运筹学课件 第三节 分支定界法.ppt

合集下载

分支定界

分支定界

所谓“分支”就是在处理整数规划问题时,逐步加入 对各变量的整数要求限制。先求解整数规划相应的松弛问 题(记为 P0),若(P0)的最优解不符合整数条件,假设 xi b i 不符合整数条件,于是增加新的约束条件: xi bi 和
xi bi 1, 分别将其加入到松弛问题(P0)中, 从而形成两
5 x1 7 x2 35 s.t . 4 x1 9 x2 36 x , x 0, 全部为整数 1 2
解 :step1
确定与整数规划问题(记为问题 A)对应的松
弛线性规划问题 (记为问题 B):
max z 2 x1 3 x2
5 x1 7 x2 35 s.t . 4 x1 9 x2 36 x , x 0 1 2
个分支,称为两个后继子问题。后继子问题的可行域包含 整数规划所有的可行解。根据需要,后继子问题可以产生 类似的分支,从而把原整数规划问题通过分支迭代求出最 优解。
所谓“定界”就是在分支过程中,若某个后继子问题最优 解恰好是整数规划的可行解,则该后继子问题最优目标函 数值成为整数规划的目标函数值的一个“界限” ,从而对 那些最优目标函数值比上述“界限”还差的后继子问题可 以剔除不加考虑。 同时在分支过程中出现更好的 “界限” , 则用它来取代原来的界限,以提高定界的效率。
则总生产成本的目标函数为:
min z C ( x j ) c j x j k j y j
j 1 j 1
n
n
这里 M 是一个充分大的正数。 所以该产品计划问题可以表 述成如下规划问题:
min z c j x j k j y j
j 1
n
0 x j My j , j 1,2,, n s.t. y j 0 or 1, j 1,2,, n

北京科技大学运筹学课件第3章

北京科技大学运筹学课件第3章

x2
D
x1
(39) 的最优表为
5 2 x2 74 x1 3 4
x1 x2 u1
0 0 0 12 1 34
u2
1 2 1 4 1 4
A( 3 , 7 ) 最优解: 4 4
不是整数解
x1
3 7 10 A( , ) Z 4 4 4
C ( 1 ,1 )
S
0 1
最优整数解
x1
3 1 1 u1 u 2 4 4 4 7 3 1 1 0 14 x 2 u1 u 2 4 4 4 (3 在( 2 9) 9)的约束方程中 , x1 , x 2的系数是整数 , 右侧常数项也 是整数, 若 x1 , x 2 取整数 , 则 u1 , u2也一定是整数 .
max z x1 x 2
s .t .
x 2 2或x 2 3
1
2
3
x1
61 14
x1 2 x2 3
9 51 x2 14 14 (3 2) 1 2 x1 x 2 3 x1
max z x1 x 2
s .t .
3 10 29 A( , ) Z 2 3 6 7 23 10 41 C ( 1 , ) B ( 2 , ) Z Z 3 9 3 9 33 D( ,2) 14 61
则((3-2) 2 2)的最优解中, x2应满足 : x2 2或x2 3
( 2 x 2 3不符合整数条件 )
9 51 x1 x2 14 14 (3 4) 1 2 x1 x 2 3
max z x1 x 2
x1 2 0 x2 2
9 51 x2 S5 空集 14 14 (35) 1 2 x1 x 2 3 x1

运筹学PPT完整版

运筹学PPT完整版
线性规划通常解决下列两类问题:
(1)当任务或目标确定后,如何统筹兼顾,合理安排,用 最少的资源 (如资金、设备、原标材料、人工、时间等) 去完成确定的任务或目标 (2)在一定的资源条件限制下,如何组织安排生产获得最 好的经济效益(如产品量最多 、利润最大.)
线性规划问题的数学模型
例1.1 如图所示,如何截取x使铁皮所围成的容积最 大?
(2)
x j 0, j 1,2,, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 27
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
最优解:使目标函数达到最大值的可行解。
绪论
本章主要内容: (1)运筹学简述 (2)运筹学的主要内容 (3)本课程的教材及参考书 (4)本课程的特点和要求 (5)本课程授课方式与考核 (6)运筹学在工商管理中的应用
运筹学简述
Page 2
运筹学(Operations Research) 系统工程的最重要的理论基础之一,在美国有人把运筹
学称之为管理科学(Management Science)。运筹学所研究的 问题,可简单地归结为一句话: “依照给定条件和目标,从众多方案中选择最佳方案” 故有人称之为最优化技术。
Page 3
运筹学的主要内容
Page 4
数学规划(线性规划、整数规划、目标规划、动态 规划等) 图论 存储论 排队论 对策论 排序与统筹方法 决策分析
本课程的教材及参考书
Page 5
❖选用教材 ➢ 《运筹学基础及应用》胡运权主编 哈工大出版社
❖参考教材 ➢ 《运筹学教程》胡运权主编 (第2版)清华出版社 ➢ 《管理运筹学》韩伯棠主编 (第2版)高等教育出版社 ➢ 《运筹学》(修订版) 钱颂迪主编 清华出版社

