圆的基本性质及其应用 优质课件
合集下载
圆的标准方程完整ppt课件

解决与圆有关的切线问题
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
初中 圆课件ppt课件

利用切线作角平分线
利用切线的性质,可以过圆外一点作圆的切线,并利用切线作角 平分线。
05
圆的定理与证明
圆的定理
圆的定义
平面上所有与给定点(圆心)的距离等于给定长度(半径)的点 组成的图形。
圆ห้องสมุดไป่ตู้三点确定一个圆
不在同一直线上的三点可以确定一个唯一的圆,且该圆经过这三点 。
直径所对的圆周角是直角
圆的直径所对的圆周角是直角,即90度。
当直线与圆没有公共点时,该直线称为圆的离线 。
04
圆的切线与切线长
圆的切线定义与性质
圆的切线定义
切线与圆只有一个公共点,这个 公共点叫做切点。
切线的性质
切线到圆心的距离等于圆的半径 ,切线与半径垂直,切线与过切 点的半径有相同的斜率。
切线长的计算
切线长的定义
01
切线长是从圆心到切点的线段长度。
圆的面积的定义
圆的面积是指圆所占平面的大小 。
面积的计算公式
A = πr^2,其中A表示圆的面积, r表示圆的半径,π是一个常数约等 于3.14159。
面积的应用
面积的计算在日常生活和科学研究 中有着广泛的应用,例如计算圆的 面积可以帮助我们了解物体的尺寸 和大小。
周长与面积的关系
周长与面积的关系
在圆上任取一点,该点到圆心的距离都等于半径的长度。
03
圆是中心对称图形
将圆心与圆上任意一点连线,这条线段的中点也在圆心,因此圆关于圆
心对称。
圆的基本性质
01
02
03
04
直径是半径的两倍
在一个圆中,直径的长度是半 径的两倍。
弦与直径的关系
通过圆心的弦是直径,其他弦 与直径垂直平分。
利用切线的性质,可以过圆外一点作圆的切线,并利用切线作角 平分线。
05
圆的定理与证明
圆的定理
圆的定义
平面上所有与给定点(圆心)的距离等于给定长度(半径)的点 组成的图形。
圆ห้องสมุดไป่ตู้三点确定一个圆
不在同一直线上的三点可以确定一个唯一的圆,且该圆经过这三点 。
直径所对的圆周角是直角
圆的直径所对的圆周角是直角,即90度。
当直线与圆没有公共点时,该直线称为圆的离线 。
04
圆的切线与切线长
圆的切线定义与性质
圆的切线定义
切线与圆只有一个公共点,这个 公共点叫做切点。
切线的性质
切线到圆心的距离等于圆的半径 ,切线与半径垂直,切线与过切 点的半径有相同的斜率。
切线长的计算
切线长的定义
01
切线长是从圆心到切点的线段长度。
圆的面积的定义
圆的面积是指圆所占平面的大小 。
面积的计算公式
A = πr^2,其中A表示圆的面积, r表示圆的半径,π是一个常数约等 于3.14159。
面积的应用
面积的计算在日常生活和科学研究 中有着广泛的应用,例如计算圆的 面积可以帮助我们了解物体的尺寸 和大小。
周长与面积的关系
周长与面积的关系
在圆上任取一点,该点到圆心的距离都等于半径的长度。
03
圆是中心对称图形
将圆心与圆上任意一点连线,这条线段的中点也在圆心,因此圆关于圆
心对称。
圆的基本性质
01
02
03
04
直径是半径的两倍
在一个圆中,直径的长度是半 径的两倍。
弦与直径的关系
通过圆心的弦是直径,其他弦 与直径垂直平分。
初中圆 ppt课件

作圆的切线
切线的定义
切线是与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的判定
要判定一条直线是否为圆的切线, 可以通过切线的定义进行判定,即 看直线与圆是否只有一个公共点。
切线的作法
在已知圆上任取一点,过这一点作 圆的切线,这样的切线有且只有一 条。
作圆的直径和半径
01
02
03
直径的定义
通过圆心并且两端都在圆 上的线段叫做圆的直径。
