÷8=4200.(2)=51×0.4+63×0.3+72×0.2+84×0.1=62.1.17.解:(1)50(2)平均数=(4×6+10×7+15×8+11×9+10×10)÷50=8.26;众数:由题图可知得到8分的人数最多,为15人,故众数为8;中位数:共50人,排序后第25、26名的平均数为中位数,即(8+8)÷2=8. 18.解:(1)4025(2)平均数:1.5,众数:1.5,中位数:1.5.19.解:(1)这5天的日最高气温和日最低气温的平均数分别是==24,==18,方差分别是=[(23-24)2+(25-24)2+(23-24)2+(25-24)2+(24-24)2]÷5=0.8,=[(21-18)2+(22-18)2+(15-18)2+(15-18)2+(17-18)2]÷5=8.8,所以<,所以该市这5天的日最低气温波动大.(2)答案不唯一.25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次为良、优、优,说明下雨后空气质量改善了.。
湘教版七年级下册第六章数据与分析单元测试卷

湘教版七年级下册第六章数据与分析单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.一组数据3、2、4、5、2,则这组数据的众数是( )A.2 B.3 C.3.2 D.42.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5 B.86.5 C.90 D.90.53.张阳把他和四位同学的年龄作为一组数据,计算出平均数是15,方差是0.5,则10年后张阳等5位同学的年龄的平均数和方差分别是()A.25和10.5 B.15和5 C.25和0.5 D.15和0.5 4.在某学校汉字听写大赛中,有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )A.中位数B.平均数C.众数D.方差5.计如下表:则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,27 6.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是()A.9分,8分B.9分,9.5分C.10分,9分D.10分,9.5分7.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8B.143C.2D.58.数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是()A.4 B.5 C.5.5 D.6二、填空题9.为了弘扬传统文化,某校举行了“书香校园,师生共读”演讲比赛,下表是小红在演讲比赛中的得分情况:评分时,服装、普通话、主题、演讲技巧分别以0.1,0.2,0.4,0.3为权,则小红的综合成绩是__________.10.某班的中考英语听力口语模拟考试成绩如下:该班中考英语听力口语模拟考试成绩的众数比中位数多______分.11.如表记录了甲、乙、丙丁四名跳远运动员选拔赛成绩的平均数与方差:根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛应该选择_____.12.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.13.已知一组数据x,1,2,3,5,它的平均数是3,则这组数据的方差是__.14.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S甲乙,则队员身高比较整齐的球队是_____.三、解答题15.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?16.期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如表信息:(1)完成表格中的数据;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩方差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?17.某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是人,补全频数分布直方图,扇形图中m=;(2)本次调查数据中的中位数落在组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?参考答案1.A 【解析】 【分析】根据众数的概念进行求解即可. 【详解】2出现了两次,其余数据均出现一次,2出现的次数最多, 所以这组数据的众数是2, 故选A . 【点睛】本题考查了众数的概念,熟练掌握“众数是指一组数据中出现次数最多的数据”是解题的关键. 2.A 【解析】 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键. 3.C 【解析】 【分析】分别根据平均数和方差公式,计算前后的平均数和方差即可. 【详解】设张阳及其他四名同学的年龄分别为12345,,,,x x x x x 则平均年龄123451()155x x x x x x =++++=方差2112322222451()()()()()0.55x x x S x x x x x x x ⎡⎤=-+-+-+-+-=⎣⎦ 十年后年五名同学的年龄分别为1234510,10,10,10,10x x x x x +++++则平均年龄为123451(1010101010)101510255x x x x x x +++++++++=+=+=10(10)(1,2,3,4,5)n n x x n x x +-+=-=Q22210.5S S ∴==故选:C . 【点睛】本题考查了平均数和方差的计算公式,熟记公式是解题关键. 4.A 【解析】 【分析】可知一共有21名同学参赛,要取前10名,因此只需知道这组数据的中位数即可. 【详解】解:∵ 有21名同学参加比赛,预赛成绩各不相同,要取前10名才能参加决赛, ∴小颖是否能进入决赛,将21名同学的成绩从小到大排列,可知第11名同学的成绩是这组数据的中位数,∴小颖要知道这组数据的中位数,就可知道自己是否进入决赛. 