轴对称试题5

合集下载

初中数学轴对称的实际应用综合测试题

初中数学轴对称的实际应用综合测试题

初中数学轴对称的实际应用综合测试题
初中数学轴对称的实际应用综合测试题
一、单选题(共5道,每道20分)
1.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为( )
A.15°
B.20°
C.25°
D.30°
2.如图,在△ABC中,AB=AC,AB=5,BC=
3.将△ABC 折叠,使得点A落在点B处,折痕为DF,与AB交于点D,与AC交于点F,连接BF,则△BCF的周长是( )
A.5
B.8
C.11
D.13
3.如图,在长方形ABCD中,AB=11cm,BC=6cm,点E,F分别在AB,CD上.将长方形ABCD沿EF折叠,使点A,D分别落在长方形ABCD外部的点A′,D′处,则整个阴影部分图形的周长为( )
A.17cm
B.23cm
C.28cm
D.34cm
4.已知:如图,点P是∠ABC内一定点,点M,N分别为边BA,BC上的两个动点,若∠ABC=30°,BP=4,则△PMN的周长的最小值为( )
A.2
B.4
C.6
D.8
5.如图,∠AOB=45°,点P为∠AOB内部任意一点,点E,F分别是∠AOB两边OA,OB上的动点,当△PEF的周长最小时,∠EPF的度数为( )
A.60°
B.90°
C.120°
D.135°。

华师大版数学七年级下册_《轴对称》拔高练习

华师大版数学七年级下册_《轴对称》拔高练习

《轴对称》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°2.(5分)下列图形为轴对称图形的是()A.B.C.D.3.(5分)下列图形是轴对称图形的是()A.B.C.D.4.(5分)下列交通标志中,是轴对称图形的是()A.B.C.D.5.(5分)下列四个汉字中,可以看作是轴对称图形的有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是.7.(5分)如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB 的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为,∠MPN=°.8.(5分)如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为.9.(5分)如图所示:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,△PMN的周长为15cm,P1P2=.10.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.12.(10分)如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;(2)在图中x轴上作出一点P,使P A+PB的值最小;并写出点P的坐标.13.(10分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B、C的坐标分别为(﹣5,1),(﹣4,5).(1)在图中画出相应的平面直角坐标系;(2)画出△ABC关于直线l对称的△A1B1C1,并标出点A1的坐标;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.14.(10分)在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若P A+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△P AB的面积,若存在,求出Q点坐标;若不存在,说明理由.15.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.《轴对称》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.2.(5分)下列图形为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(5分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(5分)下列交通标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形,注意轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(5分)下列四个汉字中,可以看作是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】利用轴对称图形定义判断即可.【解答】解:四个汉字中,可以看作轴对称图形的是:营,口,共2个.故选:B.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是5.【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.【点评】本题考查的是轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.7.(5分)如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB 的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15,∠MPN=98°.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN =P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.∵∠AOB=41°,∴∠P2PP1=139°,∴∠P1+∠P2=41°,∴∠MPN=180°﹣41°﹣41°=98°,故答案为:15,98.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.8.(5分)如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为13.【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【解答】解:如图,连接BE,∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE,∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13,故答案为:13.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.9.(5分)如图所示:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,△PMN的周长为15cm,P1P2=15cm.【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是15,∴P1P2=15.故答案为:15.【点评】本题考查了轴对称的性质,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.10.(5分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN =P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、解答题(本大题共5小题,共50.0分)11.(10分)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.【分析】根据轴对称图形的概念求解可得.【解答】解:如图所示:【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称图形的概念.12.(10分)如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;(2)在图中x轴上作出一点P,使P A+PB的值最小;并写出点P的坐标.【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.【解答】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,点P即为所求,其坐标为(3,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.13.(10分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B、C的坐标分别为(﹣5,1),(﹣4,5).(1)在图中画出相应的平面直角坐标系;(2)画出△ABC关于直线l对称的△A1B1C1,并标出点A1的坐标;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是(﹣4﹣a,b).【分析】(1)根据点B和点C的坐标可得坐标系;(2)利用关于直线对称点的性质得出对应点位置进而得出答案;(3)根据直线l经过点(﹣2,0),点P(a,b)关于直线l的对称点为P1,则P与P1的横坐标的和除以2等于﹣2,纵坐标相等,进而得出答案.【解答】解:(1)如图所示:(2)如图所示,△A1B1C1即为所求;(3)点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(﹣4﹣a,b).故答案为:(﹣4﹣a,b).【点评】此题主要考查了轴对称变换以及对称图形的性质,正确得出对应点位置是解题关键.14.(10分)在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若P A+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△P AB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x 轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△P AB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△P AB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,P A+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC=4,BD=2∴S△P AB=S△P AA'+S△BAA'=设BQ与直线AA'(即直线x=2)的交点为E(如图4)∵S△QAB=S△P AB则S△QAB==2AE=12∴AE=6∴E的坐标为(2,8)或(2,﹣4)设直线BQ解析式为:y=ax+q或解得:或∴直线BQ:y=或y=∴Q点坐标为(0,19)或(0,﹣5)法二:∵S△QAB=S△P AB∴△QAB与△P AB以AB为底时,高相等即点Q到直线AB的距离=点P到直线AB的距离i)若点Q在直线AB下方,则PQ∥AB设直线PQ:y=x+c,把点P(﹣2,0)代入解得c=﹣5,y=﹣x﹣5即Q(0,﹣5)ii)若点Q在直线AB上方,∵直线y=﹣x﹣5向上平移12个单位得直线AB:y=﹣x+7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△P AB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.15.(10分)如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(﹣1,3)、B(﹣5,1)、C(﹣2,﹣2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△ABC的面积.【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;根据平面直角坐标系写出各点的坐标即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)如图所示,△A′B′C′即为所求,由图知A′(1,3),B′(5,1),C′(2,﹣2);(2)△ABC的面积为5×4﹣×1×5﹣×3×3﹣×2×4=9.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.。