详细描述:在几何证明题中,有时需要通过添加辅助线 来构造与圆相关的图形,从而利用圆的性质来证明题目 中的结论。
详细描述:解决与圆相关的几何证明题需要掌握一些解 题技巧,如利用圆的性质进行等量代换、利用切线性质 进行转化等,这些技巧能够简化问题并提高解题效率。
圆与其他几何图形的关系
总结词:相交和相切 总结词:组合图形
详细描述
圆内接四边形定理指出,圆内接 四边形的对角线互相平分。这个 定理是解决与圆内接四边形相关 问题的重要依据。
切线长定理
总结词
切线长定理是关于圆的切线与经过切点的半径之间关系的定 理。
详细描述
切线长定理指出,从圆外一点引出的两条切线,它们的切线 长相等。这个定理在证明其他与圆有关的定理时经常用到, 如垂径定理。
详细描述:圆与其他几何图形如三角形、矩形等 经常出现相交或相切的情况,这些关系涉及到一 些重要的几何定理和性质,如切线长定理、相交 弦定理等。
详细描述:在解决几何问题时,有时需要将圆与 其他几何图形组合起来形成复杂的组合图形,这 些组合图形具有一些特殊的性质和定理,能够为 解题提供重要的思路和方法。
详细描述:圆形具有优美的对称性和流畅的线条,常用 于装饰和艺术设计中,如建筑设计、绘画和雕塑等。
六年级数学课件圆的基本性质

交通工具:汽车、自行车等车轮的设计都采用了圆形,因为圆形的车轮滚动摩擦力最小,行驶起来最省力。
建筑结构:桥梁、高架路等建筑结构中,也常常采用圆形作为受力结构,因为圆形的受力分布均匀,能够承受更大的重量。
数学中的圆的应用
添加标题
添加标题
添加标题
添加标题
圆在几何学中的应用:圆是几何学中一个基本图形,可以用来研究图形的性质和特点,例如圆周长、圆面积、圆心角等。
圆的定义可以用来描述圆的特征和性质
圆的形成
圆的概念:圆是平面上所有与给定点(圆心)距离相等的点的集合
圆的形成:通过绕一个固定点旋转直线来形成圆
圆的基本性质:圆是中心对称图形,具有旋转不变性
圆的应用:圆在生活和生产中有着广泛的应用,如车轮、钟表等
圆的基本属性
圆的概念:平面上所有与给定点(中心)距离相等的点的集合
周长的定义:图形边界的总长度
圆的面积公式推导
圆的面积公式:S=πr²
注意事项:在推导过程中,需要注意扇形的数量和大小,以确保推导结果的准确性。
拓展知识:除了圆的面积公式外,还可以推导出其他与圆相关的公式,如圆的周长公式、圆的半径公式等。
推导过程:通过将圆分割成若干个扇形,再将这些扇形重新组合成一个近似长方形,从而推导出圆的面积公式。
圆的性质:圆是中心对称图形,具有旋转不变性
圆的基本元素:圆心、半径、直径
圆的面积和周长计算公式
03
圆的基本性质
圆心与半径
圆心的定义:圆心是圆的中心点,通过圆心的任意直线都可以将圆等分。
半径的定义:半径是连接圆心到圆上任意一点的线段,是圆的特征之一。
半径的长度:半径的长度等于圆的直径的一半,可以通过测量或计算得出。
圆与对称轴的关系
建筑结构:桥梁、高架路等建筑结构中,也常常采用圆形作为受力结构,因为圆形的受力分布均匀,能够承受更大的重量。
数学中的圆的应用
添加标题
添加标题
添加标题
添加标题
圆在几何学中的应用:圆是几何学中一个基本图形,可以用来研究图形的性质和特点,例如圆周长、圆面积、圆心角等。
圆的定义可以用来描述圆的特征和性质
圆的形成
圆的概念:圆是平面上所有与给定点(圆心)距离相等的点的集合
圆的形成:通过绕一个固定点旋转直线来形成圆
圆的基本性质:圆是中心对称图形,具有旋转不变性
圆的应用:圆在生活和生产中有着广泛的应用,如车轮、钟表等
圆的基本属性
圆的概念:平面上所有与给定点(中心)距离相等的点的集合
周长的定义:图形边界的总长度
圆的面积公式推导
圆的面积公式:S=πr²
注意事项:在推导过程中,需要注意扇形的数量和大小,以确保推导结果的准确性。
拓展知识:除了圆的面积公式外,还可以推导出其他与圆相关的公式,如圆的周长公式、圆的半径公式等。