故答案为:A 【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 5.A 【解析】 【分析】根据众数和中位数的定义就可以求解. 【详解】28℃出现了3次,故众数为28;共7个数据,从小到大排列为25,26,27,27,28,28,28,第4个数为27,故中位数为27.故填27,28.故选:A.【点睛】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.D【解析】【分析】根据众数是数据中出现次数最多的数,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定某兴趣小组8名同学的成绩这组数据的中位数、众数.【详解】解:把这组数据重新排序后8,9,9,10,10,10,∴这组数据的中位数(9+10)÷2=9.5,∵10是这组数据中出现次数最多的数据,∴这组数据的众数为10;故选:D.【点睛】本题考查确定一组数据的中位数和众数的能力,属于基础题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.A【解析】【分析】由题意根据众数的概念,确定x的值,再求该组数据的方差即可.【详解】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:15(10+8+9+8+5)=8,方差S2=15[(10-8)2+(8-8)2+(9-8)2+(8-8)2+(5-8)2]=145=2.8.故选:A.【点睛】本题考查平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.8.D【解析】试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=6,则这组数据的众数为6.故选D.考点:1.众数;2.中位数.9.80【解析】【分析】仔细分析题意,已知了各项目所占的百分数即知道了各项的权数;利用加权平均法可以求出小红得综合成绩;【详解】小红的综合成绩为:85×10%+70×20%+80×40%+85×20%=80(分);故答案为:80.【点睛】此题考查加权平均数,解题关键在于掌握百分数的实际应用.10.1【解析】【分析】根据表格的数据求出中位数,找到众数,然后计算即可.【详解】解:学生总人数:20+15+10+2+2=49人,处于中间的是第25个学生的成绩,所以中位数是29分;30分的有20人,是最多的,所以众数是30分,30−29=1(分). 故答案是1. 【点睛】本题考查了中位数和众数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数,难度不大. 11.丙 【解析】 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵乙和丁的平均数最小 ∴从甲和丙中选择一人参加比赛 ∵丙的方差最小 ∴选择丙参赛 故答案为:丙 【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大数据越不稳定;反之,方差越小表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 12.2 【解析】 【分析】先根据平均数的公式121()n x x x x n=+++L 求出x 的值,然后利用方差的公式 2222121[()()()]n s x x x x x x n=-+-++-L 计算即可.【详解】∵3,4,x ,6,7的平均数为5, ∴346755x ++++=解得5x =2222221[(35)(45)(55)(65)(75)]25s ∴=⨯-+-+-+-+-=故答案为:2 【点睛】本题主要考查平均数与方差,掌握平均数与方差的求法是解题的关键. 13.2 【解析】 【分析】根据平均数确定出x 后,再根据方差的公式计算方差. 【详解】由平均数的公式得:(x +1+2+3+5)÷5=3,解得x=4; ∴方差=[(1-3)2+(2-3)2+(3-3)2+(5-3)2+(4-3)2]÷5=2. 故答案为:2. 【点睛】此题考查了平均数和方差的定义.平均数是所以数据的和除以所有数据的个数.方差的公式(2222121[()())n S x x x x x x n⎤=-+-+⋯+-⎦. 14.乙 【解析】 【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】解:∵22S S >甲乙,∴队员身高比较整齐的球队是乙, 故答案为:乙. 【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量15.(1)平均数是:260件,中位数是:240件,众数是:240件;(2)240件.【解析】【分析】(1)利用加权平均数公式即可求得平均数,中位数是小到大的顺序排列时,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;(2)根据(1)求得的中位数,平均数以及众数进行比较,根据实际情况进行判断.【详解】解:(1)这15人该月加工零件总数=540145013002240621031202⨯+⨯+⨯+⨯+⨯+⨯=3900(件),这15人该月加工零件的平均数:390026015x==(件),中位数是:240件,众数是:240件;(2)240件合适.因为当定额为240件时,有10人达标,4人超额完成,有利于提高大多数工人的积极性.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16.(1)70,70,85,85;(2)数学.【解析】【分析】(1)由平均数、中位数的定义进行计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩方差计算,再比较即可.