八年级上册数学《轴对称》单元测试(含答案)

八年级上册数学《轴对称》单元测试(含答案)
10.如图, 中, , , 的垂直平分线 交 于 点,交 于 点,则下列结论错误的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
11.一个正五边形的对称轴共____条.
12.如图,在等边△A B C中,A D是高,若A B=6,则C D的长为:_____
13.已知点P(3,-1)关于y轴 对称点Q的坐标是(A+B,1-B),则A B的值为______.
A. B. C. D.
[答案]A
[解析]
[分析]
根据直角三角形的性质得到A B=2B C,根据线段垂直平分线的性质得到D A=D B,根据直角三角形的性质、角平分线的性质判断即可.
[详解]∵∠C=90°,∠A=30°,
∴∠A B C=60°,A B=2B C,
∵DE是A B的垂直平分线,
∴D A=D B,故B正确,不符合题意;
三、解答题(共66分)
19.如图,已知A B=A C,AE平分∠D A C,那么AE∥B C吗?为什么?
20.(8分)如图,在△A B C中,∠C=∠A B C,BE⊥A C,△B DE是正三角形.求∠C的度数.
21.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中 点上标出相应字母A、B、C,并求出△A B C的面积;
5.如图,已知A B=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,….若∠A=70°,则∠Bn-1AnAn-1的度数为()
A. B. C. D.
[答案]C
[解析]
在△A B A1中,∵∠A=70°,A B=A1B,∴∠B A1A=∠A=70°.
∵A1A2=A1B1,∠B A1A是△A1A2B1的外角,∴∠B1A2A1= =35°.

