2、图形在坐标系中的平移
图形在坐标系中的平移

车
比 较
平 移 平面直角坐标系上的平移
方向:水平与垂直 距离:数格子 位置与坐标对应变化
平移的要素1:平移方向 平移的要素2:平移的距离 平移的特点:只改变位置
第12章:平面直角坐标系
12.2 图形在坐标系中的平移
思考:
如图,三角形ABC在坐 标平面上平移后得到新 图形三角形A1B1C1 移动的方向怎样? 写出三角形ABC与三角 形A1B1C1各顶点坐标, 比较对应点坐标,看有 怎样的变化? 如果三角形ABC向下平 移2个单位,得到三角 形A2B2C2,写出这时各 顶点坐标,比较两者对 应点坐标,看有怎样的 变化?
B 8
A
6 4 2 B1 C 2 A1
-4
-2
o
-2
4
6
C1
x
交 流
把平面直角坐标系中的一个图形,按下面的
要求平移,那么,图形上任一个点的坐标(x, y) 是如何变化的? (1) 向左或向右移动a(a>0)个单位; (2) 向上或向下移动b(b>0)个单位; (3) 向左或向右移动a(a>0)个单位,再向上或 向下移动b(b>0)个单位,与同伴交流你的结论。
横坐标减去5,纵坐标不变 归纳:用“→”代表平移,用 (x, y)代表图形上的任意一 点,那么向左平移5个单位,可以记作: (x, y) → (x-5, y)
完成下表
平移 运动
向下平移 2个单位
三角形顶点坐标变化情况 平移前 平移后
△ABC
△A1B1C1
图形上 任一点 C(4,1) (x, y)
A(2,7)
y
A1
பைடு நூலகம்6 B
直角坐标系中的形平移

直角坐标系中的形平移平移是指将图形沿着指定的方向和距离移动的操作。
在直角坐标系中,平移可以通过增加或减少图形的坐标值来实现。
本文将介绍直角坐标系中的形平移,并讨论与坐标变化相关的数学概念。
一、平移的定义和特点平移是指将一个图形在平面上沿着指定的方向和距离不改变其形状和大小地移动。
在直角坐标系中,平移可以通过改变图形的坐标值来实现。
平移的特点如下:1. 形状保持不变:平移不改变图形的形状,只是将图形整体移动到新的位置。
2. 大小保持不变:平移不改变图形的大小,只是改变图形的位置。
3. 方向和距离确定:平移的方向由指定的向量决定,平移的距离由向量的模长决定。
二、平移的数学表示在直角坐标系中,平移可以通过改变图形的坐标值来实现。
设图形的原始坐标为(x, y),平移向量为(a, b),则平移后图形的新坐标为(x + a, y + b)。
三、平移的示例为了更好地理解平移的概念,我们来看一个简单的示例。
假设有一个三角形,其顶点坐标分别为A(2, 3),B(4, 5),C(6, 3),现在需要将这个三角形向右平移3个单位,向上平移2个单位。
根据平移的数学表示,我们可以计算得到新的顶点坐标为:A' = (2 + 3, 3 - 2) = (5, 1)B' = (4 + 3, 5 - 2) = (7, 3)C' = (6 + 3, 3 - 2) = (9, 1)通过计算可知,原始的三角形ABC经过平移变为新的三角形A'B'C',其各顶点的坐标分别为A'(5, 1),B'(7, 3),C'(9, 1)。
可以看出,新的三角形与原始三角形相比,保持了相同的形状和大小,只是整体移动到了新的位置。
四、形平移与坐标变化形平移是指将图形沿着指定的方向和距离平移的操作。
在直角坐标系中,形平移可以通过修改图形的坐标值来实现。
形平移的步骤如下:1. 确定平移向量:根据平移的指定方向和距离,确定平移向量的值。
高中数学学习中的坐标系的平移与旋转技巧

高中数学学习中的坐标系的平移与旋转技巧高中数学学习过程中,我们经常会遇到坐标系的平移与旋转问题。
坐标系的平移和旋转是几何变换中的重要内容,掌握了平移和旋转的技巧,可以帮助我们更好地理解和解决与坐标系相关的数学问题。