推导过程:通过将圆分割成若干个扇形,再将这些扇形重新组合成一个近似长方形,从而推导出圆的面积公式。
圆的性质:圆是中心对称图形,具有旋转不变性
圆的基本元素:圆心、半径、直径
圆的面积和周长计算公式
03
圆的基本性质
圆心与半径
圆心的定义:圆心是圆的中心点,通过圆心的任意直线都可以将圆等分。
半径的定义:半径是连接圆心到圆上任意一点的线段,是圆的特征之一。
半径的长度:半径的长度等于圆的直径的一半,可以通过测量或计算得出。
圆与对称轴的关系
圆的认识PPT课件

理解圆的基本概念和性质
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
通过学习,学生应能理解并掌握圆的基本概念和性质,如圆上各点到圆心的距 离相等、直径是半径的两倍等。
培养空间观念和推理能力
通过观察、操作和推理,培养学生的空间观念和推理能力,为后续学习奠定基 础。
02
圆的基本性质
圆的定义
总结词
圆的定义是平面内到定点距离等种非常有用的几何图形,它在日常生 活和工业生产中有着广泛的应用。例如,轮 胎的设计就是利用了圆的旋转不变性,使得 车辆能够平稳地行驶;钟表的设计也是利用 了圆的知识,才能够准确地计量时间;餐具 中的盘子、碗等也是利用了圆的知识来设计
,使得它们能够方便地使用和清洗。
05
圆的切线和半径的关系
生活品质。
圆在日常生活中的应用还体现在 艺术和装饰方面,如圆形图案的 运用,增添了物品的美感和时尚
感。
圆在科学实验中的应用
圆在科学实验中具有广泛的应用,如物理学中的圆周运动、化学中的分子结构、生 物学中的细胞结构等。
圆在科学实验中的应用能够简化实验设计和数据分析过程,提高实验的准确性和可 靠性。
圆在科学实验中的应用还体现在工程技术和科学研究方面,如航天器轨道的设计、 天体运行规律的探索等。
切线的定义和性质
切线的定义
切线是一条与圆只有一个公共点的直 线,这个公共点叫做切点。
切线的性质
切线与半径垂直,切线与半径相交于 切点。
切线和半径的关系
切线与半径垂直
切线与经过切点的半径垂直,这是切线的基本性质。
切线与半径相交于切点
切线与半径在切点处相交,这是切线的另一个重要性质。
切线定理的应用
圆的认识ppt课件
• 引言 • 圆的基本性质 • 圆的周长和面积 • 圆的对称性和旋转不变性 • 圆的切线和半径的关系 • 圆的综合应用
圆的认识ppt课件

很多交通工具如轮胎、轮毂和车盖等都采用 圆形设计,因为这种形状可以减少摩擦和风 阻,提高行驶效率。
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
管道
在建筑和家庭装修中,圆形管道通常被用来 连接水管、电线和暖气管道等,因为这种形 状可以保证液体或气体流畅地流动,减少堵 塞和磨损。
艺术中的圆的应用
雕塑
许多雕塑作品如球体、花瓶和头 像等都采用圆形设计,因为这种 形状可以增强作品的美感和立体
对未来进一步学习和研究圆的展望
01
深入研究圆的性质
进一步学习和研究圆的性质, 包括圆与其他图形的联系和区 别,以及圆在各种不同情况下 的表现。
02
探讨圆的实际应用
通过研究和实践,进一步探索 圆在各个领域中的应用,如建 筑设计、机械设计、包装设计 等。
03
圆的拓展学习
学习与圆有关的其他知识,如 立体几何、解析几何等,以更 全面地了解圆的性质和应用。
平面图形。
圆的相关公式和定理
圆的中心位置由圆心决定,圆心到圆周上任 意一点的距离都相等。圆的面积和周长与半 径有关,半径越大,面积和周长也越大。
圆的性质
包括圆的周长公式(C=2πr)、圆的面积公 式(S=πr²)以及垂径定理、圆周角定理等
。
圆的应用
圆在现实生活中有着广泛的应用,如车轮、 方向盘、钟表等都采用了圆形的形状,因为 它具有旋转不变性和对称性。
04
发展圆的创新应用
通过研究和创新,发展更多具 有创新性和实用性的圆的应用 ,推动科学技术的发展。
感谢您的观看