初三数学中考复习专题图形的轴对称 练习试题

初三数学中考复习专题图形的轴对称 练习试题

初三数学中考复习专题图形的轴对称 练习试题1 / 19图形的轴对称一、选择题1. 下列图案属于轴对称图形的是( )A.B.C.D.2. 下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有( )A. 4个B. 3个C. 2个D. 1个3. 下列大学的校徽图案是轴对称图形的是( )A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学4. 给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.B.C.D. 7cm6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △是等腰三角形B. MN垂直平分,C. △与△面积相等D. 直线AB、的交点不一定在MN上7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.9.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A. 1个初三数学中考复习专题图形的轴对称 练习试题3 / 19B. 2个C. 3个D. 4个10. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A. B. C. D. 11. 如图,在等腰△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A.B.C.D.12. 如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在直线折叠得到△AGE ,延长AG 交CD 于点F ,已知CF =2,FD =1,则BC 的长是()A. 5cmB. 10cmC. 20cmD. 15cm二、填空题13.如图,在A BCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为______.14.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,则∠BGD′的度数为______ .15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有________种选择.16.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是______.17.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(-4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为______.三、解答题(本大题共3小题,共24.0分)18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答初三数学中考复习专题图形的轴对称 练习试题5 / 19了此题,按小明的思路探究并解答下列问题:(1)分别以AB ,AC 所在直线为对称轴,画出△ABD 和△ACD 的对称图形,点D 的对称点分别为点E ,F ,延长EB 和FC 相交于点G ,求证:四边形AEGF 是正方形;(2)设AD =x ,建立关于x 的方程模型,求出AD 的长.19. 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1.(2)画出△ABC 关于点O 的中心对称图形△A 2B 2C 2.(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A 1B 1C 1与△A 2B 2C 2组成的图形______(填“是”或“不是”)轴对称图形.20.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.初三数学中考复习专题图形的轴对称练习试题答案和解析1.【答案】A【解析】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.2.【答案】C【解析】解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.7 / 19要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.3.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.4.【答案】D【解析】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.此题主要考查了轴对称图形,关键是找出图形的对称轴.5.【答案】A【解析】初三数学中考复习专题图形的轴对称练习试题解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN-MQ=4-2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ 的长,即可得出QR的长.此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.6.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.【答案】C【解析】9 / 19解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.【答案】C【解析】解:如图,展开后图形为正方形.故选:C.由图可知减掉的三角形为等腰直角三角形,展开后为正方形.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.9.【答案】C【解析】【分析】本题考查了画轴对称图形.找出对称轴,根据对称轴的性质画图是解题的关键.根据网格可知,画三角形ABC的对称图形共有3个符号题意得对称轴,所以可以画3个符合题意的三角形即可解答.【解答】解:根据题意画出图形如下:初三数学中考复习专题图形的轴对称 练习试题11 / 19,共有三条对称轴,分别是a ,b ,c ,根据画轴对称图形的方法可以画3个符合题意的三角形.故选C.10.【答案】D【解析】【分析】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴)∴BH==,则BF=, ∵FE=BE=EC ,∴∠BFC=90°,∴CF==.故选D.11.【答案】C【解析】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠CEF=∠CEO=50°.故选:C.连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.初三数学中考复习专题图形的轴对称 练习试题13 / 1912.【答案】B【解析】解:连接EF ,∵E 是BC 的中点,∴BE=EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE=EG ,∴EG=EC ,∵在矩形ABCD 中,∴∠C=90°, ∴∠EGF=∠B=90°, ∵在Rt △EFG 和Rt △EFC 中,,∴Rt △EFG ≌Rt △EFC (HL ),∴FG=CF=2,∵在矩形ABCD 中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选B .首先连接EF ,由折叠的性质可得BE=EG ,又由E 是BC 边的中点,可得EG=EC ,然后证得Rt △EFG ≌Rt △EFC (HL ),继而求得线段AF 的长,再利用勾股定理求解,即可求得答案.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC 是关键.17.【答案】80°【解析】 【分析】本题主要考查的是平行线的性质和轴对称的性质.首先由平行线的性质得出∠DEF=∠EFG=50°,然后由折叠性质得出∠DEG=100°,最后根据对顶角相等得出∠BGD′的度数即可.【解答】解:∵四边形ED′C′F 由四边形EDCF 折叠而成,∴∠DEG=2∠DEF=2∠D′EF.∵AD∥BC,∴∠DEF=∠EFG=50°,∠AEG=∠EGF,∴∠GEF=∠DEF=50°,∴∠DEG=∠GEF+∠DEF=100°.∴∠AEG=180°-∠DEG=80°∴∠EGF=80° ,∴∠BGD′=∠EGF=80°.故答案为80°.18.【答案】3【解析】【分析】本题主要考查轴对称图形的概念.此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有多种画法.根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有3个位置使之成为轴对称图形.故答案为3.19.【答案】(-10,3)【解析】解:设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,初三数学中考复习专题图形的轴对称练习试题设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(-,)【解析】【分析】本题考查的是一次函数的应用和轴对称的性质,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求.求出AB两点的坐标,据此可得出∠BAO及∠ACC′的度数,根据轴对称的性质得出△ACC′是等腰直角三角形,故可得出C′点的坐标,利用待定系数法求出直线OC′的坐标,进而可得出P点坐标.【解答】解:如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,15 / 19∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(-6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(-6,2).设直线OC′的解析式为y=kx(k≠0),则2=-6k,解得k=-,∴直线OC′的解析式为y=-x,∴,解得,∴P(-,).故答案为(-,).21.【答案】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD初三数学中考复习专题图形的轴对称 练习试题17 / 19∴AE =AF .∴矩形AEGF 是正方形;(2)解:设AD =x ,则AE =EG =GF =x .∵BD =6,DC =4,∴BE =6,CF =4,∴BG =x -6,CG =x -4,在Rt △BGC 中,BG 2+CG 2=BC 2,∴(x -6)2+(x -4)2=102.化简得,x 2-10x -24=0解得x 1=12,x 2=-2(舍去)所以AD =x =12.【解析】(1)先根据△ABD ≌△ABE ,△ACD ≌△ACF ,得出∠EAF=90°;再根据对称的性质得到AE=AF ,从而说明四边形AEGF 是正方形;(2)利用勾股定理,建立关于x 的方程模型(x-6)2+(x-4)2=102,求出AD=x=12.本题考查图形的翻折变换和利用勾股定理,建立关于x 的方程模型的解题思想.要能灵活运用.22.【答案】是【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图,△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形,其对称轴为直线l .(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点中心对称.23.【答案】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,初三数学中考复习专题图形的轴对称 练习试题19 / 19 在Rt △ADF 中,AD 2+DF 2=AF 2,∴122+(18-x )2=x 2.解得x =13.∵△ADF ≌△AB ′E (已证),∴AE =AF =13,∴S △AEF = = =78.【解析】(1)根据折叠的性质以及矩形的性质,运用ASA 即可判定△ADF ≌△AB′E ;(2)先设FA=FC=x ,则DF=DC-FC=18-x ,根据Rt △ADF 中,AD 2+DF 2=AF 2,即可得出方程122+(18-x )2=x 2,解得x=13. 再根据AE=AF=13,即可得出S △AEF==78.本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。