4.3.1 分枝定界法

4.3.1 分枝定界法

四、分枝定界法求解实例
LP0 : 1 7 5 x1 3 , x 2 2 , Z 3 2 9 9 9
上界: 32 下界: 0 5 9
x1≤3
L P1 : 6 2 , Z 32 7 7
x1 ≥4
LP 2 : x 1 4 , x 2 1, Z 2 9
上界: 32 下界: 29 2 7
z 0, z 35 .5
x2≥7 无可行解
z 0, z 35 .3
x1≥5 LP5:X=(5,5) Z5=35 分枝过程图示
z 35, z 35
OR:SM
x* (5,5), z* 35
例2:
MaxZ 6 x1 5 x 2 2 x1 x 2 9 5 x 7 x 35 1 2 s .t . x1 , x 2 0 x1 , x 2 取整数
运筹学--管理科学方法
李军
桂林电子科技大学商学院
第三节 (I)分枝定界法
1.分枝定界法的创立者 2.分枝定界法求解依据 3. 分枝定界法求解步骤 4.分枝定界法求解实例 5.分枝定界法求解小结 6. 算法应用注意事项
2
OR:SM
一、分枝定界法的创立者
理查德·卡普(Richard Karp)教授1935年1月3日生 于波士顿,从小时起就兴趣广泛,聪明过人。在哈 佛大学时他文理兼修, 1955 年先获得文学学士学位 ,第二年又获得理科硕士学位。之后他进入哈佛大 学的计算实验室攻读博士,于 1959 年取得应用数学 博士学位。现任美国加州大学伯克利分校计算机科 学讲座教授,美国科学院、美国工程院、美国艺术 与科学院、欧洲科学院院士。因其在计算机科学领 域的杰出贡献曾获图灵奖、冯诺依曼奖、美国国家 科学勋章、哈佛大学百年奖章等奖项. 卡普和他的同事海尔特(M.Held)20世纪60年代,经过反复研究,提出 了一种称为“分枝限界法”(branch—and—bound method)的新方法。该方 法的要点是:对解集合反复进行分枝,每次分枝时,都对所得的子集计算最 优解的界。如果对某个子集求得的界不优于已知的允许解,则抛弃此子集不 再进行分枝;否则继续分枝以探索更好的解,直到所得的子集仅含有一个解 时为止。分枝限界法就其实质而言是一种求解策略而非算法,具体算法要根 据实际问题的特点去实现。但由于这种方法在求解许多问题中都非常实用, 因此常常被直呼为“分枝限界算法”。

第三节分支定界

第三节分支定界

(P3) )
1
3
x1
在(P3)的基础上继续分枝。加入条件x1 ≤ 2 ,x1 ≥3 的基础上继续分枝。加入条件 有下式: 有下式:
m in Z = − x1 − 5 x 2 x1 − x 2 ≥ − 2 5 x1 + 6 x 2 ≤ 30 x1 ≤4 ( P5 ) x1 ≥2 x ≤3 2 x1 ≤2 x1 , x 2 ≥ 0 且为整数
例1:用分枝定界法求解整数规划问题(用图解法计算) :用分枝定界法求解整数规划问题(用图解法计算) min Z = − x 1 − 5 x 2
x1 − x 2 ≥ −2 5 x 1 + 6 x 2 ≤ 30 ≤4 x1 x 1 , x 2 ≥ 0 且全为整数
记为( 记为(P)
是整数 解,且 z*<z6,
增大下界z0 ≤ z2 ≤ z3 ≤ z*, 减少上界+ ∞ ≥ z的目标函数值 分支后计算松弛的线性规划的最优解: 2. 分支后计算松弛的线性规划的最优解:
整数解且目标值小于原有最好整数解的值则替代 原有最好整数解 整数解且目标值大于原有最好整数解的值, 整数解且目标值大于原有最好整数解的值,则删 除该分支 非整数解且目标值小于原有最好整数 整数解的值则继 非整数解且目标值小于原有最好整数解的值则继 续分支 非整数解且目标值大于等于原有最好整数 整数解的值 非整数解且目标值大于等于原有最好整数解的值 则删除该分支其中无最优整数 整数解 则删除该分支其中无最优整数解