下面,我将从平移和旋转的基本概念开始,介绍高中数学学习中的坐标系平移与旋转技巧。
首先,我们来了解一下坐标系的平移。
平移是指将坐标系内所有的点按照某个规律进行移动,使得原来的点到达新的位置,而形状保持不变。
平移的基本思想是通过向量的加法来表示移动的规律,其中向量的大小和方向表示了点的移动距离和方向。
在高中数学学习中,我们一般使用平移向量来描述平移的规律。
在解决平移问题时,我们可以利用以下几个技巧:1. 利用平移向量确定新的坐标点位置:对于给定的平移向量,我们可以通过计算原坐标点与平移向量的加法来确定新的坐标点位置。
例如,若平移向量为(a, b),原坐标点为(x, y),则新的坐标点位置为(x+a, y+b)。
2. 利用平移不变形质:平移后的图形与原图形之间具有一种特殊的关系,即形状保持不变。
这意味着平移后的图形与原图形拥有相等的边长、角度和面积。
我们可以利用这一性质来解决与图形的对称性、相似性等相关的问题。
3. 应用平移解决方程组问题:对于包含两个变量的方程组,我们可以利用平移将方程组进行转化,从而更容易求解。
例如,若方程组为{x+y=3, x-y=1},我们可以通过平移操作将第二个方程转化为{x=-2},然后代入第一个方程求解。
另外一个重要的技巧是旋转。
旋转是指将坐标系内的所有点按照某个规律进行转动,使得原来的点到达新的位置,同时保持形状不变。
旋转的基本思想是通过角度和旋转中心来确定旋转的规律。
在解决旋转问题时,我们可以利用以下几个技巧:1. 利用旋转角度确定新的坐标点位置:对于给定的旋转角度和旋转中心,我们可以通过计算原坐标点相对于旋转中心的位置以及旋转角度来确定新的坐标点位置。
例如,若旋转角度为θ,原坐标点为(x, y),旋转中心为(a, b),则新的坐标点位置为((x-a)*cosθ-(y-b)*sinθ+(x-a), (x-a)*sinθ+(y-b)*cosθ+(y-b))。
直角坐标系中平移的规则是什么

直角坐标系中平移的规则是什么直角坐标系是数学中常用的一种表示空间中点的方式。
在直角坐标系中,平移是一种基本的几何变换操作。
平移操作可以将一个点或者图形在平面上沿着指定的方向移动一定的距离,而保持其形状和大小不变。
本文将介绍直角坐标系中平移的规则和操作步骤。
平移规则在直角坐标系中,平移操作需要指定平移的向量,即平移的方向和距离。
平移的规则如下:1.平移方向:平移向量确定了平移的方向。
平移向量通常用箭头表示,在直角坐标系中指向欲平移的方向。
2.平移距离:平移距离指平移的长度,可以是一个具体的数值或者表示距离的符号。
3.平移操作:将待平移的点或者图形沿平移向量的方向移动指定的距离。
平移操作可以用数学语言表示为:P' = P + T其中,P’是平移后得到的新点,P是待平移的点,T是平移向量。
平移的操作步骤平移操作的步骤如下:1.确定平移向量:根据需要平移的方向和距离确定平移向量。
平移向量是一个有向线段,其起点为原点,终点为平移的终点。
2.确定待平移的点:在直角坐标系中确定需要进行平移操作的点的坐标。
3.进行平移操作:将待平移的点沿平移向量的方向移动指定的距离。
平移的距离可以是正数、负数或零,分别对应向前、向后或不动。
4.计算平移后的新点坐标:通过将平移向量的起点和移动后的待平移点相连,确定平移后得到的新坐标。
5.绘制新的图形:根据得到的新点坐标,绘制平移后的图形。
平移的例子下面通过一个简单的例子来演示直角坐标系中的平移操作。
假设在直角坐标系中,有一个点P的坐标为(2, 3),我们希望将点P沿向量(1, 1)平移3个单位长度。
按照上述步骤进行平移操作:1.确定平移向量:平移向量为(1, 1)。
2.确定待平移的点:待平移点P的坐标为(2, 3)。
3.进行平移操作:将点P沿向量(1, 1)方向移动3个单位长度。