中心对称与轴对称5套练习

中心对称与轴对称5套练习

中心对称与轴对称练习一1.下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是( )2.顺次连结对角线相等的四边形四边中点所得的四边形是( ) A.梯形B.菱形C.矩形D.正方形3.在等腰△ABC中∠A=40º,则∠B等于( ) A.70ºB.40ºC.40º或70ºD.40º或100º4.小华在整理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有同一性质是( ) A.相等B.互相垂直C.互相平分D.平分一组对角5.已知菱形的两条对角线的分别长为6 cm和8 cm,则此菱形的面积为.6.如图,△ABC中,∠C=90º,DE是AB的垂直平分线,∠A=35º,则∠CDB=.7.某一次函数的图象经过点(-1,2),且函数y的值随自变量x的增大而减少,请写出一个符合上述条件的函数关系式:.8.如图所示,平行 ABCD,AD=5,AB=9,点A的坐标为(-3,0),则点C的坐标为.9.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.10.如图,点O是AC的中点,将周长为16 cm的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB'C'D',则四边形OECF的周长是cm.11.△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从B点出发,以每秒1 cm的速度沿B→A→C的方向运动.设运动时间为t ,那么当t=秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍,12.(8分)如图,将矩形ABCD沿对角线BD折叠,C点与E点重合,若AB=3,BC =9,求折叠后重叠部分(△BDF)的面积.13.(8分)已知:如图, ABCD中,过对角线BD的中点O作直线EF分别交DA、BC的延长线于点E、F,交AB、CD于M、N.(1)观察图形并找出一对全等三角形:△≌△,请加以说明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?14.(10分)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.中心对称与轴对称图形练习二1.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A.正三角形B.正方形C.正五边形D.正六边形2 已知周长为20 cm的等腰梯形的中位线长6cm,则它的腰长是▲cm.3.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是_______.3.如图,点P在/AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是____________________(只写一个即可,不添加辅助线).4.在四边形ABCD中,对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为_______;(2)若四边形ABCD是菱形,则菱形的面积为_______;(3)若四边形ABCD是矩形,则AD的长为_______.5.如图所示的围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(3,1),白棋④的坐标为(4,3),那么黑棋①的坐标应该是_______.6.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图①,当BP=BA时,∠EBF=_______,猜想∠QFC=_______;(2)如图②,当点P为射线BC上任意一点时,猜想∠QFC的度数,并说明理由.7.如图,ABCD是矩形纸片,翻折/B、/D,使BC、AD恰好落在AC上.设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点.(1)试判断四边形AECG是什么四边形,并说明理由;(2)若四边形AECG是菱形,AB=4 cm,求线段BC的长.8.(本题满分6分)如图,在△ABC中,AB=AC,D、E、F分别是三角形三边中点,试判断四边形ADEF的形状并加以说明.9 如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q 以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点P、Q运动时间为t (单位:s).(1)当t为何值时,四边形PABQ是等腰梯形?请写出推理过程;(2)当t=2 s时,求梯形OFBC的面积;(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.D E C B F A 中心对称图形与轴对称图形 练习31、顺次连接对角线相等的四边形四边中点所得的四边形是( )A .梯形B .菱形C .矩形D .正方形 2.在一平行四边形中,有一边的长为6.5,且其对角线长分别为5和12,则其面积为( ) A.23.5 B.39 C.60 D.30 3.若梯形的上底长为8cm,,中位线长10cm,则下底长为 cm 。