B
⑴ (18/11,40/11) A C ⑶
(P1)
1 1
(P2)
3
x1
不是整数,故继续分支。 (-16)更小的最优解,但 x2 不是整数,故继续分支。 )更小的最优解,

运筹学课件第三节分支定界法

运筹学课件第三节分支定界法

约束条件组
n aij xj b i My i j1 st. p (i 1 ,2,...,p) yi pq i1
在约束条件中保证了在P个0-1 变量中有p-q个1,q个0;凡取值 =0的yi对应的约束条件为原约束 条件,凡取值=1的yi对应的约束 条件将自然满足,因而为多余.
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。 分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥2 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 X1 ≥3 X2 ≤ 2 X1 , X2 ≥ 0 Max Z = X1 + X2 14X1 + 9X2 ≤ 51 - 6X1 + 3X2 ≤ 1 2≤ X1 ≤2 X2 ≤ 2 X1 , X2 ≥ 0

运筹课件PPT课件

运筹课件PPT课件

它涉及到的问题包括最短路径、 最小生成树、最大流等。
图论与网络优化在计算机科学、 交通运输、通信网络等领域有 广泛应用,如路由算法、网络 设计等。
03 运筹学在现实生活中的应 用
生产与库存管理
01
02
03
生产计划
运筹学通过数学模型和算 法,帮助企业制定生产计 划,优化资源配置,提高 生产效率。
库存控制
Excel Solver的特点
Excel Solver易于使用
它提供了一个直观的用户界面,用户可以通过简单的拖放操作来定义问题。
Excel Solver具有广泛的适用性
它可以处理各种类型的优化问题,包括线性规划、整数规划、目标规划、非线性规划等。
Excel Solver具有高效性
它使用了多种优化算法,可以快速求解大规模问题。
它使用了高效的算法和优化的数据结构,可以快速地处理大规模数据和计算任务。
05 案例分析与实践
生产计划优化案例
总结词
生产计划是企业管理中的重要环节,通过优化生产计划可以提高企业的生产效率 和资源利用率。
详细描述
生产计划优化案例主要涉及如何根据市场需求、产品特性、生产能力等因素制定 合理的生产计划,以实现生产效益的最大化。具体包括对生产计划的制定、执行 、调整等环节进行优化,提高生产计划的准确性和灵活性。
运筹学的重要性
01
提高效率
降低成本
02
03
增强决策科学性
运筹学能够通过优化资源配置和 流程,提高系统的效率和生产力。
通过合理的资源配置和计划安排, 运筹学可以帮助企业降低成本和 资源消耗。
运筹学提供的数据分析和模型预 测等方法,有助于增强决策的科 学性和准确性。

运筹学 第三节 分支定界法

运筹学 第三节 分支定界法

的子集,这两个子问题的最优解的目标函数值都不会比原
线性规划问题的最优解的目标函数值更大。如果这两个问
题的最优解仍不是整数解,则继续选择一个非整数的变量,
继续将这个子问题分解为两个更下一级的子问题。这个过
程称为“分支(Branch)”。
精品课件
运筹学教程
每一次分支得到的子问题最优解的目标函数值,都小于 或等于分支前问题的最优解的目标函数值。非整数解的 最大值作为新的上界。
意图),并设最优解位于C。如
果这个最优解中所有的变量都
是整数,则已经得到整数规划
的最优解。如果其中某一个变 量Xr不是整数,则在可行域中 X2
除去一块包含这个最优解但不 E
包含任何整数解的区域
DC
Ir<Xr<Ir+1(其中Ir是变量Xr
的整数部分),线性规划的可
行域被划分成不相交的两部分,
分别以这两部分区域作为可行
Z=4
精品课件
运筹学教程
不同的搜索策略会导致不同的搜索树,一般 情况下,同一层的两个子问题,先搜索目标 函数比较大的较有利(如果是极小问题,则 应先搜索目标函数值小的较为有利)。这样 可能得到数值比较大的下界,下界越大被剪 去的分支越多。
分支定界算法对于混合整数规划特别有效, 对没有整数要求的变量就不必分支,这将大 大减少分支的数量。
X1 ,
运筹学教程
说明: 1、在B121,B122 的可行域中不可能存在比以上所求解 的2个最优解更好的解。 2、目标函数值maxZ=4作为IP规划的最优解的目标函 数的一个界限(MAX,下界;MIN,上界);
求极小问题时,LP问题的解是IP问题的下界。每次分支后的子 问题最优解的目标函数值都大于或等于分支前的最优值。如分 支中得到整数解,则最小的整数解为上界。如分支的目标函数 值大于上界,则停止分支。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档