根据规则,x坐标增加一个单位,y坐标也增加一个单位。
所以,新的坐标为(2 + 1,3 + 1),即(3, 4)。
12.2图形在坐标系中的平移教案

12.2图形在坐标系中的平移一、教学内容在同一坐标系中,感受图形上的点的坐标与图形变化之间的关系二、教学目标1、能在直角坐标系中用坐标的方法研究图形的变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面坐标系上的平移实质上就是点坐标的对应变换;2、运用图形在直角坐标系中平移的点坐标的变化规律进行简单的平移作图;3、经历观察、分析、抽象、归纳等过程,经历与他人合作交流的过程进一步发展数形结合的思想与空间观念。
三、教学重点掌握用坐标系的变化规律来描述平移的过程四、教学难点根据图形的平移过程,探索、归纳出坐标的变化规律五、教学关键通过探究发现并总结规律,让学生在坐标系中,结合图形的变换理解得出的结论。
六、教学准备多媒体、三角板及相关资料七、教学方法:探究、启发教学八、教学过程(一)创设情境(多媒体显示)1、平移的概念(提问学生,强调方向和距离)2、同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?(二)问题导入,新课讲解探索图形在平移过程中各点坐标的变化规律。
第13页思考题(多媒体显示)师:引导学生讨论、分析;生:与同伴交流回答问题。
(教师指正)发现:第(2)题对应点的纵坐标都不变,横坐标变了,将横坐标都减去5即可;第(3)题对应点的横坐标都不变,纵坐标变了,将纵坐标都减去2即可。
师:把三角形ABC向左或向上移动1个单位,点坐标又将怎样的变化?生:讨论回答问题师生共同归纳出平移规律:(1)三角形的平移,是通过三角形任意一点坐标的变化而得到的;(2)在直角坐标系中,沿横轴平移,图形上每一点的纵坐标不变,而横坐标增减,简记“左减右加”;沿纵轴平移,横坐标不变,纵坐标增减,简记“上加下减”。
(3)“左减右加,上加下减”也可这样理解:按x轴(y轴)正方向平移,则纵(横)坐标加上平移的单位数量,按x轴(y轴)负方向平移,则横(纵)坐标减去平移的单位数量即可。
图形在坐标中的平移(基础)知识讲解

图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。
2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移课件新版沪科版28

A.(-1,-1)
B.(1,0)
C.(-1,0)
D.(3,0)
6.【中考·台州】如图,已知一个直角三角板的直角顶点 与原点重合,另两个顶点 A,B 的坐标分别为(-1, 0),(0, 3).现将该三角板向右平移使点 A 与点 O 重合,得到三角形 OCB′,则点 B 的 对应点 B′的坐标是( C ) A.(1,0) B .( 3, 3) C .(1, 3) D .(-1, 3)
第11章 平面直角坐标系
11.2 图形在坐标系中的平移
提示:点击 进入习题
1A 2B 3A 4D 5C
6C 7D 8C 9B 10 (1,1)
答案显示
提示:点击 进入习题
11 见习题 12 见习题 13 见习题 14 见习题
答案显示
1.【中考·大连】在平面直角坐标系中,将点P(3,1) 向下平移2个单位长度,得到的点P′的坐标为( A )
7.如图,若图①中点 P 的坐标为83,2,则它在图②中
的对应点 P1 的坐标为( D )
A.(3,2)
B.83,1
C.1,131
D.131,1
8.【中考·海南】如图,在平面直角坐标系中,三角
形ABC位于第一象限,点A的坐标是(4,3),把
三角形ABC向左平移6个单位长度,得到三角形
A1B1C1,则点B1的坐标是( C )
谢谢观赏
You made my day!