【详解】(1)数学平均分是:15×(71+72+69+68+70)=70分,中位数为:70分;英语平均分是:15×(88+82+94+85+76)=85分, 中位数为:85分;故答案为:70,70,85,85;(2)数学成绩的方差为:15 [(71﹣70)2+(72﹣70)2+(69﹣70)2+(68﹣70)2+(70﹣70)2]=2; 英语成绩的方差为:15[(88﹣85)2+(82﹣85)2+(94﹣85)2+(85﹣85)2+(76﹣85)2]=36; A 同学数学标准分为:71702-=12, A 同学英语标准分为:888536-=112, 因为11212>, 所以A 同学在本次考试中,数学学科考得更好.【点睛】本题考查了平均数和方差的计算,正确把握方差的定义是解题关键.17.(1)16、84°;(2)C ;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】【分析】(1)根据百分比=所长人数÷总人数,圆心角=360︒⨯百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数610%60÷==人,D 组人数6061419516----==人;B 组的圆心角为143608460︒⨯=︒; (2)根据A 组6人,B 组14人,C 组19人,D 组16人,E 组5人可知本次调查数据中的中位数落在C 组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有40 4500300060=人.【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.。
湘教版七年级下册数学第6章 数据的分析含答案(综合卷)

湘教版七年级下册数学第6章数据的分析含答案一、单选题(共15题,共计45分)1、某中学规定学生的学期体育成绩满分为100分,其中课外锻炼占20%,期中考试成绩占40%,期末考试成绩占40%。
小乐的三项成绩(百分制)依次为95,90,85,则小彤这学期的体育成绩为是()A.85B.89C.90D.952、下表是我市6个县(市)区今年某日最高气温的统计结果:地区孟州温县沁阳博爱武陟修武平均气温温度30 27 29 28 30 29则个县(市)区该日最高气温的众数和中位数分别是()A.29.33B.30,29.5C.30,29D.30,303、国产大飞机C919用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是()A.5000.3B.4999.7C.4997D.50034、下面是渌口区某校在八年级期末体育跳绳测试中记录的一组(10名)同学的测试成绩(单位:个/分钟).176,180,184,180,170,176,172,164,186,180.该组数据的众数、中位数分别为().A.180,180B.178,178C.180,178D.178,1805、在开展“爱心捐助山区儿童”的活动中,某团小组8名团员捐款的数额分别为(单位:元):6,5,3,5,10,5,5,7.这组数据的中位数和众数分别是()A.10,3B.6,5C.7,5D.5,56、某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分)80 85 90 95那么这9名学生所得分数的众数和中位数分别是()A.90,90B.90,85C.90,87D.85,857、我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的()A.众数B.平均数C.方差D.中位数8、袁隆平海水稻科研团队为考察最近选育的水稻生长情况,在同一时期,分别从甲、乙、丙三种稻苗中随机抽取部分稻苗测量苗高(单位:cm),算得它们的方差分别为,,,则下列对苗高的整齐程度描述正确的是()A.甲最整齐B.乙最整齐C.丙最整齐D.一样整齐9、景新中学为了了解学生体育中考备考情况,随机抽查了10名学生的引体向上,结果如下表:引体向上(次)18 19 20 学生数 2 6 2则关于这10名学生的引体向上数据,下列说法错误的是()A.极差是2B.众数是19C.平均数是19D.方差是410、下列统计量中,不能反映某学生在九年级第一学期的数学成绩稳定程度的是()A.中位数B.方差C.标准差D.极差11、某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则( )A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定12、质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是()机器甲乙丙丁平均数(单位:4.01 3.98 3.99 4.0213、如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁14、甲、乙两名运动员在六次射击测试中的成绩如下表(单位:环):如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为“?”)可以是()A.6环B.7环C.8环D.9环15、10名学生的体重分别是41,48,50,53,49,50,53,67,51,53(单位:kg).这组数据的极差是()A.12B.24C.25D.26二、填空题(共10题,共计30分)16、一组数据3,5,7,8,m的平均数为5,则这组数据的中位数是________.17、某班40名同学的年龄情况如下表,则这40名同学的年龄的中位数是________岁.18、两组数据m,n,6与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的方差是________.19、一组数据按从小到大的顺序排列为1,2,3,x , 4,5,若这组数据的中位数为3,则这组数据的方差是________.20、甲、乙、丙三人分别投资50万元、30万元、20万元成立一个股份公司,一年后亏损了12万,甲提出每人承担4万元的损失,你认为这个提议________(填“合理”或“不合理”).21、一组数据-3,-5,9,12,6,0的极差是________ .22、甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是________(填“甲”或“乙“).23、样本数据﹣2,0,3,4,﹣1的中位数是________.24、小明五次测试成绩为:91、89、88、90、92,则五次测试成绩平均数为________,方差为________.25、如图是一次射击训练中某士兵甲的10次射击成绩(均是整数)的分布情况,则射击成绩的方差是________.