人教版八年级上册数学《轴对称》单元测试卷(含答案)

人教版八年级上册数学《轴对称》单元测试卷(含答案)

人教版数学八年级上学期《轴对称》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.53.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为()A.5 B.6 C.7 D.8关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC 为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC。

一定成立的是()A.②④B.②③C.①③D.①②7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC 的周长为()A.14cm B.13cm C.11cm D.9cm9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A .45n mileB .30n mileC .20n mileD .15n mile二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =5 cm ,CD =3.5 cm ,则四边形ABCD 的周长为_____cm .12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠BAD =34°,则∠C =_________°.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________。

精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案

精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案

第五章《生活中的轴对称》单元测试卷1一、选择题1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4A.2a B.a3C.1.5a D.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cm B.12cmC.9cm和12cm D.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E =_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.参考答案一、1.D 2.B 3.C 4.B 5.C 6.C 7.D 8.D 9.B 10.A 二、1.5 2.3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD =5cm ,DE =5cm ,EB =10cm 6.先证△ENC≌△DMB(ASA ), ∴ DM=EN. 再加上AD =BE 即可.7.∵ AF=AG ,∴ ∠G=∠AFG.又∵ ∠ADC=∠GEC,∴ AD∥GE.∴ ∠G=∠CAD. ∴ ∠AFG=∠BAD.∴ ∠CAD=∠BAD. ∴ AD 平分∠BAC.8.连结AD.在△ADF 和△BDE 中,可证得: BD =AD ,BE =AF ,∠B=∠D AF. ∴ △ADF≌△BDE.∴ DE=DF.第五章《生活中的轴对称》单元测试卷2选择题(每题5分,共30分)1、下列图形中,不是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形2、下列图案中,有且只有三条对称轴的是()3、等腰三角形一腰上的高与底边所成的角等于()A.顶角B.顶角的一半C.顶角的两倍D.底角的一半4、等腰三角形两边的长分别是2cm和5cm,则这个三角形的周长是( )A.9cmB.12cmC.9cm或12cmD.在9cm和12cm之间5、下列图案中,不能用折叠剪纸方法得到的是()6、将写有字母F的纸条正对镜面,则镜中出现的会是()二、填空题(每题5分,共25分)1、把一张纸对折,任意剪成一个形状,把它打开后所得到的图形关于这条折痕成______图形.2、我国传统木结构房屋,窗子常用各种图案装饰,如右图所示是一种常见的图案,这个图案有______条对称轴.3、前后两辆车,从前一辆的反光镜里看到后一辆车的车牌号是则后面这辆车的实际车牌号是___________.4、等腰三角形的三个内角与顶角相邻的一个外角之和是310°,则底角度数为________.5、如图,在△ABC 中,∠BAC=110°,PM 和QN 分别垂直平分AB 和AC ,则∠PAQ=_________. 三、画图题(每题5分,共10分)把下列各图补成以直线l 为对称轴的轴对称图形. 1、 2、四、解答题(第1题5分,第2、3、4题10分,共35分) 1、如图是由一个等腰三角形(AB=AC )和一个圆(O 为圆心)所成的轴对称图形,则AO 与BC 有怎样的位置关系?试说明理由。

八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)

八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)