解:如图①,由图可得虎山(0,0)、 熊猫馆(3,2)、鸟岛(-1,3)、狮子 馆(-2,-2)、猴园(3,-1).
(2)若以猴园为原点,水平向右为x轴正方向、铅直 向上为y轴正方向建立平面直角坐标系,写出各 景点的坐标.
解:如图②,由图可得 虎山(-3,1)、熊猫馆(0,3)、 鸟岛(-4,4)、狮子馆(-5,-1)、 猴园(0,0).
图形在坐标系中的平移重难点题型

图形在坐标系中的平移-重难点题型【北师大版】【知识点1 点在坐标系中的平移】平面直角坐标内点的平移规律,设a >0,b >0(1)一次平移:P (x ,y ) P '(x +a ,y )P (x ,y ) P '(x ,y -b )(2)二次平移: 【题型1 点在坐标系中的平移】 【例1】(2021春•开福区校级期中)在平面直角坐标系中,将点A (x ,y )向左平移3个单位长度,再向上平移5个单位长度后与点B (﹣3,2)重合,则点A 的坐标是( )A .(2,5)B .(0,﹣3)C .(﹣2,5)D .(5,﹣3) 【变式1-1】(2021春•重庆期中)在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【变式1-2】(2021春•江夏区期末)已知△ABC 内任意一点P (a ,b )经过平移后对应点P 1(a +2,b ﹣6),如果点A 在经过此次平移后对应点A 1(4,﹣3),则A 点坐标为( )A .(6,﹣1)B .(2,﹣6)C .(﹣9,6)D .(2,3)【变式1-3】(2021春•新罗区期末)在平面直角坐标系中,将A (n 2,1)沿着x 的正方向向右平移3+n 2个单位后得到B 点.有四个点M (﹣2n 2,1)、N (3n 2,1)、P (n 2,n 2+4)、Q (n 2+1,1),一定在线段AB 上的是( )A .点MB .点QC .点PD .点N【知识点2 图形在坐标系中的平移】 P (x ,y ) P (x - a ,y +b )向左平移a 个单位 再向上平移b 个单向下平移b 个单位向右平移a 个单位在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)【题型2 图形在坐标系中的平移】【例2】(2021春•深圳校级期中)如图,△ABC经过一定的平移得到△A′B′C′,如果△ABC上的点P的坐标为(a,b),那么这个点在△A′B′C′上的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【变式2-1】(2021•邛崃市模拟)如图,在平面直角坐标系中,已知点M(2,1),N(1,﹣1),平移线段MN,使点M落在点M'(﹣1,2)处,则点N对应的点N'的坐标为()A.(﹣2,0)B.(0,﹣2)C.(﹣1,1)D.(﹣3,﹣1)【变式2-2】(2021春•东湖区期末)如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,A1与B1坐标分别是(m,4)和(3,n),则线段AB在平移过程中扫过的图形面积为()A.18B.20C.28D.36【变式2-3】(2020春•凉州区校级期中)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)【题型3 图形在网格中的平移变换】【例3】(2021春•锦江区校级月考)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)连接BC',直接写出∠CBC'与∠B'C'O之间的数量关系.(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-1】(2020春•江汉区月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-2】(2020春•江岸区校级月考)在如图的直角坐标系中,将△ABC平移后得到△A′B′C′,它们的三个顶点坐标如表所示:△ABC A(a,0)B(5,3)C(2,1)△A′B′C′A′(3,4)B′(7,b)C′(c,d)(1)观察表中各对应点坐标的变化,并填空:△ABC向右平移个单位长度,再向上平移个单位长度可以得到△A′B′C′;a=,b=.