三、解答题(共6题,共计25分)26、八年级(6)班有45名学生中,14岁的有16人,15岁的有25人,16岁的有4人,求这个班学生的平均年龄.(精确到0.1岁)27、学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?28、某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.29、某公司招聘人才,对应聘者分别进行阅读能力、专业知识、表达能力三项测试,并将三项测试得分按3:5:2的比例确定每人的最终成绩,现欲从甲乙两选手中录取一人,已知两人的各项测试得分如下表(单位:分)阅读专业表达甲93 86 73乙95 81 79①请通过相关的计算说明谁将被录用?②请对落选者今后的应聘提些合理的建议.30、在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动?参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、C5、D6、A7、D8、A9、D10、A11、A12、A13、A14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。
湘教版数学七年级下册第6章 数据的分析 测试题.docx

初中数学试卷第6章 数据的分析 测试题一、选择题(每小题3分,共24分)1. 小麦7次上学所用时间(单位:分)分别为10,7,12,13,8,11,9.这组数据的平均数是( ) A. 7分 B. 10分 C.11 分 D. 12分2. 小明记录了某地区一星期每天的最高气温如下表: 则这个星期每天的最高气温的中位数是( )A .22 ℃B .23 ℃C . 24 ℃D . 25 ℃3. 某校五个绿化小组一天植树的棵数如下:10,10,12,x ,8.已知这组数据的众数与平均数相等,那么这组数据的中位数是( )A.8B.9C.10D.124. 一名射击手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环,则射中环数的中位数和众数分别为( )A .8环,9环B .8环,8环C .8.5环,8环D .8.5环,9环 5. 一组数据6,4,a ,3,2的平均数是5,这组数据的方差为( ) A .8B .5C .D . 36. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙的平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( ) A.甲、乙射中的总环数相同 B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同7.已知一组数据:-13,-8,-4,2,6,7,9,12,若在这组数据中添加一个数字4组成一组新的数据,则新数据与原来的数据比较( )A.中位数和平均数都改变了B.中位数和平均数都没有变C.中位数改变了,但平均数没变D.中位数没变,平均数变了8. 甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级 参加人数 中位数 方差 平均数 甲 55 149 191 135 乙55151110 135某同学根据上表分析得出如下结论: ①甲、乙两班学生成绩的平均水平相同; ②乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字不少于150个为优秀) ③甲班成绩的波动情况比乙班成绩的波动小.星 期 一 二 三 四 五 六 日 最高气温(℃)22242325242221上述结论中正确的是( )A .①②③B .①②C .①③D .②③ 二、填空题(每小题4分,共32分)9. 小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩(单位:米)如下:1.96,2.16,2.04,2.20,1.98, 2.22,2.32,则这组数据的中位数是 米.10. 在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.(精确到0.1)11. 10月1日是中华人民共和国成立纪念日,要从某校选择256名身高基本相同的女同学组成表演方阵,在这个问题中我们最值得关注的是该校所有女生身高的___.(填“平均数”“中位数”或“众数”) 12. 若已知数据的平均数为,那么数据的平均数为_______.(用含的表达式表示)13. 甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:2s 甲=2,2s 乙=1.5,则射击成绩较稳定的是 .(填“甲”或“乙”) 14. 某校五个绿化小组一天植树的棵数分别为10,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是 .15. 为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成图1所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为___h.16. 某同学5次上学途中所花的时间(单位:分)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为___. 三、解答题(共64分)17.(12分)某瓜农用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市西瓜质量(千克) 5.5 5.4 5.0 4.9 4.6 4.3 西瓜数量(个)12321118.(12分)交警在一个路口统计某个时段来往车辆的车速(单位:千米/时)情况如图2所示. (1)计算这些车的平均速度; (2)车速的中位数是多少?