13.5轴对称(单元检测)一、单选题(共36分)1.(本题3分)如图所示的正方形网格中,网格线的交点为格点,已知A、B是两个定格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.具体如图所示:故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.,连结BF,2.(本题3分)如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE DFCE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【答案】C∆≅∆,则可对④进行判断;利用全等三角形的性质可对①进行判【分析】根据“SAS”可证明CDE BDF断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠=∠,则利用平行线的判定方法可对③进行判断.ECD FBD∆的中线,【详解】AD是ABCCD BD∴=,∠=∠,=,CDE BDFDE DF∴∆≅∆,所以④正确;()CDE BDF SAS∴=,所以①正确;CE BF∵与DE不能确定相等,AE∆面积不一定相等,所以②错误;ACE∴∆和CDE∆≅∆,CDE BDF∴∠=∠,ECD FBD∴,所以③正确;BF CE//故选:C.【点评】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.3.(本题3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋【答案】B【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.4.(本题3分)下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个【答案】D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.,D是BC中点,下列结论,不一定正确的是()5.(本题3分)如图,△ABC中,AB ACA .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】∵AB=AC ,∴∠B=∠C ,∵AB=AC ,D 是BC 中点,∴AD 平分∠BAC ,AD ⊥BC ,所以,结论不一定正确的是AB=2BD .故选:C .【点评】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.(本题3分)等腰三角形ABC 中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10【答案】B【分析】根据已知条件中的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,则需分两种情况讨论.【详解】根据题意,如图所示:①当AC+12AC=15,解得AC=10,所以底边长=12-12×10=7; ②当AC+12AC=12,解得AC=8, 所以底边长=15-12×8=11. 所以底边长等于7或11.故选:B .【点评】考查了等腰三角形的性质和三角形的三边关系,解题关键抓住在已知条件没有明确给出哪一部分长要一定要想到两种情况,需采用分类进行讨论,还应验证各种情况是否能构成三角形.7.(本题3分)如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连接P 1,P 2交 OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 的周长为( )A .4B .5C .6D .7【答案】C【解析】 试题分析:根据对称图形的性质可得:PM=1P M ,PN=2P N ,则△PMN 的周长=PM+MN+PN=1P M+MN+2P N=1P 2P =6.考点:对称的性质8.(本题3分)如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是( ) A .锐角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 【答案】B【分析】可依据题意线作出图形,结合图形利用平行线的性质和角平分线的定义可得∠B=∠A ,利用“等角对等边”可得其为等腰三角形.【详解】如图,DC 平分∠ACE ,且AB ∥CD ,∴∠ACD =∠DCE ,∠A =∠ACD ,∠B =∠DCE ,∴∠B =∠A ,∴△ABC 为等腰三角形.故选B .【点评】本题考查了平行线的性质和等腰三角形的判定,进行角的等量代换是正确解答本题的关键. 9.(本题3分)将点A (2,3)向左平移2个单位长度得到点A’,点A’关于x 轴的对称点是A’’,则点A’’的坐标为( )A .(0,-3)B .(4,-3)C .(4,3)D .(0,3)【答案】A【详解】试题解析:∵点A (2,3)向左平移2个单位长度得到点A′,∴点A′的横坐标为2-2=0,纵坐标不变,即点A′的坐标为(0,3).点A ′关于x 轴的对称点是A ″,则点A ″的坐标为(0,-3).故选A .10.(本题3分)已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ; (2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是( )A .BAD CAD ∠=∠B .△BCD 是等边三角形C .AD 垂直平分BCD .ABDC S AD BC =【答案】D 【分析】根据作图过程及所作图形可知BD BC CD ==,得出△BCD 是等边三角形;又因为AB AC =,,BD CD AD AD ==,推出ABD ACD ≅,继而得出BAD CAD ∠=∠;根据,BAD CAD ∠=∠,可知AD 为BAC ∠的角平分线,根据三线合一得出AD 垂直平分BC ;四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和,为12AD BC ⋅. 【详解】∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD ==∴ABD ACD ≅∴BAD CAD ∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC =∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和 ∴12ABCD S AD BC =⋅ 故选项D 错误.故选:D .【点评】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.11.(本题3分)如图,在ABC ∆中,4BC =,BD 平分ABC ∠,过点A 作AD BD ⊥于点D ,过点D 作//DE CB ,分别交AB 、AC 于点E 、F ,若2EF DF =,则AB 的长为( )A .10B .8C .7D .6【答案】D【分析】延长AD 、BC 交于点G ,根据三线合一性质推出ABG ∆是等腰三角形,从而可得D 是AG 的中点,E 是AB 的中点,再利用中位线定理即可得.【详解】如图,延长AD 、BC 交于点G∵BD 平分ABC ∠,AD BD ⊥于点D,90ABD GBD ADB GDB ∴∠=∠∠=∠=︒∴BAD G ∠=∠AB BG ∴=,D 是AG 的中点∵//DE BG∴E 是AB 的中点,F 是AC 的中点,DE 是ABG ∆的中位线,EF 是ABC ∆的中位线 ∴12,22EF BC BG DE === 又∵2EF DF =∴1DF =∴3DE EF DF =+=∴26BG DE ==∴6AB =故选:D.【点评】本题考查了等腰三角形的判定定理与性质、中位线定理,通过作辅助线,构造等腰三角形是解题关键.