THANKS
使用铅笔和尺子,从圆心 开始,以确定的半径为长 度,绘制出一条弧线。
完成绘制
在完成绘制后,检查是否 符合所需的形状和大小。
使用代码绘制圆
定义圆心和半径
圆的基本性质课件

圆与直线的位置关系
判定直线与圆的位置关系:直线与圆有三种可能的位置关系,相离(直线与 圆没有交点),相切(直线与圆有一个切点),相交(直线与圆有两个交 点)。
圆与圆的位置关系
判定两个圆的位置关系:两个圆之间有四种可能的位置关系,相离(两个圆 没有交点),外切(两个圆相切于外面的一点),相交(两个圆相交于两个 不重合的交点),内切(一个圆位于另一个圆的内部且相切于内面)。
切线和弧长
切线是与圆相切且只有一个交点的直线。 弧长是弧上的一段弧的长度,它与整个周长之间的关系为弧长 = 圆心角度数 / 360° × 周长。
圆的判定定理
判定两个圆是否相交:两个圆的半径之和大于它们的圆心之间的距离即可。 判定一点与圆的位置关系:如果点到圆心的距离小于半径,则该点在圆的内部;如果点到圆心的距离等于半径, 则该点在圆上;如果点到圆心的距离大于半径,则该点在圆的外部。
圆的基本性质
欢迎来到本次PPT课件,我们将介绍圆的基本性质。让我们一起探索圆的定 义、周长和面积公式,圆心角和圆周角,切线和弧长,圆的判定定理,以及 圆与直线、圆与圆的位置关系。
圆的定义和元素
圆由一组等距离于圆心的点组成,圆心为圆的中心点。 元素有半径(圆心到圆上任一点的距离)和直径(通过圆心而且两端落在圆上的线段)。
圆的周长和面积公式
圆的周长是圆上的一段弧的长度,它与圆的直径之间的关系为周长 = 直径 ×半径之间的关系为面积 = 半径²× π。
圆心角和圆周角
圆心角是以圆心为顶点的角,它的度数等于对应的弧所夹的角度。 圆周角是以圆上两点和圆心为顶点的角,它的度数等于对应的弧所夹的角度。
初中圆的ppt课件

02 圆的性质和定理
圆周角定理பைடு நூலகம்
总结词
圆周角定理是圆的基本性质之一,它描述了圆周角与其所夹 弧之间的关系。
详细描述
圆周角定理指出,对于圆上的任意一个圆周角,它所对的弧 与其夹角的度数成比例。具体来说,如果一个圆周角是θ度, 它所对的弧是θ/180*π*r,其中r是圆的半径。
垂径定理
总结词
垂径定理是圆的另一个重要性质,它 描述了通过圆心的直径与圆周之间的 关系。
VS
详细描述
圆锥的侧面展开图是一个扇形,这个扇形 所在的圆就是圆锥的底面。通过这个关系 ,我们可以更好地理解圆锥的几何性质, 例如圆锥的侧面积和底面积之间的关系。 此外,这个关系也为我们提供了解决圆锥 问题的方法,例如求圆锥的表面积或体积 。
圆与圆柱的关系
总结词
圆与圆柱之间存在密切的关系,圆柱的侧面 展开图是一个矩形,而这个矩形的长和宽分 别是圆柱的高和底面圆的周长。
详细描述
圆柱的侧面展开图是一个矩形,这个矩形的 长等于圆柱的高,而宽等于圆柱底面圆的周 长。这个关系可以帮助我们理解圆柱的几何 性质,例如圆柱的侧面积和底面积之间的关 系。此外,这个关系也为我们提供了解决圆 柱问题的方法,例如求圆柱的侧面积或表面 积。
THANKS 感谢观看
初中圆的ppt课件
• 圆的基本概念 • 圆的性质和定理 • 圆的作图和计算 • 圆的在实际生活中的应用 • 圆的拓展知识
01 圆的基本概念
圆的基本定义
总结词
描述圆的定义
详细描述
圆是一个平面图形,由所有与固定点等距离的点组成。这个固定点称为圆心, 而这个等距离的长度称为半径。
圆的性质
总结词
描述圆的性质
周长计算的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能求出
AC的值BC?
CD
若将直径AB改为非直径AB,CD仍为∠ACB的
平分线,AC BC 仍为定值 吗?
C
CD
O
A P
B
若设∠ACB=α,你能求出这个定值吗? D
这节课你有什么收获和体会,和大家一起 分享一下吧!