(2)求出线段AB在整个平移的过程中在坐标平面上扫过的面积.(3)若点M(m,n)为线段AB上的一点,则m、n满足的关系式是.【变式3-3】(2020春•金乡县期末)在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为3,若存在,请直接写出点P的坐标;若不存在,请说明理由.【题型4 坐标系内的平移变换与角度计算综合】【例4】(2020春•通山县期末)如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【变式4-1】(2021春•庆阳期末)如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0),(3,0),现同时将点A、B向上平移2个单位长度,再向右平移1个单位长度,得到A、B的对应点C、D,连接AC、BD、CD.(1)直接写出点C、D的坐标;(2)如图②,点P是线段BD上的一个动点,连接PC、PO,当点P在线段BD上运动时,试探究∠OPC、∠PCD、∠POB的数量关系,并证明你的结论.【变式4-2】(2020春•大同期末)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C 的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.【变式4-3】(2020春•鞍山期末)如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2图形在坐标系中的平移 第一课时
桐城市孔城初级中学 王冬
教学目标:
1、能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点坐标的变化规律,理解图形在平面直角坐标系上的实质平移就是点坐标的对应变换。
2、运用图形在直角坐标系中平移的点坐标的变化规律进行简单的平移。
3、经历观察、分析、抽象、归等过程,经历与他人合作交流的过程,进一步发展数形结合思想与空间观念。
教学重点:掌握用坐标的变化规律来描述平移的过程。
教学难点:根据图形的平移过程,探索、归纳出坐标的变化规律。
教学过程:
一、创设情境,导入新课
1、问题1:列车从北京到上海,可以用我们学过的哪种变换来描述?它有什么特点?(平移:形状、大小不变,位置改变)
2、问题2、怎样来描述这个变化呢?(平移的方向和距离)
3、揭示并板书:图形在坐标系中的平移
二、合作交流,探究新知。
(一)、探索图形在平移过程中各点坐标的变化规律
1、动态展示平移的过程,进一步认识平移的特点,初步感知平移时点的坐标发生了变化。
2、观察图12—13(课件出示,如下左图)完成下表
3、操作:在图12—14中画出将△ABC 向下平移三个单位得到的△A 2B 2C 2,同桌互相校对,教师巡视。
4、找出△A 2B 2C 2个顶点坐标,完成下表
5、讨论交流:观察表格,分析坐标的变化, 完成最后一列。
6、完成课本14页交流(学生交流得到结论,教师课件出示结论)
7、师生共同归纳规律: (1)、平移坐标变化规律“横向横变,纵向纵变,正向加,负向减”。
(2)、研究图形的变化规律,可以通过研究图形上任一点的坐标变化而得到。
(3)、平移表示方法:如:(x ,y )→(x+2,y-3) (二)、应用迁移,巩固提高(课件展示) 1、写出下列各点平移后的坐标 (2,2)(左移2个单位); (-5,4)(右移4个单位) (5,3)(下移3个单位); (3,-4)(上移1个单位) 2、描述下列平移是怎样的平移? (3,2)→(2,2); (3,2)→(3,5) 3、学习课本13页例题
4、描述下列平移是怎样的平移? (3,2)→(2,5)
三、巩固练习
课本14页练习第1、2、3题
四、课堂小结
本节课主要学习图形平移时坐标的变化,抓住“横向横变,纵向纵变,正向加,负向减”。
五、作业
课本18页第4、5题
板书设计:
12.2图形在坐标系中的平移
平移的特点:形状大小不变,位置改变;
要素:平移的方向和距离。
规律:横向横变,纵向纵变,正向加,负向减”
研究图形的变化规律:研究图形上任一点的坐标变化。
平移表示方法:(x,y)右移2个单位,下移3个单位表示为:
(x,y)→(x+2,y-3)。