(3)车速的众数是多少?19.(12分)某校八年级(1)班20名学生某次数学测验的成绩统计如下表:成绩(分) 60 70 80 90 100 人数(人) 15xy2(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;818204学生人数(人)(小时)炼时间517 题图图1(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值. 20.(14分)已知A 组数据如下:0,1,-2,-1,0,-1,3. (1)求A 组数据的平均数;(2)从A 组数据中选取5个数据,记这5个数据为B 组数据.要求B 组数据满足两个条件:①它的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大. 你选取的B 组数据是: ,请说明理由.21.(14分)八年级(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.参考答案一、1. B 2. B 3. C 4. B 5. A 6. D 7. D 8. B二、9. 2.16 10. 9.4分 11. 众数 12. 2a+1 13. 乙 14. 1.6 15. 17 16. 4 三、17. 解:这10个西瓜的平均质量为10.34.6429.430.54.55.5++⨯+⨯+⨯+=5.0(千克).所以这亩地的西瓜质量约为5×600=3000(千克).18. 解:(1)这些车的平均速度是(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时). (2)共有15个数据,按顺序排列后第8个数是60,则中位数是60千米/时. (3)70出现的次数最多,则车速的众数是70千米/时.19.(1)x=5,y=7;(2)a=90,b=80.22B A B x s s20. 解:(1)由条件,得A 组数据的平均数A x =15×(0+1-2-1+0-1+3)=0. (2)答案不唯一.如,选取的B 组数据是:1,-2,-1,-1,3.理由:因为B x =15×(1-2-1-1+3)=0,所以B x =A x . 2A s =15×(02+12+22+12+02+12+32)=167,2B s =15×(12+22+12+12+32)=165.因为167<165,所以数据1,-2,-1,-1,3符合题意.21. 解:(1)9.5 10提示:把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分.(2)乙队的平均成绩是(10×4+8×2+7+9×3)=9,方差是[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!《数据的分析》单元测试一、选择题1. 数据5、3、2、1、4的平均数是()A. 2B. 5C. 4D. 32. 某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90、96、91、96、95、94,这组数据的中位数是()A. 95B. 94C. 94.5D. 963. 某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是()A. 8B. 9C. 10D. 124. 某组数据3、3、2、3、6、3、10、3、6、3、2,①这组数据的众数是3;②这组数据的众数与中位数数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5. 已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A. 平均数>中位数>众数B. 平均数<中位数<众数C. 中位数<众数<平均数D. 平均数=中位数=众数6. 某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0、3、0、1、2、1、4、2、1、3,在这10天中,该车间生产的零件次品数的()A. 中位数是2B. 平均数是1C. 众数是1D. 以上均不正确7. 从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A. 300千克B. 360千克C. 36千克D. 30千克8. 一组数据由5个整数组成,已知中位数是4,唯一众数是5,则这组数据最大和的可能是()A. 19B. 20C. 22D. 239. A、B、C、D、E五名射击运动员在一次比赛中的平均成绩是80环,而A、B、C三人的平均成绩是78环,那么下列说法中一定正确的是()A. D、E的成绩比其他三人好B. D、E两人的平均成绩是83环C. 最高分得主不是A、B、CD. D、E中至少有1人的成绩不少于83环。
10. 某班一次语文测验的成绩如下:得100分的7人,90分的14,80分的17人,70分的8人,60分的2人,50分2人,这里80分是( ) A. 平均数 B. 是众数不是中位数 C. 是众数也是中位数 D. 是中位数不是众数11. 如果a 、b 、c 的中位数与众数都是5,平均数是4,那么a 可能是( ) A. 2 B. 3 C. 4 D. 612. 由小到大排列一组数据a 1、a 2、a 3、a 4、a 5,其中每个数据都小于0零,则对于样本a 1、a 2、-a 3、-a 4、-a 5、0的中位数可表示为( ) A.232a a - B. 252a a - C. 205a - D. 203a - 二、填空题1. 一段山路长5千米,小明上山用了1.5小时,下山用了1小时,则小明上山、下山的平均速度为_______千米/小时。
2. 5个数据的和是405,其中一个数据为85,则另外4个数据的平均数是_______。
3. 某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区失学儿童捐款,有15位同学捐了20元,20位同学捐了10元,3位同学捐了8元,10位同学间了5元捐了,2位同学捐了3元,则该班学生共捐款_______元,平均捐款_______元,其中众数是_______元。