错因分析:容易题.失分原因是对特殊三角形的性质及三角形的重要线段掌握不到位.12.(本题3分)如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A.1 B.2 C.3 D.4【答案】C【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点评】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二、填空题目(共12分)13.(本题3分)如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.【答案】12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.(本题3分)如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____.【答案】40°.【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.(本题3分)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为_______.【答案】18【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点评】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.16.(本题3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若,则BC的长是_____.【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴,【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.三、解答题(共72分)17.(本题8分)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.【答案】(1)其他两边分别为4和7;(2)y =2时,x =8,y =4时,x =7,y =8时,x =5.【分析】(1)根据等腰三角形的性质即可求出答案.(2)设等腰三角形的三边长为x 、x 、y ,根据题意可知y <9,y 是2的倍数,从而可求出答案.【详解】(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x 、x 、y ,由题意可知:2x +y =18,且2x >y ,∴y <9,∵x =18y 2-=9﹣y 2,x 与y 都是整数, ∴y 是2的倍数,∴y =2时,x =8,y =4时,x =7,y =8,x =5.【点评】本题考查等腰三角形,解题的关键是熟练运用等腰三角形的性质,本题属于基础题型. 18.(本题8分)如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的'B 点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.【答案】(1)B′E ∥DC ,理由见解析;(2)65°【分析】(1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ; (2)利用平行线的性质和全等三角形求解.【详解】(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠', //B E DC ',130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. 【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD 边上的B ′点,则ABE ∆≅△AB E ',利用全等三角形的性质和平行线的性质及判定求解.19.(本题8分)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE.【答案】见解析【分析】如图,过点 A 作 ⊥AP BC 于 P ,根据等腰三角形的三线合一得出BP=PC ,DP=PE ,进而根据等式的性质,由等量减去等量差相等得出BD=CE .【详解】如图,过点A 作⊥AP BC 于 P .∵AB AC =,∴BP PC =;∵AD AE =,∴DP PE =,∴BP DP PC PE -=-,∴BD=CE .【点评】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.20.(本题8分)如图所示,一个四边形纸片ABCD ,∠B=∠D=90°,把纸片按如图所示的方式折叠,使点B 落在AD 边上的B′点,AE 是折痕.(1)试判断B′E 与DC 的位置关系;(2)如果∠C=130°,求∠AEB 的度数.【答案】(1)B 'E//DC ;(2)∠AEB=65°【分析】(1)先由折叠性质可知90AB E B '∠=∠=︒,再由∠D=90°可得AB E D ∠'=∠,进而求解即可; (2)先运用平行线的性质可得130B EB C ∠=∠='︒,再由折叠的性质可得AEB AEB '∠=∠,进而求解即可.【详解】(1)B 'E ∥DC由折叠可知∠A B 'E=∠B=90°∵∠D=90°∴∠A B 'E=∠D∴B 'E ∥DC(2)∵B′E ∥DC∴∠B'EB=∠C=130°由折叠可知∠AEB=∠AE B',∴∠AEB=12∠B'EB=12×130°=65°故答案为:65°【点评】本题主要是折叠的性质以及平行线的判定和性质,根据折叠的性质,找到折叠后相等的角和边;同位角相等,两直线平行,两直线平行,同位角相等.21.(本题8分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.【答案】(1)4,1;(2)5【分析】(1)利用轴对称的性质求出MQ即可解决问题;(2)利用轴对称的性质求出NR即可解决问题.【详解】(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【点评】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型. 22.(本题10分)如图,点O 是等边ABC 内一点,AOB 110∠=,BOC α∠=.将BOC 绕点C 逆时针旋转60得ADC ,连接OD .()1求证:DOC 是等边三角形;()2当AO 5=,BO 4=,α150=时,求CO 的长; ()3探究:当α为多少度时,AOD 是等腰三角形.【答案】()1证明见解析;()23CO =;()3125α=、110α=或140α=.【分析】()1由旋转的性质可以知道CO CD =,D 60OC ∠=,可判断COD 是等边三角形; ()2由()1可知D 60OC ∠=,当α150=时,90ADO ADC CDO ∠∠∠=-=,可判断AOD 为直角三角形; ()3?根据AOD 是等腰三角形,推出两腰相等,分三种情况进行讨论,利用旋转和全等的性质即可得出答案. 【详解】()1∵将BOC 绕点C 按顺时针方向旋转60得ADC ,∴BOC ADC ≅,D 60OC ∠=,∴CO CD =.∴COD 是等边三角形;()2∵ADC BOC ≅,∴4DA OB ==,∵COD 是等边三角形,∴60CDO ∠=,又150ADC ∠∠α==,∴90ADO ADC CDO ∠∠∠=-=,∴AOD 为直角三角形.