HB资讯 ; 每日贵州 ; suc41rvt
,朦朦胧胧地发现小院儿南面靠墙有一个很大的炉子,炉子边上立着一个就好像捅火棍一样的物件。耿正一个箭步跳过去,抓起这条又粗 又长的捅火棍就冲了过来。此时,第二个倒在地上的伙计已经情况危急了。虽然这个伙计看见窃贼高举的凳子朝自己头上打来,急中生智 赶快翻了一个身没有被打中头部,但这贼顺势划拉了一下,他一侧的肩部和腰腿已经是受伤不轻了。当这个疯狂的窃贼第二次举起凳子朝 伙计的头上打来时,耿正高高举起的捅火棍已经重重地落到了他的额角上。只听这贼“哎呀”一声惨叫,扔掉凳子夺路往门外逃走了。耿 正担心门外的弟弟和妹妹,赶快举着捅火棍追出门来,只见这贼已经捂着额头朝巷子口跑去了。再追到巷子口时,发现这贼往西快速跑走 了。模模糊糊地望到他的身上斜挎着一个包裹,估计是偷得两位老人的财物。耿正很想追上去把财物夺回来,无奈这家伙虽然受了伤,但 跑得却非常快。心想这贼大概是练过老人们常说的“轻功”了,自己是绝对追不上的。再说院子里还有四个受伤的人呢,就赶快返了回来。 耿正还没有走到俩老人后院儿的门口,对门儿和隔壁的院门儿就几乎同时打开了,有几个人急匆匆地各举着家伙什儿冲了出来。对门儿里 出来的是两个人,走在前面的壮年汉子手里提着一把铁锹,紧跟在他身后的是一个十几岁的男娃儿,手里拿了一条长长的擀面杖。这壮年 汉子看到耿正提着捅火棍返回来了,就问:“你已经把贼赶走了?”耿正喘着气一边走一边说:“哦,这贼往西跑走了。很厉害的,我们 三个人都对付不了,被他打爬了两个!要不是我摸到了这条捅火棍,估计也够呛了!”从隔壁门里出来的是一男一女两个年纪不大的人, 看样子是夫妇俩。听到耿正说三个人被打爬了两个,就赶快跑了过来。耿正抬眼一看,这男的手里也提了一把铁锹,女的则和自己一样, 也提着一条捅火棍。这女的一见到已经走到俩老人后院儿门口的人是耿正,大吃一惊,脱口说:“你不就是经常和弟弟妹妹来这个小饭店 吃早点的吗?怎么,你的弟弟和妹妹被贼打爬下了?”耿正说:“不是,是送我们回来的两个伙计!”耿正说完,赶快朝巷子里轻轻叫一 声:“英子,小直子,窃贼被打跑了,你俩也过来吧!”看到妹妹拉着弟弟朝这边跑来了,耿正这才放心。在朦胧的光线下,耿正看着弟 弟吃惊地说不出话来的样子,就摸摸他的头安慰说:“别怕,没有事儿了!”又对妹妹说:“你俩也进来吧。这贼很厉害,打倒了四个人, 两个伙计都受伤了!”这时候,对门儿院子里又出来一个壮年夫人。这五个人也跟随耿正兄妹三人一起进了这个遭窃的小院儿里。85第五
如图,AB是⊙O的直径,CD是
∠ACB的平分线交⊙O于点D
C
A
O
B
P
D
问题(4):若点C在半圆上运动(不和A,B重合), 在此运动过程中,哪些线段是不变的,哪些线段发 生了改变?
如图,AB是⊙O的直径,CD是
∠ACB的平分线交⊙O于点D
C
A
O
B
P
D
问题(5):若点C在半圆上运动(不和A,B重合),
十七回 拳拳舔犊“慈父”情|(“慈父”情怀大展露,才艺忘了从头教;带领“儿女”帮李家,乐乐呵呵无忧愁。)就这
圆的复习课之一
温二十一中 吕小玲
根据这个图形,你能找到圣火台所在的位置吗? O
根据这个图形,你能找到圣火台所在的位置吗? O
如图,AB是⊙O的任意一条弦,OC⊥AB,垂足
为P,若 CP=7米,AB=28米 ,你能求出这个广场的半
径吗?
C
B P
A
O
如图,AB是⊙O的A
O
B
P
D
问题(1):你能找出图中相等的圆周角和相等的线
段吗?
如图,AB是⊙O的直径,CD是
∠ACB的平分线交⊙O于点D
C
A
O
B
P
D
问题(2):图中有哪些相似的三角形?
如图,AB是⊙O的直径,CD是
∠ACB的平分线交⊙O于点D
C
A
O
B
P
D
问题(3):根据以上两个问题所得的结果,你 还能得到其他结论吗?