4. 一组数据23,27,20,18,x ,12,它们的中位数是21,则x=_______。
5. 若1、2、3、a 的平均数是3,又4、5、a 、b 的平均数是5,则样本a+b=_______,0、1、2、3、4、a 、b 的平均数是_______。
6. 有7个数由小到大依次排列,其平均速度是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是_______。
7. 已知某次测验的最高分、最低分、平均分、中位数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应利用上述数据中的_________。
8. 某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是84分、80分、90分。
如果按平时成绩:期中考试成绩:期末考试成绩=3:3:4进行总评,那么他本学期数学总评分应为_________分。
9. 在n 个数据中x 1出现f 1次,x 2出现f 2次,…x k 出现f k 次,且f 1+f 2+…+f k =n ,那么,他的加权平均数x =___________________________。
10. 将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是_________ 。
11. 一组数据2,3,x ,-1,2有三个众数,则_____。
三、解答题1. 已知两组数x1,x2…x3和y1,y2…y3;它们的平均数分别是x和y。
分别求下列各组新数据的平均数:(1)5x1,5x2,…,5x n;(2) x1-y1,x2-y2,…,x n-y n;(3)x1,y1,x2,y2,…,x n,y n。
2. 小丽家上个月用于吃饭费用500元,教育费用200元,其它费用500元。
本月小丽家这三项费用分别增长了10﹪,30﹪和5﹪。
小丽家本月的总费用比上个月增长的百分数是多少?3. 体育课,在引体向上项目考核中,某校初三年级100名男生考核成绩如下表所示:(2)规定成绩在8次(含8次)为优秀,求这些男生考核成绩的优秀率。
4. 某校录取新生的平均成绩是535分,如果某人的考分是539分,他肯定能被这个学校录取吗?5. 五位同学在一次考试中的得分分别是:18,73,78,90,100,考分为73的同学在平均分之上还是之下?你认为他在五人中属:“中上”水平吗?6. 九位学生的鞋号由小到大是:20,21,21,22,22,22,22,23,23。
这组数据的平均数、中位数和众数哪个指标是鞋厂最不感兴趣的?哪个指标是鞋厂最感兴趣的?7. 某班30个同学的成绩如下:76 56 80 78 71 78 90 79 92 83 81 93 84 86 98 61 75 84 90 73 80 86 84 88 81 90 78 92 89 100。
请计算这次考试全班分数的平均数、中位数和众数。
8. 某商厦在“十一长假期间”平均每天的营业额为20万元,由此推断10月份该商厦的总营业额约为20×30=620(万元)。
根据你所学的数理统计知识,你认为这样的推断是否合理?为什么?9. 随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(℃)10 14 18 22 26 30 32天数 3 5 5 7 6 2 2(1)估计该城市年平均气温大约是多少?(2)写出该数据的中位数、众数;(3)计算该城市一年中约有几天的日平均气温为26℃?(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?10. 已知a、b、c、d、e、f这6个数平均数是m,求a+b+1、b+c-3、c+d+5、d+e-7、e+f+8、f+a+2的平均数。
11. 已知2、4、2x、4y四个数的平均数是5,而5、7、4x、6y四个数的平均数是9,求2x+3y 的值。
12.下图是某班学生某次英语考试成绩分析图,其中纵轴表示学生数,横轴表示分数,观察图形填空或回答下列问题。
(1)全班共有人_______;(2)如果80分以下的成绩算优良,那么该班学生此次英语考试成绩的优良率为______;(3)请估算该班此次考试的平均成绩。
13. 某果农种了44棵苹果树,现进入第三年收获期,收获时,他先随意采摘了5棵苹果树,称得每棵树上的苹果重量如下(单位:千克):36,34,35,38,39。
(1)根据样本平均数估计今年苹果总产量;(2)根据市场上苹果的销售价为5元/千克,则今年该果农的收入大约为多少元?(3)已知该果农第一年卖苹果的收入为6 600元,请你根据以上估算,求出第三年收入的年增长率。
参考答案 一、选择题 1. D 2. C 3. C 4. A 5. D 6. C 7. B 8. A 9. D 10. C 11.A 12. D 二、填空题 1. 4; 2. 80;3. 580 11.6 10;4. 22;5. 11 36. 34;7. 中位数;8. 82.5;9.nf x f x f x kk +++...2211;10. 9120; 11. 2。
三、解答题1. (1)5x (2)y x -(3)2yx +; 2.0000000025.1150020050055003020010500=++⨯+⨯+⨯; 3. 10次 8次 8次;4. 不能肯定。
一般来说,录取的新生的考分高于535分,有的低于535分,并且可能有其他因素(例如:限定体育成绩;限定居住区域等因素。
)的影响。
5.平均分是71.8分,考分为73的同学在平均分以上,但是他的分数在五人中倒数底二,不能算是“中等”水平。
6.鞋厂最不感兴趣的指标是平均数,因为有可能没有一个学生的鞋号等于这个平均数。
最感兴趣的指标是众数,因为它表明工厂应该生产最多这一鞋号的鞋。
7. 平均数≈82.5 中位数=83.5 众数是78、84和90;8.不合格。
(1)10月份应该是31天(2)长假期间的平均营业额不能代表10月份的平均平均营业额。
9.(1)20.9;(2)22 22;(3)72天;(4)12天。
10. 2m+1;11. 12;12.(1)40;(2)40%;(3)74。
13.(1)1584千克;(2)7920元;(3)20﹪。