又5AO =,4AD =,∴3OD =,∴3CO OD ==;()3若AOD 是等腰三角形,所以分三种情况:①AOD ADO ∠∠=②ODA OAD ∠∠=③AOD DAO ∠∠=,∵110AOB ∠=,60COD ∠=,∴36011060190BOC AOD AOD ∠∠∠=---=-,而BOC ADC ADO CDO ∠∠∠∠==+,由①AOD ADO ∠∠=可得60BOC AOD ∠∠=+,求得125α=;由②ODA OAD ∠∠=可得11502BOC AOD ∠∠=-求得110α=;由③AOD DAO ∠∠=可得2402BOC AOD ∠∠=-,求得140α=; 综上可知125α=、110α=或140α=.【点评】本题主要考查旋转的性质,全等三角形的判定与性质,等腰(边)三角形的判定与性质,掌握图形的关系是解题的关键.23.(本题10分)如图,在△ABC 中,AB=AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC=125°.求∠ACB 和∠BAC 的度数.【答案】70°、40°.【详解】试题分析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.试题解析:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°﹣∠CDE=35°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°,又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180﹣(∠B+∠ACB)=40°.【点睛】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.24.(本题12分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB=;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)120°,90°,60°;(2)180°﹣α;(3)∠AFB=180°﹣α,证明详见解析.【分析】(1)如图1,证明△ACE≌△DCB,根据全等三角形的性质可得∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数即可;如图2,证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°;如图3,证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°-∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°;(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°-α;(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°-α.【详解】(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.【点评】本题考查了全等三角形的性质和判定、三角形的外角性质及三角形的内角和定理,熟练运用三角形全等的判定方法证明三角形全等,利用全等三角形的性质解决问题是解决这类题目的基本思路.祝福语祝你考试成功!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A) (B)
(C) (D)
轴对称测试卷(5)
一、 填空题(每题3分,共30分) 1.长方形的对称轴有_________________条. 2.等腰直角三角形的底角为_____________.
3.等边三角形的边长为a ,则它的周长为_____________.
4.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____________个.
5.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.
6.AB 边上的中线CD 将△ABC 分成两个等腰三角形,则∠ACB=_______度.
7.(-2,1)点关于x 轴对称的点坐标为__________.
8.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度. 9.仔细观察下列图案,并按规律在横线上画出合适的图形.
_________
10.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC,有下列结论: ①AB ∥CD ②AB=CD ③AB ⊥BC ④AO=OC 其中正确的结论是_______________.(把你认为正确的 结论的序号都填上)
二、 选择题(每题3分,共30分)
11.下列平面图形中,不是轴对称图形的是 ( )
12.下列英文字母属于轴对称图形的是 ( ) (A) N (B) S (C) H (D) K
13.下列图形中对称轴最多的是 ( ) (A)圆 (B)正方形 (C)等腰三角形 (D)线段 14.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确...的是 ( ) (A)∠B=∠C (B)AD ⊥BC (C)AD 平分∠BAC (D)AB=2BD
15.△ABC 中,AB=AC.外角∠CAD=100°,则∠B 的度数 ( ) (A )80° (B )50° (C )40° (D )30°
16.等腰三角形的一个角是80°,则它的底角是 ( ) (A) 50° (B) 80° (C) 50°或80° (D) 20°或80°
C
D
A
B
A
B
C
D
l
O A
B
C D A
B
D
C
E
17.如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是 ( ) (A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定.
18.如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,AB=8m,∠A=30°,则DE 等于 ( ) (A)1m (B) 2m (C)3m (D) 4m
19.如图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB 的度数为( ) (A)144° (B)120° (C)108° (D)100°
20.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O,P 2 三点构成的三角形是 ( )D
(A)直角三角形 (B)钝角三角形 (C)等腰三角形 (D)等边三角形 三、解答题(每题8分,共40分)
21.如图,写出A 、B 、C 关于y 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形.
22.如图,在△ABC 中,AB=AD=DC,∠BAD=26°,求∠B 和∠C 的度数.
A
B
D
C
23.如图,△ABC 和△A ′B ′C ′关于直线l 对称,求证:△ABC ≌△A ′B ′C ′.
若△ABC ≌△A ′B ′C ′,那么△ABC 和△A ′B ′C ′一定关于某条直线l 对称吗?若一定请给出证明,若不一定请画出反例图.
24.某居民小区搞绿化,要在一块长方形空地上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆和正方形的个数不限)并且使整个长方形场地成轴对称图形,请在长方形中画出你设计的方案.
25.如图,AD ⊥BC,BD=DC,点C 在AE 的垂直平分线上,AB+BD 与DE 的长度有什么关系?并加以证明.
A
B
C
E
D
答案:
1.2
2.45°
3.3a
4.3
5.19cm
6.90
7. (-2, -1)
8.2
x 9. 10. ①②④.
11.A 12.C 13.A 14.D 15.B 16.C 17.B 18.B 19.C 20.C.。

相关文档
最新文档